Response functions with Landau residual interaction D. Davesne Introduction Nuclear matter response functions : principles and applications with Landau residual interaction Linear response Instabilities Applications Landau residual interaction D. Davesne, A. Pastore, J. Navarro Université de Lyon, F-69003 Lyon, France, Université Claude Bernard Lyon 1; Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, F-69622 Villeurbanne cedex, France. Response functions with Landau residual interaction Outline D. Davesne Introduction n Spin-isospin response functions n Formalism n Example of the free response function n Instabilities n Applications to Landau residual interaction n n n n Landau parameters Quality of approximation Convergence with ` Estimation of N3LO interaction parameters n Conclusion Linear response Instabilities Applications Landau residual interaction Response functions with Landau residual interaction Skyrme pseudo potential Veff = t0 1 + x0 P̂σ δ + t3 1 + x3 P̂σ ρα0 δ + 12 t1 1 + x1 P̂σ k02 δ + δk2 + t2 1 + x2 P̂σ k0 δ · k + i W0 (σ1 + σ2 ) · k0 δ × k nh o i + 21 te 3 σ1 · k0 σ2 · k0 − (σ1 · σ2 ) k02 δ + c.c. + 12 to 3 σ1 · k0 δ (σ2 · k) − (σ1 · σ2 ) k0 δ · k + c.c. D. Davesne local Introduction non local Linear response Instabilities spin-orbit Applications tensor Landau residual interaction Skyrme functional (local densities) ESk = XZ n ρ j ∆ρ d3 r Ct ρ0 ρ2t + Ct ρt ∆ρt + Ctτ ρt τt + Ct j2t + Cts ρ0 s2t t=0,1 +Ct∇s (∇ · st )2 + Ct∆s st · ∆st + CtT st · Tt + CtF st · Ft + Ct∇J ρt ∇ · Jt (0) (1) ∇j 2 J (2) +Ct st · (∇ × jt ) + CtJ (Jt(0) )2 + CtJ (J(1) t ) + Ct [E . Perlinska et al. Phys. Rev C 69, 014316 (2004)) ] The coupling constants are fitted on data. z X µν=x (2) (2) Jtµν Jtµν Response function - Formalism Response functions with Landau residual interaction D. Davesne We act with an external field X j j expiqr Θα Θα = 1, σj , τ̂j , σj τ̂j j The RPA propagator is the solution of Bethe-Salpeter equation : (SMI) GHF (q, ω, k1 ) X Z d3 k (S’M’I’) 2 (SMI;S’M’I’) +GHF (q, ω, k1 ) V (q, k1 , k2 )GRPA (q, ω, k2 ) (2π)3 ph (S’M’I’) 0 Linear response Instabilities Applications [J. Navarro et al. , Ann. Phys. 214, 293-340, 1992 ] GRPA (q, ω, k1 ) Introduction = (α,α ) −1 0 with : Vph (q, k1 , k2 ) = hq + k1 , k−1 1 , (α)|Veff |q + k2 , k2 , (α )i Landau residual interaction Response functions with Landau residual interaction Formalism D. Davesne Introduction Linear response G1,M,I RPA (q, ω, k1 ) = GHF (q, ω, k1 ) Instabilities Z d3 k2 (2π)3 X ∗ W (1,I) + W (1,I) [k2 + k2 ] − 2W (1,I) 4π k1 k2 Y1µ (k̂1 )Y1µ (k̂2 ) 1 2 2 2 1 3 + GHF (q, ω, k1 ) + X h i 16π (1,I) ∗ W4(1,I) k14 + k24 + 2k12 k22 − W4 (k13 k2 + k1 k23 ) Y1µ (k̂1 )Y1µ (k̂2 ) 3 µ X 64π2 2 2 (1,I) X ∗ ∗ k k W Y1µ (k̂1 )Y1µ (k̂2 ) Y1ν (k̂1 )Y1ν (k̂2 ) G1,M,I RPA (q, ω, k2 ) 9 1 2 4 + µ + Z d3 k2 4qCI∇J M (2π)3 r