OMI UV spectral irradiance: comparison with ground based measurements in an urban environment Stelios Kazadzis A. Bais, A. Arola OMI science team meeting Helsinki, June 2008 Finnish Meteorological Institute Laboratory of Atmospheric Physics, Thessaloniki, Greece 31.7.2017 Outline • OMI – ground based UV spectral irradiance comparison – statistics • Aerosol absorption – post correction approaches • Campaign: Spacial and temporal UV variability within an OMI grid Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 2 • The problem - absorbing aerosols OMI – GB UV comparison – statistics Current OMI UV algorithm does not account for absorbing aerosols (e.g. organic carbon, smoke, dust ) Tokyo: +32% Tanskannen et al., JGR 2007 Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 3 OMI – GB UV comparison – statistics Thessaloniki Area -High aerosol load Sahara - Dream model - Aerosol transport - Very high PM10 conc. agriculture wetlands grasslands Latitude (degrees) Sahara dust intrusions Biomass burning from NE forest other Thessaloniki Fire hot spots - summer Longitude (degrees) Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 4 OMI – GB UV comparison – statistics Instrumentation - comparison Thessaloniki September 2004-December 2007 Brewer instrument (spectral-calibrated, wavelength shift corrected) UV irradiance at 305, 324, 380 nm and CIE Total column ozone spectral AOD at UV wavelengths CIMEL AOD (340nm) , SSA(440nm), .. NILU-UV 305nm, 324nm, 340nm, 380nm Rooftop of the School of Natural Sciences Cloud – cloudless case separation Pyranometer, observations, sky camera pix Daily OMI overpass time (mean over ±15 minutes) Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 5 OMI – GB UV comparison – statistics Results 80 500 305 nm 324 nm 400 300 Brewer Brewer 60 40 200 20 100 0 0 0 20 40 60 OMI 305nm OMI +30% Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 80 0 100 200 300 400 500 OMI 324nm OMI +17% 31.7.2017 6 OMI – GB UV comparison – statistics Results 0.3 0.3 Days cloud free Days cloud free 380 nm cloudy CIED cloudy 0.2 ΔΝ/Ν ΔΝ/Ν 0.2 0.1 0.1 0.0 0.0 0 1 2 OMI - GB ratio 380nm OMI +11% Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 3 0 1 2 3 OMI - GB ratio CIED OMI +20% 31.7.2017 7 OMI – GB UV comparison – statistics Results - statistics All data Wavel. (nm) cloudless m R2 W10 W20 m R2 W10 W20 305 1.30 0.94 43.3 68.2 1.27 0.95 64.8 87.6 324 1.17 0.89 51.3 73.1 1.15 0.91 76.9 92.4 380 1.13 0.89 47.2 70.7 1.11 0.91 71.8 89.7 CIED 1.20 0.93 51.5 75.4 1.19 0.95 75.0 91.9 Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 8 OMI – GB UV comparison – statistics Results - statistics All data Wavel. (nm) cloudless m R2 W10 W20 m R2 W10 W20 305 1.30 0.94 43.3 68.2 1.27 0.95 64.8 87.6 324 1.17 0.89 51.3 73.1 1.15 0.91 76.9 92.4 380 1.13 0.89 47.2 70.7 1.11 0.91 71.8 89.7 CIED 1.20 0.93 51.5 75.4 1.19 0.95 75.0 91.9 Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 9 Post correction methods Post correction methods - TOMS experience Cloudless cases: E ( ) Eac ( ) 1 b abs ( ) Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 Ta(λ) = AOD(λ) * [1 - SSA(λ)] Arola et al., JGR 2005 Krotkov et al., OE 2004 31.7.2017 10 Post correction