© ITFNZ Inc 2016 PowerRequiredtoBreakBoards FujiMaePolarBoardsvstheEquivalentWoodorFingerBoards AthesispresentedtoiTKDbyRichardBurrinpreparationforgradingtoIVDan Summary Experimentaldatahasdeterminedthatsimpleadditionoftheenergyrequiredtobreakasingleboardis apoorpredictoroftheactualenergyrequiredformultipleboardbreaks.Amodelforpredictingthe energyrequiredformultipleboardbreaksispresentedthatisaccuratetowithin10%. Anincrementalrankingofboardsfromsingles,tomultiplesandmixedcolouredboardsispresented. Thisshouldbeofvalueforbothgradingsandcompetitiontoeitherincrementallyincrease(ordecrease) therequirements,orevaluatethepowergeneratedbytechniquesperformedonvariousboard combinations. Introduction PowerbreakinginTaekwonDocompetitionandgradinghastraditionallyusedpineboardsasthe materialofchoicetodestroy.Theincreasingcost,availabilityandvariabilityofpineboardsofsuitable width(280-300mm)andqualityhasseenplasticre-breakableboardscommonlyusedasanalternative. Whenevaluatingthepowerdevelopedforatechniquethewidevariabilityofpineboardsmakesvalid comparisonbetweentechniquesandcompetitorsdifficult.ThecondensedencyclopediaofTaekwon-Do describesboardsfordestructionsas30cm(12inches)square,1.27cm(oneinch)thickpineboards.In theNewZealandconstructionindustrypineboardsarecommonlyroughsawntonominally300mm(11 13/16“)wideand25mm(63/64”)thick.Werarelyseegreen(undried)roughsawnboardsused.More commonlykilndried,‘clear’or‘dressinggrade’dressedtimberisused.Thistimberisforcedriedto approximately5-8%moisturecontentandmilledtoasmoothfinishof280mm(111/32”)wideand 18mm(45/64”)thick.Thevariabilityofpowerrequiredtobreaktheseboardsismuchreduced comparedtoungraded,green,roughsawntimber.Butevenstillthevariablesofgraindirection,density, defects,age,moisturecontentandspeciesmeansthatthereisstilllargevariationsfromboardtoboard. Plasticre-breakableboardsthatsimulatetraditionalpineboardsaremanufacturedtotolerancesof dimensionsandmaterialsthatgreatlyreducethisvariabilitymakingthemwellsuitedformakingvalid comparisonsbetweenbreaks.Mostcommonlyavailableboardsnowareofthe‘polar’(keyed)or ‘finger’(interlockingfingers)type.Thepolarstyleofboardshavebeenfavouredforcompetitionand trainingduetotheircloserresemblancetopineboardsinthemechanismofbreaking(explainedfurther below).Ofthepolartype,FujiMaebrandisreadilyavailableinNewZealandandglobally. Thereisalittleharddataonthedynamicforcerequiredtobreakinividualandcombinationsofthistype ofboards.Staticdata(forceconstantlyappliedtothesurfaceoftheboard)todeterminethepointof destructionisoflimiteduseasitdoesnotrepresentthedynamicsofbreakingwithatool(hand,foot, elbow,knee,wrist)inafluidmotion. Thisarticleaddressessomeofthecommonquestionsregardingtheapproximateenergyrequiredto breakpolarboards(singlesandmultiples,ofdifferentcolours)andtheequivalentstopolarboardsin timberandfingerboards.Thedataobtainedfromtheseexperimantsformsthebasisfor recommendationsforpowercompetitionsandgrading. TheDynamicsofBreaking Asimplemethodformeasuringtherelative‘strengths’ofboardsistoslowlyapplyanincreasingforce, orpressuretotheboarduntilitfails,orbreaks.Thismethodmaybeappropriateforthesamekind (polar,timber,finger)ofboard,butpoorlyrepresentstherealdynamicsofstrikingaboard. Withallmaterials(whetheritiswood,concrete,glass,plastic)thereisadegreeofelasticityorflexthat