µ ν i 4π h 1 1 k1 YM (k̂1 ) − k2 YM (k̂2 ) G0,0,I RPA (q, ω, k2 ) 3 n Integration on k1 n Closed system of equations n Analytical vs numerical solution Applications Landau residual interaction Response functions with Landau residual interaction Response function - Typical result n Importance of the tensor on response functions D. Davesne n Separation into different channels : (S, M, I) Introduction Linear response Instabilities Applications Landau residual interaction 0.0025 SNM q=kF ρ=ρ0 0.0015 0.001 S SMI -1 [MeV fm -3] 0.002 Uncorrelated S=0 I=0 S=0 I=1 S=1 M=0 I=0 S=1 M=0 I=1 S=1 M=1 I=0 S=1 M=1 I=1 0.0005 0 0 20 40 60 80 100 120 140 160 180 200 ω [MeV] Response functions with Landau residual interaction Free response function D. Davesne Introduction Linear response Instabilities 300 Applications Landau residual interaction ω (MeV) 2 ω = q /2 m 200 100 0 0 1 2 3 q (fm-1) Excitation of a single nucleon at rest 4 5 Response functions with Landau residual interaction Free response function D. Davesne Introduction Linear response Instabilities 300 Applications ω (MeV) Landau residual interaction ω = q2/2 m + q kF/m 200 100 ω = q2/2 m - q kF/m 0 0 1 2 3 4 q (fm-1) Spreading of the distribution (Fermi momentum) 5 Response functions with Landau residual interaction Free response function D. Davesne Introduction Linear response Instabilities Pauli blocking S (MeV.fm-3) 0.0008 Applications Landau residual interaction 0.0004 0 0 50 100 ω (MeV) q < 2kF 150 200 Response functions with Landau residual interaction Free response function D. Davesne Introduction 0.0004 Linear response Instabilities Applications S (MeV.fm-3) Landau residual interaction 0.0002 0 0 200 400 600 ω (MeV) q > 2kF 800 1000 1200 Response function with interactions Response functions with Landau residual interaction D. Davesne Introduction Linear response Instabilities Applications Landau residual interaction (S,M,I) (ω, q) = χRPA χHF (ω,q) 1−V(ω,q)χHF (ω,q) n Collective modes : as soon as 1 − V(ω, q)χHF (ω, q) , 1 n Reshaping : microscopic physical interpretation (π, ρ, ∆) Response function with interactions Response functions with Landau residual interaction D. Davesne (S,M,I) (ω, q) = χRPA χHF (ω,q) 1−V(ω,q)χHF (ω,q) Introduction Linear response n Collective modes : as soon as 1 − V(ω, q)χHF (ω, q) , 1 Instabilities n Reshaping : microscopic physical interpretation (π, ρ, ∆) Applications Landau residual interaction Instabilities An instability in the functional causes an infinity in the response function : 1/χSMI (ω = 0, q) = 0 D. Davesne Introduction Linear response 0.6 S=0 M=0 I=0 S=0 M=0 I=1 S=1 M=1 I=0 S=1 M=0 I=1 S=1 M=1 I=1 ρsat=0.16 fm-3 0.5 Instabilities Applications Landau residual interaction 0.4 ρ [fm-3] Response functions with Landau residual interaction 0.3 0.2 0.1 0 0 1 2 q [fm-1] 3 4 Instabilities in the different spin/isospin channels (S,M,I) for T22. 