yeast_chemostat_ss This program simulates steady-state values of a glucose limited chemostat with S. cerveisiae. The basic overflow model is described in Monod kinetics terms in the SIMSPEC file yeast_model.fig. It is the same model as used in the fedbatch simulations of yeast (yeast_fedbatch). To obtain the yield coefficients and specific rates of ethanol, oxygen and CO2, stoichiometric analysis is applied. Units are first translated to C-mole before the stoichiometric analysis is made and finally, for the presentation, converted back to gram units. The metabolic path is separated into i) aerobic metabolism (at glucose concentrations up to a critical value, Gcrit corresponding to a critical uptake rate qGcrit) and ii) fermentative (overflow) metabolism of the fraction of glucose uptake which exceeds the qGcrit value . Finally the biomass and growth rates of these fluxes are added. For further information on the stoichiometric analysis see Fermentation Process Engineering, chapt 5, (www.enfors.eu) The model cannot account for oxygen limitation and ethanol inhibition. Variables: D /h Dilution rate X g/L Biomass concentration G g/L Glucose concentration DOT % Dissolved oxygen tension E g/L Ethanol concentration RQ mol/mol Respiratory quotient my /h Specific growth rate Xf g/L Fraction of biomass produced fermentatively qO g/g/h Specific oxygen consumption rate Constants: Yxgae g/g Yxgf g/g/h Kg g/L qGmax g/gh Gcrit g/L H % /(g/L) DOTstar % Gi g/L CMWg g/Cmol CMWx g/Cmol CMWe g/Cmol DRx /Cmol DRg /Cmol) DRe /Cmol DRo /mol qm g/gh KLa /h Aerobic yield of biomass per glucose Fermentative yield of biomass per glucose Saturation constant for glucose Max specific glucose uptake rate (Monod model) Critical G above which overflow metabolism occurs Conversion between % air sat and g/L units for DO Equilibrium DOT Inlet glucose concentration Cmole weight of glucose Cmole weight of biomass Cmole weight of ethanol Degree of reduction of biomass Degree of reduction of glucose Degree of reduction of ethanol Degree of reduction of oxygen maintenance coefficient Vol. oxygen transfer coefficient Algorithm: G=0:0.001:10; % Glucose conc. vector G=G'; % Convert to C mole: g=G/CMWg;% glucose conc gi=Gi/CMWg;% inlet glucose conc. qmcmol=qm/CMWg*CMWx;% maintenance coeff. kg=Kg/CMWg;% saturation const, for glucose qgmax=qGmax/CMWg*CMWx;% qSmax glucose gcrit=Gcrit/CMWg; % critical S for overflow qgcrit=qgmax*gcrit/(gcrit+kg); %critical qS for overflow yxgae=Yxgae/CMWx*CMWg; % aerobic Yx/s for glucose yxgf=Yxgf/CMWx*CMWg; % fermentative Yx/s for glucose %Glucose uptake kinetics qg=qgmax*g./(g+kg); qgae=qg; qgae(find(qgae>qgcrit))=qgcrit; qgf=qg-qgae; % Aerobic path myae=yxgae*qgae; % aerobic contribution to growth on glucose yog=(DRx*yxgae-DRg)/DRo;% yield oxygen/glucose qo=yog*qgae;% rate of oygen for glucose oxidation yco2gae=1-yxgae;% aerobic CO2 yield qco2gae= yco2gae*qgae;% rate of aerobic CO2 production % Fermentative path myf=yxgf*qgf; yeg=(DRg-yxgf*DRx)/DRe;% yield of ethanol qep=yeg*qgf; % specific ethanol prod. rate yco2gf=1-yxgf-yeg; % fermentative yield of CO2 qco2gf=yco2gf*qgf; % spec. co2 prod. rate % Biomass from the two paths: deltag=gi-g; % Consumed glucose xae=yxgae.*deltag.*qgae./qg; % Fraction to aerobic biomass xf=yxgf.*deltag.*qgf./qg; % Fraction to fermentative biomass % The sum my=myae+myf; D=my; qco2=qco2gae+qco2gf; x=xae+xf; RQ=qco2./qo; e=qep.*x./D; % convert to g or mmol units Xae=xae*CMWx; Xf=xf*CMWx; X=x*CMWx; E=e*CMWe; qO=qo/CMWx*32;% g/g/h DOT=DOTstar-X.*qO*H/KLa;
© Copyright 2026 Paperzz