methods UV attenuation – Thessaloniki, cloudless cases UV attenuation OMI-Ground based % bias % UV attenuation due to aerosol at (324 nm) 0 -5 -10 77% of cases -15 -20 -25 -30 -35 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Months Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 11 Post correction methods Post correction : method 1 Ta (λ) = AOD(λ) * [1 - SSA(440nm)] Aerosol absorption CF(λ) = 1.1 + 1.5 * Ta(λ) Irradiance ratio OMI / Brewer at 324 nm 2.0 ssa >0.98 1.8 ssa= [0.94, 0.98] ssa= [0.88, 0.94] 1.6 ssa < 0.88 1.4 1.2 •no sza dependence •SSA @ UV ? •need of GB data 1.0 0.8 0.6 0.4 Slope = 1.5 per unit of absorption optical depth Intercept = 1.10 0.2 0.0 0.00 0.02 0.04 0.06 0.08 Absorption optical depth Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 0.10 0.12 31.7.2017 12 Post correction methods Post correction: method 2 Tas =Ta / cos(sza) Aerosol absorption CF(λ) = 1.07 + 1.8 * Tas(λ) Irradiance ratio OMI / Brewer at 324 nm 2.0 ssa >0.98 1.8 ssa= [0.94, 0.98] ssa= [0.88, 0.94] 1.6 ssa < 0.88 1.4 •SSA @ UV ? •need of GB data 1.2 1.0 0.8 0.6 0.4 Slope = 1.8 per unit of slant absorption optical depth Intercept = 1.07 0.2 0.0 0.00 0.04 0.08 0.12 slant column absorption optical depth Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 13 Post correction methods Post correction: use of RT model Abs + scat sza=40 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.6 1.5 1.4 1.3 1.2 1.1 1 0 0.2 0.4 0.6 0.8 1 aerosol optical depth at 340 nm 1.2 1.4 sza=60 1.2 correction for irradiance at 324nm correction for irradiance at 324nm 1.7 0.8 1.18 1.16 1.14 total correction 0.82 ssa=0.88 0.84 0.86 scat 0.88 0.9 0.92 1.12 0.94 0.96 1.1 0.98 1 1.08 1.06 correction for scattering ssa=1, no absorption 1.04 0.4 0.45 0.5 0.55 aerosol optical depth at 340 nm 0.6 S1: AOD and SSA synchronous measurements S2: AOD and SSA@440 = const S3: AOD= const and SSA@340 = const Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 14 Post correction methods Overview of post corrections 6th Approach: CF(λ) = 1 + 3 * Ta(λ) Table with all the results of the 6 approaches: Method 305 nm Mean (1σ) 324 nm Mean (1σ) 380 nm Mean (1σ) Obs Original No correction 1.27 (0.15) 1.15 (0.10) 1.11 (0.12) 267 S1 Apply Ta slope 1.17 (0.13) 1.07 (0.09) 1.05 (0.13) 135 S2 Apply Tas slope 1.18 (0.13) 1.09 (0.10) 1.05 (0.13) 135 M1 Model 1.13 (0.12) 1.04 (0.08) 1.01 (0.11) 135 M2 Model constant SSA 1.14 (0.13) 1.03 (0.09) 0.99 (0.10) 267 M3 Model const. SSA-AOD 1.12 (0.13) 1.02 (0.09) 0.98 (0.10) 267 S3 1 + 3 * Ta (λ) 1.11 (0.13) 1.03 (0.10) 1.01 (0.11) 135 OMI/Brewer ratio [R] Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 15 Post correction methods Overview of post corrections 6th Approach: CF = 1 + 3 * Ta(λ) Table with all the results of the 6 approaches: Method 305 nm Mean (1σ) 324 nm Mean (1σ) 380 nm Mean (1σ) Obs Original No correction 1.27 (0.15) 1.15 (0.10) 1.11 (0.12) 267 S1 Apply Ta slope 1.17 (0.13) 1.07 (0.09) 1.05 (0.13) 135 S2 Apply Tas slope 1.18 (0.13) 1.09 (0.10) 1.05 (0.13) 135 M1 Model 1.13 (0.12) 1.04 (0.08) 1.01 (0.11) 135 M2 Model constant SSA 1.14 (0.13) 1.03 (0.09) 0.99 (0.10) 267 M3 Model const. SSA-AOD 1.12 (0.13) 1.02 (0.09) 0.98 (0.10) 267 S3 1 + 