5 Response functions with Landau residual interaction Instabilities D. Davesne Introduction An instability in the functional causes an infinity in the response function : Linear response 1/χSMI (ω = 0, q) = 0 Instabilities Applications 0.0012 0.6 S=0 M=0 I=0 S=0 M=0 I=1 S=1 M=1 I=0 S=1 M=0 I=1 S=1 M=1 I=1 -3 ρsat=0.16 fm 0.5 Landau residual interaction q = 1.33 fm-1 0.001 0.0008 S (MeV-1fm-2) ρ [fm-3] 0.4 0.3 0.0006 0.0004 0.2 • 0.0002 0.1 0 0 0 1 2 q [fm-1] 3 4 5 0 50 100 w (MeV) Instabilities in the different spin/isospin channels (S,M,I) for T22. 150 200 Response functions with Landau residual interaction Instabilities D. Davesne Introduction An instability in the functional causes an infinity in the response function : Linear response 1/χSMI (ω = 0, q) = 0 Instabilities Applications 0.0016 0.6 S=0 M=0 I=0 S=0 M=0 I=1 S=1 M=1 I=0 S=1 M=0 I=1 S=1 M=1 I=1 -3 ρsat=0.16 fm 0.5 Landau residual interaction q = 1.50 fm-1 0.0014 0.0012 0.001 S (MeV-1fm-2) ρ [fm-3] 0.4 0.3 0.0008 0.0006 0.0004 0.2 • 0.0002 0.1 0 -0.0002 0 0 1 2 q [fm-1] 3 4 5 0 50 100 w (MeV) Instabilities in the different spin/isospin channels (S,M,I) for T22. 150 200 Response functions with Landau residual interaction Instabilities D. Davesne Introduction An instability in the functional causes an infinity in the response function : 1/χ SMI Linear response Instabilities (ω = 0, q) = 0 Applications Landau residual interaction 0.004 -1 q = 1.70 fm 0.6 S=0 M=0 I=0 S=0 M=0 I=1 S=1 M=1 I=0 S=1 M=0 I=1 S=1 M=1 I=1 -3 ρsat=0.16 fm 0.5 0.0035 0.003 S (MeV-1fm-2) ρ [fm-3] 0.4 0.3 0.0025 0.002 0.0015 0.2 0.001 • 0.1 0.0005 0 0 0 1 2 q [fm-1] 3 4 5 0 50 100 w (MeV) Instabilities in the different spin/isospin channels (S,M,I) for T22. 150 200 Response functions with Landau residual interaction Instabilities D. Davesne Introduction An instability in the functional causes an infinity in the response function : 1/χ SMI Linear response Instabilities (ω = 0, q) = 0 Applications Landau residual interaction 0.025 -1 q = 1.80 fm 0.6 S=0 M=0 I=0 S=0 M=0 I=1 S=1 M=1 I=0 S=1 M=0 I=1 S=1 M=1 I=1 -3 ρsat=0.16 fm 0.5 0.02 S MeV-1fm-2) ρ [fm-3] 0.4 0.3 0.015 0.01 0.2 • 0.005 0.1 0 0 0 1 2 q [fm-1] 3 4 5 0 50 100 w (MeV) Instabilities in the different spin/isospin channels (S,M,I) for T22. 150 200 Response functions with Landau residual interaction Instabilities D. Davesne Introduction An instability in the functional causes an infinity in the response function : 1/χ SMI Linear response Instabilities (ω = 0, q) = 0 Applications Landau residual interaction 0.08 -1 q = 1.82 fm 0.6 S=0 M=0 I=0 S=0 M=0 I=1 S=1 M=1 I=0 S=1 M=0 I=1 S=1 M=1 I=1 -3 ρsat=0.16 fm 0.5 0.07 0.06 0.05 S (MeV-1fm-2) ρ [fm-3] 0.4 0.3 0.04 0.03 0.02 0.2 • 0.01 0.1 0 -0.01 0 0 1 2 q [fm-1] 3 4 5 0 50 100 w (MeV) Instabilities in the different spin/isospin channels (S,M,I) for T22. 