thematerialwillwithstand,returningtoit’sstartingstateafterimpact(nobreak!).Ifsufficientenergyis appliedtoexceedthecriticaldeflectionthematerialwillbreak. Inmorescientificterms–whenstrikingaboard,aforceisappliedtotheboardoveraveryshorttime interval.Theboardabsorbsthatenergy,storingitforashortperiod.Themaximumenergythatthe boardcanstorebeforebeginningtofail,orbreakisdefinedas Umax=V*σb/2E WhereUmaxisthemaximumstoredenergy Vistheboardvolume σbisthebreakingstress AndEisYoungsModulus–thespecificmeasureofamaterials’sstiffnessofaneleasticmateriali IftheenergyimpartedtotheboardexceedsUmaxthentheboardwilldeflectpastit’scriticalpointand break.Iftheenergyislessthanthis,theboardwillstorethisenergymomentarily,returningitbackto thestrikingtool.Thisisthepainorshockofafailedbreak. Thedynamicdescriptionofthebreakintermsofphysicsbecomesmorecomplexthen.Inrealtermsa strikingtoolisappliedtothesurfaceoftheboardwithaninstantaneousvelocityandmass.Theboard absorbsthisenergyoveraperiodoftimeasthestrikingtoolattemptstodeflecttheboardpastit’s criticalpoint.Duringthistimetheattackingtoolisrapidlydeceleratedtoclosetozerovelocityifthe breakwas‘justachieved’.Theenergybeingappliedtotheboardoverthetimeittakestodeflectitto thepointofdestructionismorecorrectlytermedimpulseorchangeinlinearmomentum. J=Faverage(t2-t1) WhereJistheimplseofforce Faverageistheaverageforceapplied Andt2-t1definesthetimeinterval. Thetermimpulseisoftenusedtodescribeafastactingforceorimpact.Thistypeofimpulseis frequentlyidealisedsothatthechangeinmomentumproducedbytheforcehappensinstantaneously. Thisisnotphysicallypossible,butservesasausefulmodelforcomputingtheeffectsofanideal collision. Theimpulsemayalsobethoughtofasachangeinmomentumofanobjecttowhichaforcehasbeen applied.Ifthemassremainsconstant(inthecontextofthisexperimentitdoes),thenimpulsemayalso beexpressedas J=mv2-mv1 Wheremisthemassofthestrikingobject v2isthefinalvelocityoftheobjectattheendofthetimeinterval andv1istheinitialvelocityoftheobjectwhenthetimeintervalbegins. Generalisationsandassumptions Inthefollowingexperimentsanumberofassumptionshavebeenmade.Forthepurposesofcomparing therelativeenergyrequiredtobreakdifferentboardsofdifferentmaterialsitisacknowledgedthatthe figuresobtainedwillbesomewhatinaccurateduetoerrorsofmeasurement,andsimplifyingthe analysisofthedataobtained. Withinthelimitsoftheequipmentandmaterialsreadilyavailable,aconcertedeffortwasmadeto minimiseerrorswithattentiontoapplyingthesameconditionsandmeasurementstoeachexperiment, andrepeatingtoensurethedatawasconsistent. Forthefollowingexperimentsitisassumedthat: • • • • Frictionallossesareneglible Theenergyappliedtotheboardsisjustsufficienttobreakthem Thevelocityoftheattackingtooliszeroatthemomentoftheboardsbreaking Thetimeintervalbetweenimpactanddestructionisnegligible Giventheassumptionsmade,thefiguresobtainedarenotintendedasbeingadefinitivequantity.For thepurposesofthisreporttheyareonlyintendedtobeusedforcomparisonbetweenthedifferent boardsandcombinationsexamined. Experimentaldesign AttackingTool Tosimulateascloselyaspossiblea‘real’break,ananatomicalfistmadeofleadwascastasan