3 * Ta (λ) 1.11 (0.13) 1.03 (0.10) 1.01 (0.11) 135 OMI/Brewer ratio [R] Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 16 Post correction methods Overview of post corrections 6th Approach: CF = 1 + 3 * Ta(λ) Table with all the results of the 6 approaches: Method 305 nm Mean (1σ) 324 nm Mean (1σ) 380 nm Mean (1σ) Obs Original No correction 1.27 (0.15) 1.15 (0.10) 1.11 (0.12) 267 S1 Apply Ta slope 1.17 (0.13) 1.07 (0.09) 1.05 (0.13) 135 S2 Apply Tas slope 1.18 (0.13) 1.09 (0.10) 1.05 (0.13) 135 M1 Model 1.13 (0.12) 1.04 (0.08) 1.01 (0.11) 135 M2 Model constant SSA 1.14 (0.13) 1.03 (0.09) 0.99 (0.10) 267 M3 Model const. SSA-AOD 1.12 (0.13) 1.02 (0.09) 0.98 (0.10) 267 S3 1 + 3 * Ta (λ) 1.11 (0.13) 1.03 (0.10) 1.01 (0.11) 135 OMI/Brewer ratio [R] Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 17 Post correction methods Overview of post corrections 6th Approach: CF = 1 + 3 * Ta(λ) Table with all the results of the 6 approaches: Method 305 nm Mean (1σ) 324 nm Mean (1σ) 380 nm Mean (1σ) Obs Original No correction 1.27 (0.15) 1.15 (0.10) 1.11 (0.12) 267 S1 Apply Ta slope 1.17 (0.13) 1.07 (0.09) 1.05 (0.13) 135 S2 Apply Tas slope 1.18 (0.13) 1.09 (0.10) 1.05 (0.13) 135 M1 Model 1.13 (0.12) 1.04 (0.08) 1.01 (0.11) 135 M2 Model constant SSA 1.14 (0.13) 1.03 (0.09) 0.99 (0.10) 267 M3 Model const. SSA-AOD 1.12 (0.13) 1.02 (0.09) 0.98 (0.10) 267 S3 1 + 3 * Ta (λ) 1.11 (0.13) 1.03 (0.10) 1.01 (0.11) 135 OMI/Brewer ratio [R] Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 18 Post correction methods Correction results 324 nm 305 nm 500 80 OMI irradiance mW/m2nm OMI irradiance mW/m2nm 70 60 50 40 30 305nm +11% 20 10 0 0 10 20 30 40 50 60 2 Brewer irradiance mW/m nm 70 400 300 200 100 324nm +2% 80 0 0 380 nm 100 200 300 2 Brewer irradiance mW/m nm 400 500 OMI irradiance mW/m2nm 1000 800 600 400 380nm +0% 200 0 0 200 400 600 800 2 Brewer irradiance mW/m nm Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 1000 31.7.2017 19 Post correction methods Effects of sza, AOD, SSA, ozone, time on ratios 1.8 1.8 1.8 original corrected-mod corrected mod-c corrected 1+3*Tabs OMI//Brewer Brewerratio ratio305nm at 324 nm OMI OMI / Brewer ratio 380nm 1.6 1.6 1.6 1.4 1.4 1.4 1.2 1.2 1.2 1 11 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 10 0.2 10 0.2 0 original original 1.15 (0.10) corr mod-c corrected-mod1.03 (0.09) corr 1+1.5*Tabs 1.07 (0.09) mod-c corrected corr 1+3*Tabs 1.03 (0.10) corrected 1+3*Tabs 20 30 20 0.02 40 30 50 60 50 Sza 40 (deg) 0.04 0.06angle (deg) 0.08 solar zenith 70 60 80 0.1 70 80 0.12 Tabs Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 20 Spatial and temporal UV variability within an OMI grid Campaign: 1 to 30 October, 2007 •3 sites Each: NILU UV at 305, 324, 380nm CIMEL (AOD, SSA, ..) Pyranometer, sky camera Main site + Brewers Spectral UV, ozone CCD (spectral AOD) 2 Lidars (City – Rural) Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 21 Spatial and temporal UV variability within an OMI grid UV Measurements at the three sites Irradiance at 324 nm (mW m -2 nm -1) 350 NILU-UV AUTH NILU-UV EPANOMI NILU-UV SINDOS OMI Brewer cloudless Brewer all 300 250 200 150 100 50 0 02-Oct 07-Oct 12-Oct 17-Oct 22-Oct 27-Oct 01-Nov Day