150 200 Response functions with Landau residual interaction Sum rules The energy-weighted sum-rules : Mp(α) (q)/N = − D. Davesne 1 πρ +∞ Z dωωp Imχα (ω, q) 0 p=0 ω→0: χ(α) (ω, q) ≈ −2ρ +∞ X (ω)2p M−(2p+1) (q)/N p=0 Channel (1,0,1) 0.9 integral formula integral (tensor) formula (tensor) 0.8 0.7 M-1 (MeV) 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.5 1 Linear response Instabilities +∞ X χ(α) (ω, q) ≈ 2ρ (ω)−(2p+2) M2p+1 (q)/N ω→∞: Introduction 1.5 q (fm-1) 2 2.5 3 Applications Landau residual interaction Response functions with Landau residual interaction Sum rules The energy-weighted sum-rules : Mp(α) (q)/N = − D. Davesne 1 πρ Z +∞ Introduction dωωp Imχα (ω, q) Linear response 0 Instabilities ω→∞: χ (α) (ω, q) ≈ 2ρ Applications +∞ X −(2p+2) (ω) Landau residual interaction M2p+1 (q)/N p=0 ω→0: χ(α) (ω, q) ≈ −2ρ +∞ X (ω)2p M−(2p+1) (q)/N p=0 Channel (1,0,1) 0.9 0.6 S=0 M=0 I=0 S=0 M=0 I=1 S=1 M=1 I=0 S=1 M=0 I=1 S=1 M=1 I=1 ρsat=0.16 fm-3 0.5 0.7 0.6 M-1 (MeV) 0.4 ρ [fm-3] integral formula integral (tensor) formula (tensor) 0.8 0.3 0.5 0.4 0.3 0.2 0.2 0.1 0.1 0 0 0 1 2 q [fm-1] 3 4 5 0 0.5 1 1.5 q (fm-1) 2 2.5 3 Response functions with Landau residual interaction A new fitting protocol!!! Lyon-Saclay protocol improved : linear response included D. Davesne Introduction n We add the constraint from IM at each iteration Linear response n No extra CPU time required! Instabilities Applications We compare SLy5 (old) and SLy5* (new) (K. Bennaceur et al.) Landau residual interaction 0.5 -3 ρpole [fm ] 0.4 0.3 0.2 S=0 M=0 I=0 S=0 M=0 I=1 S=1 M=0 I=0 S=1 M=0 I=1 S=1 M=1 I=0 S=1 M=1 I=1 0.1 0 S=0 M=0 I=0 S=0 M=0 I=1 S=1 M=0 I=0 S=1 M=0 I=1 S=1 M=1 I=0 S=1 M=1 I=1 SLy5 1 2 -1 q [fm ] 3 SLy5* 4 0 1 2 -1 q [fm ] 3 4 By construction the new functional is now stable in the spin channel! n Problem of transferability (nucleus = finite system!) (cf V. Hellemans, P.H. Heenen, T. Duguet, A. Pastore, M. Bender, K. Bennaceur, D.D., ArXiv 2013) Response functions with Landau residual interaction Applications of this approach D. Davesne Introduction Different possibilities Linear response n Can be used for different systems (neutron matter) : done (even at finite Landau residual interaction n Can be used with different Skyrme potentials : density dependent terms : S. Goriely, N. Chamel, M. Pearson, M. Martini, A. Pastore, J. Navarro, D.D., to be submitted). 