approximationofarealfist.Theauthor’sclenchedfistwasfirstsetinclothreinforcedplasterofparis. Afterdryingthecastwascutoffintwopieces,thenre-assembledandgluedtogetherwithfurther plasterofparis.Afterfurtherdryingaquantityofmoltenleadwaspouredintothecastfromtheopen wrist.Aftercoolingthecastwasonceagainremoved.Thesuspensionpointwasfoundwhichallowed thefisttocontactasurfacewiththefronttwoknucklesonly.Atthispointastronghookwasthreaded intothefist.Seefigure1. Theleadfistandhookhadamassof5.1kg,similartothemassofahumanarmandhand. Figure1-Leadfisttoolandcomparisontothemodelledfist BoardHolder AsimpleboardholderwasconstructedofmelamineMDF,withguidestoallowconsistentplacementof boards.Theholderitselfwasdynaboltedtoaconcretefloortoensureconsistentplacement.The designoftheholderallowedsupportatthetwoedgesof10mmeachside–similartomostmechanical boardholdersinuse. Theedgesupportswereprogressivelybuiltuptodeterminetheamountofdeflectionrequiredto achieveacompletebreak,bothwithsingleboardsandmultiples. Thefistwassuspendedfroma3mmstainlesswire,runningtoalowfrictionstainless/brassRonstan pulleyfixedtoapointapproximately2metersfromtheground,andterminatinginasmallclipusedasa handle.Ashortziptiewasfixedsecurelytothefistasapointtomeasurefrom.SeeFigure2,3,4. Figure2BoardholderandguidesFigure3Ronstanlowfrictionpulley Figure4Successfulboardbreak ExperimentalDesign Materials Kilndried‘clear’graded,dressedPine(Pinusradiata)boards,280mmsquarex18mmthick “TheUltimateMartialArtsBoard”and“NovelIndustries”brandsofgreenandblackfingerboards. Theseboardswereinawellusedstate. FujiMaepolartypeboards–white,redandblack.Theseboardsvariedfromaveragelyusedtovery new.Notewasmadeoftheconditionofeachboardbeforetheattemptedbreak. Design Foreachattemptedbreakthetoolwasraisedtoameasuredpointabovetheboard.Itwasthen releasedtofallundergravitytoimpactontheboard.Theheightfromwhichtheboardwasjustbroken wasdeterminedbyaseriesofattempts,graduallyincreasingtheheightuntiltheimpactcompletely broketheboard(s).Oftenwithmultipleboards,infindingthispointoneormoreboardswere incompletelybrokenwitheithersomeboardsnotbeingbrokenatall,orsomeboards‘bent’(asperthe ITFcompetitionrulesdescription).Theseattemptswerenotrecordedasasuccessfulbreak.Theheight atwhichtheboard(s)justbrokewasrepeatedaminimumof3timestoensureconsistency. Fromthecorrectedheights(allowingfortheheightofthemeasuringpointabovetheboardface),the timetakentofall t=√(2d/g) wheret=timeinseconds disthedistancefromtheboardface gisthegravitationalconstant9.8m/s2 andthevelocity(v)ofthetoolatimpact v=gtorv=√2gd weredetermined.Evenatrelativelylowimpactvelocitiesthetimetakentodisplacetheboard(s)from impacttocriticalpointwasminimal.Thusasimplifiedmeasureofkineticenergyatimpact Ek=1/2mv2 WhereEkisthekineticenergy misthemassofthetool andvisthevelocityofthetoolatimpact wasusedforcomparisonstodeterminetherelativeamountofenergyrequiredtoachievedestruction. Results Deflectionrequiredtobreak Theheightoftheedgesupportsoftheboardholderwereincrementallyincreasedtodeterminethe amountofdelectionrequiredtoeffectacompletebreak. Board 18mmpine WhitePolar RedPolar BlackPolar GreenFinger BlackFinger MultiplePolar Deflectionrequiredto break(mm) 10 13 13 13 45 50 45 Table1Deflectionrequiredfordestruction