of 2007 Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 22 Spatial and temporal UV variability within an OMI grid AOD variability in an OMI grid 1.4 Location Epanomi / rural site Sindos / industrial site 1.2 AOD at 340 nm AUTH / urban site 1.0 0.8 0.6 RAIN 0.4 0.2 0.0 30-Sep 3-Oct 6-Oct 9-Oct 12-Oct 15-Oct 18-Oct 21-Oct 24-Oct 27-Oct 30-Oct Day of year - 2007 Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 23 Spatial and temporal UV variability within an OMI grid UV differences in an OMI grid AUTH BREWER AUTH 40 EPANOMI 20 0 % UV Irradiance difference from AUTH (380 nm) +20% SINDOS -20 AOD at 340 nm -20% 0.6 0.5 0.4 0.3 0.2 0.1 0.0 14-Oct 15-Oct 16-Oct 17-Oct 18-Oct 19-Oct Day of year 2007 Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 24 Spatial and temporal UV variability within an OMI grid Spatial UV variability at 3 stations (2 * sigma / mean)*100 Integration Time UV Variability at 324 nm 120 60 100 50 100*[2*SD /mean] 80 40 60 30 40 20 80% of cloudy cases 20 90% of cloudless cases 0 270 275 10 280 285 290 295 300 305 Days of 2007 Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 25 Spatial and temporal UV variability within an OMI grid Temporal UV variability Integration Time UV Variability at 3242007 nm for OMi overpass Average UV variability of October time 12030 60 29 100 324 nm 28 50 100* [ 2*SD / mean] 100*[2*SD /mean] 8027 40 26 60 25 30 24 40 20 80% of23 cloudy cases 2022 90% of cloudless cases 10 (2 * sigma / mean)*100 21 0 270 20 0 275 280 10 285 290 20Days of 2007 30 295 40 300 305 50 60 Integration Time (min) Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 26 Conclusions •3.5 years of OMI and ground based at Thessaloniki, Greece: measurement comparison showed an OMI overestimation of UV irradiances. Cloudless cases: Main reason is the aerosol absorption. Higher deviations at lower wavelengths •Possible methods to correct this effect: AOD and SSA measurements or/and absorption climatology needed in a global scale an aerosol •SSA in the UV: while mean SSA at 440 nm is 0.90 (Thessaloniki) an SSA of 0.82 is needed for eliminating GB and OMI UV differences at 305nm. SSA at UV-B wavelengths needs further investigation. •Simple public information (e.g. UVINDEX) retrieved from OMI at such populated-urban areas are affected from this bias. +20% on cloudless day. •Aerosol variation within an OMI satellite pixel can cause UV differences equal to a percentage (~18%) that 90% of cloudless comparison cases lie within. Statistical analysis limitations ? •Spatial and temporal UV variability has to be taken into account when comparing GB and satellite UV, especially at city areas. •Comparison under cloudy conditions requires more investigation as absolute differences are large and spatial and temporal UV variability plays a very important role on single station – satellite, comparison. Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 27 Thank you Campaign acknowledgments: D. Balis, N. Kouremeti, V. Amiridis, M. Zebila, E. Giannakaki, J. Herman, AERONET Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 28 Spatial and temporal UV variability within an OMI grid OMI – GB normalized biases 3 stations 30 305 nm 380 nm 20 normalized OMI - GB % difference 324 nm 10 0 -10 -20 -30 27-Sep 2-Oct 7-Oct Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 12-Oct 17-Oct day of Year 2007 22-Oct 27-Oct 1-Nov 31.7.2017 29 Back up air masses 4 day back traj Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 30 Back up – Lidar 2 days 5 5 06.10.2007 16.10.2007 06.10.2007 16.10.2007 06.10.2007 16.10.2007 4 4 532 nm HEIGHT, asl [km] 355 nm 355 - 532 nm 3 3 2 2 1 1 0 0 0 3 6 9 -1 -1 BACKSC. COEF. [Mm sr ] Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 0 1 2 3 -1 -1 BACKSC. COEF. [Mm sr ] 0 2 4 6 COLOR INDEX 31.7.2017 31 Back up TOMS and UVA correction TOMS - BREWER RATIO original = 1.18 (0.13) Use of additional UVA measurements 2.0 corrected = 1.01 (0.09) 1.8 Toms / Brewer at 324 nm 1.6 1.4 1.2 1.0 No UVA measurements 0.8 0.6 0.4 0.2 0.0 1996 1997 1998 Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 1999 2000 Year 2001 2002 2003 2004 31.7.2017 32 Back up Brewer –MODIS (2000-2007) MODIS/Terra vs BREWER 30 minute coincidences 2 MODIS/Terra MEAN AOD v0.04 MODIS/Terra CORRECTED AOD@355nm MODIS/Terra MEAN AOD v0.05 1.6 1.2 Equation Y = 0.806 * X + 0.2059 Number of data points used = 161 Average X = 0.353 & Y = 0.49 R-squared = 0.453 Equation Y = 0.8981 * X + 0.11322 Number of data points used = 311 Average X = 0.395 & Y = 0.468 R-squared = 0.576 0.8 0.4 0 0 0.4 Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 0.8 1.2 BREWER AOD@355nm 1.6 2 31.7.2017 33 Back up Brewer AOD (1996-2007) Clusters Mean AOD at 340 nm 0.80 0.60 #1 North West (Atlantic) #2 North #3 West #4 East, North-East #5 Western, Local and Saharan dust Mean AOD 0.40 0.20 0.00 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Months 31.7.2017 Back up SSA Thessaloniki (1998-2005) Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 35 Brewer (350nm) CIMEL (440nm) DUTH (550nm, average) DUTH (550nm, average 0-1 km) Ground nephelometer (450nm) Back up SSA scout 1 Single Scattering Albedo 0.95 0.9 0.85 0.8 0.75 195 196 197 198 199 200 201 202 203 204 205 206 Day of year Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 36 Spatial and temporal UV variability within an OMI grid Spectral measurements of direct and global UV irradiance at the surface were made with two Brewer spectroradiometers. In addition, global (diffuse plus direct) UV irradiance and photosynthetically active radiation (PAR) were measured, on a minute basis, at each of the three sites with three NILU-UV multi-channel radiometers. In-situ measurements of aerosol vertical profiles were derived from two Lidar systems operating at (AUTH) and the site of Epanomi. Total ozone column was derived from the Brewers and cloud observations and sky images at the AUTH site. Cloud observations were performed at all sites at a half hour basis. Sun and sky radiance measurements were conducted with three CIMEL automatic sun tracking photometers, each installed at one of the three sites. These data were used to derive aerosol optical properties such as the aerosol optical depth (AOD), the Angstrom exponent a (AEa) and the single scattering albedo (SSA). Stelios Kazadzis, OMI science team meeting Helsinki, June 2008 31.7.2017 37
© Copyright 2026 Paperzz