1 0.8 1 S=0 M=0 I=0 S=0 M=0 I=1 S=1 M=0 I=0 S=1 M=0 I=1 S=1 M=1 I=0 S=1 M=1 I=1 ρsat [fm-3] 1.6*ρsat [fm-3] BSK17 0.8 S=0 M=0 I=0 S=0 M=0 I=1 S=1 M=0 I=0 S=1 M=0 I=1 S=1 M=1 I=0 S=1 M=1 I=1 ρsat [fm-3] 1.6*ρsat [fm-3] BSK21 ρ [fm-3] 0.6 ρ [fm-3] 0.6 0.4 0.4 0.2 0.2 0 0 0 0.5 1 1.5 2 q [fm-1] 2.5 3 3.5 4 0 0.5 1 1.5 2 q [fm-1] 2.5 Instabilities Applications temperature : A. Pastore, J. Navarro., D.D., to be submitted) 3 3.5 4 Applications of linear response formalism : higher order terms Response functions with Landau residual interaction D. Davesne Introduction (F. Raimondi, B.G. Carlsson, J. Dobaczewski) Linear response Instabilities Applications (4) V̂Sk = + + + h i 1 (4) t1 (1 + x1(4) Pσ ) (k2 + k0 2 )2 + 4(k0 · k)2 4 t2(4) (1 + x2(4) Pσ )(k · k0 )(k2 + k0 2 ) i h te(4) (k2 + k0 2 )Te (k0 , k) + 2(k · k0 )To (k0 , k) " # 1 to(4) 5(k · k0 )Te (k0 , k) − (k2 + k0 2 )To (k0 , k) , 2 where Te (k0 , k) = ~ 2 ),(1) 3(~ σ1 · k0 )(~ σ2 · k0 ) + 3(~ σ1 · k)(~ σ2 · k) − (k0 2 + k2 )(~ σ1 · σ To (k , k) = ~ 2 ), (2) 3(~ σ1 · k0 )(~ σ2 · k) + 3(~ σ1 · k)(~ σ2 · k0 ) − 2(k0 · k)(~ σ1 · σ 0 Landau residual interaction Applications of linear response formalism : higher order terms (F. Raimondi, B.G. Carlsson, J. Dobaczewski) Response functions with Landau residual interaction D. Davesne Introduction (4) V̂Sk = + + + (6) V̂Sk = + + + h i 1 (4) t1 (1 + x1(4) Pσ ) (k2 + k0 2 )2 + 4(k0 · k)2 4 t2(4) (1 + x2(4) Pσ )(k · k0 )(k2 + k0 2 ) h i te(4) (k2 + k0 2 )Te (k0 , k) + 2(k · k0 )To (k0 , k) # " 1 to(4) 5(k · k0 )Te (k0 , k) − (k2 + k0 2 )To (k0 , k) , 2 t1(6) h i (1 + x1(6) Pσ )(k2 + k0 2 ) (k2 + k0 2 )2 + 12(k0 · k)2 2 h i t2(6) (1 + x2(6) Pσ )(k · k0 ) 3(k2 + k0 2 )2 + 4(kk0 )2 2 2 (k + k0 )2 (6) 0 2 02 0 0 0 2 t e + (k · k ) Te (k , k) + (k + k )(k · k )To (k , k) 4 2 (k + k0 2 )2 + (k · k0 )2 To (k0 , k) + (k2 + k0 2 )(k · k0 )Te (k0 , k) to(6) 4 New parameters are constrained : contribution to EoS, Landau parameters, ... Linear response Instabilities Applications Landau residual interaction Applications of linear response formalism : higher order terms Response functions with Landau residual interaction D. Davesne Introduction Linear response n Energy per particle Instabilities (E/A)(4) = (E/A)(6) = i 9 h (4) 3t + (5 + 4x2(4) )t2(4) ρkF4 280 1 i 2 h (6) 3t1 + (5 + 4x2(6) )t2(6) ρkF6 15 n Landau parameters n Contribution up to ` = 3 for central terms and ` = 2 for tensor terms n Important because of universality of Landau parameters : can be deduced from ANY interaction!!! n First step towards a complete treatment of N3LO : response with Landau residual interaction : X h i h i k2 Vph = S12 P` f` +f`0 (τ1 ·τ2 )+ g` + g0` (τ1 · τ2 ) (σ1 ·σ2 )+ h` + h0` (τ1 · τ2 ) 12 2 kF ` where S12 ≡ 3(k̂12 · σ1 )(k̂12 · σ2 ) − (σ1 · σ2 ) and P` ≡ P` (k̂1 · k̂2 ). Applications Landau residual interaction Response with Landau residual interaction Response functions with Landau residual interaction D. Davesne Introduction Linear response Instabilities Main objectives : Applications Landau residual interaction n Obtain response functions up to ` = 3 for central terms and ` = 2 for tensor terms n Study the convergence with ` n (Astro)physical interest n Validity of Landau approximation??? (q = 0 partially relaxed!) n Possibility to determine an order of magnitude for N3LO parameters? (impossible for initial Skyrme interaction but...) Response functions with Landau residual interaction Response with Landau response functions D. Davesne Introduction Linear response Validity of Landau approximation (pure neutron matter, ab initio calculations) : Instabilities Applications Landau residual interaction 0.005 (a) -3 (b) 0.004 -1 0.004 -Im χ(ν)/π [MeV fm ] Landau RPA, k=0.1 RPA, k=0.5 -1 -3 -Im χ(ν)/π [MeV fm ] 0.005 0.003 0.002 0.001 0 0.4 0.8 ν 1.2 1.6 2 0.003 0.002 0.001 0 0.4 Important reshaping of response functions for q = kF . 0.8 ν 1.2 1.6 2 Response with Landau response functions Convergence with ` (SNM, D1ST, ρ = 0.16 fm−3 and q/kF = 0.1) : Response functions with Landau residual interaction D. Davesne Introduction Linear response Instabilities 0.002 a) HF lC=0 lC=1; lT=0 b) c) lC=2; lT=1 lC=3; lT=2 d) -1 -3 -Imχ(q,ω)/π [MeV fm ] 0.003 0.001 0.003 0.002 0.001 0.003 0.002 e) f) 0.001 0 5 10 0 5 10 ω [MeV] Convergence of response functions reached with `C = 1 and `T = 0 excepted for (S, M, I) = (1, 0, 0) and (1, 1, 0). Applications Landau residual interaction Response with Landau response functions Convergence with ` (SNM, D1ST, ρ = 0.16 fm−3 and q/kF = 0.5) : Response functions with Landau residual interaction D. Davesne Introduction Linear response Instabilities 0.002 Applications a) b) c) d) e) f) Landau residual interaction -1 -3 -Imχ(q,ω)/π [MeV fm ] 0.003 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0 20 40 60 20 40 60 ω [MeV] Convergence of response functions reached with `C = 1 and `T = 0 excepted for (S, M, I) = (1, 0, 0) and (1, 1, 0). Response with Landau response functions Convergence with ` (SNM, M3Y P2, ρ = 0.16 fm−3 and q/kF = 0.5) : Response functions with Landau residual interaction D. Davesne Introduction Linear response Instabilities 0.002 Applications a) b) c) d) e) f) Landau residual interaction -1 -3 -Imχ(q,ω)/π [MeV fm ] 0.003 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0 20 40 60 20 40 60 ω [MeV] Convergence of response functions reached with `C = 1 and `T = 0 excepted for (S, M, I) = (1, 0, 0) and (1, 1, 0). Response functions with Landau residual interaction Response with Landau response functions D. Davesne Introduction Linear response Order of magnitude for N3LO parameters from Landau parameters : Instabilities Applications n From Gogny D1ST : Order Skyrme N2LO N3LO t0 -1177 -1600 -1746 t1 368 739 908 t2 -220 259 632 t3 5478 7340 8057 Landau residual interaction (4) t1 0 -103 -221 (4) t2 0 -133 -393 (6) t1 0 0 5.5 (6) t2 0 0 12 n From Nakada M3Y P2 : Order Skyrme N2LO N3LO t0 -1342 -1627 -1734 t1 330 702 993 t2 122 370 673 t3 6350 7414 7713 (4) t1 0 -103 -305 (4) t2 0 -69 -279 (6) t1 0 0 9.3 (6) t2 0 0 9.7 Response