Conclusions Pineandpolarboards,singly,requireasimilaramountofdeflectiontoeffectabreak.Inpracticalterms asinglepineorpolarboardmaybebrokenwithaminimalamountofpenetrationthroughthetarget. Withmultipleboardsitwasexpectedthattheamountofdeflectionappliedtothefirstboardwouldbe transferredtosubsequentboards–i.e.adeflectionof13mmofthefirstboard(andasuccessfulbreak) wouldalsodeflectthesecondandsubsequentboardsbythesameamount,breakingthemaswell.The amountofdeflectiontoeffectacompletebreakonmultipleboardswasapproximately3timesgreater thanexpected.Thereasonforthisisunclear.Itissuspectedthatthenatureoftransferringtheimpact fromoneboardtoanotherisnotasstraightforwardsasinitaillythought. Fingerboards,singly,requiredvastlymorepenetrationtoeffectabreak.Itcanbeclearlyobservedthat theprocessofthefingersseparatingoccursgraduallyasdisplacementincreases,asopposedtowood andpolarboards. LocationofImpact Ithasbeenlongknownthatfingertypeboardscanbeinducedto‘unzip’,separatingfromoneedgeto theotherprogressivelybyapplyinganalongthejointline,butclosetooneedge.Itissuspectedthatthe propogationofacriticalfractureinmostmaterialsmaytakelessenergytoinitiateifstartedcloserto oneedgecomparedtostrikinginthediagonalcenteroftheboard.Iftheimpactisappliedtothe diagonalcenter,atensionfracturelinewillbeinitiatedfromapointontheoppositefaceoftheboard, andspreadfromtheimpactpointineitherdirectiontotheedges.Thisisincontrasttostartingfromon edgeonlyandprogressingtotheoppositeedge.Thisphenomenoncanbeobservedwithslowmotion photographyhttp://www.youtube.com/watch?v=ONotvKTqpEU Theeffectofimpactlocationonasinglepolarboardwasinvestigatedbyvaryingthelocationofthe boardholderandmeasuringthedisplacementfromthediagonalcenteroftheboard.Displacements weremadeinbothvertical(movingawayfromthejointline)andhorizontal(alongthejointline) directions. EnergytoBreak1WhitePolar(J) 23 EffectofImpactLocation 21 19 Vertical 17 Horizontal 15 13 11 9 7 5 0 20 40 60 80 100 120 140 DisplacmentfromCenter(mm) Figure5Effectofvaryingimpactlocation Conclusion Varyingtheimpactlocationverticallyfromthejointlinehadanegativeeffect.At80mmawayfromthe jointlinetheenergyrequiredtobreakwasapproaching1.6timesthatrequiredwhenstrikingatthe center.Conversely,strikingtheboardclosertotheedgehorizontally(alongthejointline),theenergy requiredtobreakdiminishedbyapproximately20%atabout1/3oftheboardwidth. Thisdemonstratestheimportanceofstrikingontheline.Abetterchanceofasuccessfulbreakwillbe achievedifstrikingtheboardatapproximately1/3ofthewidthoftheboard,ratherthaninthemiddle. ComparisonofBoardTypesandCombinations Threedifferentcoloursofpolarboards,18mm(senior)and15mm(junior)pineboardsandtwodifferent colouredfingerboardswereinitiallyexaminedtodeterminerelativebreakingenergyrequired.Then multiplesandcombinationofpolarboardcolourswereexamined. Resultsobtainedforgreen(3.25kJ)andblack(2.70kJ)fingerboardswereconsiderablylessthanasingle 18mmpineboard(4.25kJ),contrastingwiththeiradvertisedrelativestrengths–green=1board,black= 2.25boards.Thisisprobablyareflectionoftheirextremelywellusedstate,withsomefingersbroken. Asaresultofthistheresultsofthefingerboardswasnotconsideredtobeanaccuratereflectionof