functions with Landau residual interaction Response with Landau response functions D. Davesne Introduction Linear response Instabilities Order of magnitude for N3LO parameters from Landau parameters : Applications n From Gogny D1ST : Order Skyrme N2LO N3LO t0 -1177 -1600 -1746 t1 368 739 908 t2 -220 259 632 t3 5478 7340 8057 Landau residual interaction (4) t1 0 -103 -221 (4) t2 0 -133 -393 (6) t1 0 0 5.5 (6) t2 0 0 12 ρsat 0.165 0.168 0.17 (E/A)ρsat -9.4 -14.9 -16.9 K∞ 178 185 213 n From Nakada M3Y P2 : Order Skyrme N2LO N3LO t0 -1342 -1627 -1734 t1 330 702 993 t2 122 370 673 t3 6350 7414 7713 (4) t1 0 -103 -305 (4) t2 0 -69 -279 (6) t1 0 0 9.3 (6) t2 0 0 9.7 ρsat 0.164 0.162 0.164 (E/A)ρsat -12.4 -15.5 -16.12 K∞ 218 208 219 Response functions with Landau residual interaction Response with Landau response functions D. Davesne Order of magnitude for N3LO parameters from Landau parameters : Introduction n From Gogny D1ST : Linear response Instabilities Order Skyrme N2LO N3LO t0 -1177 -1600 -1746 t1 368 739 908 t2 -220 259 632 t3 5478 7340 8057 (4) t1 0 -103 -221 (4) t2 0 -133 -393 (6) t1 0 0 5.5 (6) t2 0 0 12 ρsat 0.165 0.168 0.17 (E/A)ρsat -9.4 -14.9 -16.9 K∞ 178 185 213 n From Nakada M3Y P2 : Order Skyrme N2LO N3LO t0 -1342 -1627 -1734 t1 330 702 993 t2 122 370 673 t3 6350 7414 7713 (4) t1 0 -103 -305 (4) t2 0 -69 -279 (6) t1 0 0 9.3 (6) t2 0 0 9.7 ρsat 0.164 0.162 0.164 (E/A)ρsat -12.4 -15.5 -16.12 Important points : n saturation obtained!!! n PNM EoS above SNM EoS n t0 , t1 , t2 , t3 modified when higher order included (2) (4) (6) n ti : ti : ti = 100 : 10 : 1 n ρsat , (E/A)ρsat and K∞ converge towards a reasonable value! K∞ 218 208 219 Applications Landau residual interaction Collaborators Response functions with Landau residual interaction D. Davesne Collaborators "from Lyon" : A. Pastore, M. Martini, J. Meyer, R. Jodon, K. Bennaceur... ... and many others from other labs!!! Introduction Linear response Instabilities Applications Landau residual interaction Special thanks to A. Pastore and J. Navarro !!! Bibliography n n n n n n n n A. Pastore, K. Bennaceur, D. Davesne, J. Meyer, Int.J.Mod.Phys. E21,1250040, (2012) A. Pastore, D. Davesne, Y. Lallouet, M. Martini, K. Bennaceur, J. Meyer, Phys.Rev. C85, 054317, (2012) A. Pastore, M. Martini, V. Buridon, D. Davesne, K. Bennaceur, J. Meyer, Phys.Rev. C86, 044308, (2012) A. Pastore, D. Davesne, K. Bennaceur, J. Meyer, V. Hellemans arXiv:1210.7937(2012) A. Pastore, T. Duguet, K. Bennaceur, D. Davesne, J. Meyer, V. Hellemans, M. Bender and P.-H. Heenen submitted A. Pastore, J. Navarro, D. D. : Response functions from Laudau residual interaction to be submitted A. Pastore, J. Navarro, D. D. : Response functions for asymmetric nuclear matter to be submitted A. Pastore, J. Navarro, D. D. : papers in preparation!!!
© Copyright 2026 Paperzz