whatcouldbeexpectedfromboardsingoodcondition. Fivewhite,fourredandfiveblackpolarboardsweretested,rangingfromrelativelynew,tomoderately used.TheresultsfromtheseandwoodenboardsarepresentedinFigure6. RelativeStrengthsofSingleBoards Av. 31.99 EnergytoBreak(kJ) 40 35 Av.20.49 30 25 20 15 Av.12.09 Av. 4.80 10 5 0 Pine White Red Black BoardType Figure6Energyrequiredtobreaktestedboards Takingintoaccountthevariabilitywithineachboardcolour(reflectingit’sstateofuse),theresultscould begenerallystatedas: • • • 1whitepolarboardrequiresapproximatelytwicetheenrergytobreakcomparedtoan18mm dressedpineboard. 1redpolarboardisrequiresaproximately4timestheenergyofawoodenboard 1blackpolarboardrequiresapproximately6timestheenergyofawoodenboard Whatisnotvalidistogeneralisethat1blackpolarboardisequivalenttobreaking6woodenboards. Ithasbeenfeltbymanyexperiencedpowerbreakersthatmultipleboardsareconsiderablyharderto breakthanwhathasbeenconsideredtheequivalentinadifferentcolour.Forexample,FujiMae describesthe3typesofboardsaswhite(easy)=1woodenboard,red(medium)=2woodenboardsand black(hard)=3woodenboards.Fromthisyouwouldbeforgivenforassumingthatbreaking1black boardwouldbelikebreaking3whiteones. Multiplesofeachboardcolourweretestedtochallengethisnotion. 70 Energytobreak 60 1xWpolar 10 1xJrPine 20 1xSrPine 30 1xBpolar 1x Rpolar 40 2xWpolar 50 3xRpolar 2xBpolar Approximate EnergyrequiredtoBreak 3xWpolar 80 2xRpolar RankedBoards 5xSr Pine 90 0 Typeandnumberofboards Figure7Relativestrengthsofmultipleboards Theobserveddatashowssomeinterestingcomparisons • • • • • • Asenior(18mm)pineboardtakesabouttwicetheenergytobreakthanajunior(15mm)board, eventhoughitisonly3mmor20%thicker Asingleredpolarboardrequiredabouttwicetheenergyasawhitepolarboard Asingleblackpolarboardrequiredaboutthreetimestheenergyasasinglewhitepolarboard Approximatelythesameenergyisrequiredtobreak2whitepolarboardsasasingleblackpolar board Approximatelythesameenergyisrequiredtobreak5xseniorwoodenboardsas2xredpolar boards Twoblackandthreeredpolarboardsweresimilarinenergyrequiredtobreak Whatisevidentisthattheenergyrequiredtobreakmultipleboardsismorethanthesumofthe energyrequiredtobreakasingleboard. Analgorithmwasdevelopedtopredicttherequiredenergytobreakmultipleboards. Themodelbestfittingtheobserveddatais: Predictedkineticenergyrequiredtobreakmultipleboards=sumofindividualboardsxamultiplier factorraisedtothepowerofthenumberofjunctionsbetweenboards Ek=∑individualboards*Xj WhereEkisthekineticenergyrequiredfordestruction ∑individualboardsisthesumoftheenergyofeachboardalone Xisamultiplierfactor Jisthenumberofinterfacesbetweenthenumberofboards–i.e.astackof3boardshas2 interfaces,astackof5boardshas4interfaces. Varyingthemultiplierfactor,thepredictedandobservedresultswerecompared.Themultiplier achievingtheminimalerrorbetweenpredictedandobservedresultsacrossallboardcombinationswas determinedtobe1.20 Multiplier 1.25 1.20 1.22 %variationfrom observeddata 0.27–21.76% 3.15-8.25% 1.64-13.20% Table2Accuracyofmultipliers Conclusion Theenergyrequiredtobreakanumberofpolarboards,andpossiblywoodenboardstoo,canbe predictedusingtheequationbelowwithanaccuracyofaproximately10% Ek=∑individualboards*1.20(numberofboardinterfaces) Assumingtheabovepredictivemodelholdsforcombinationsofdifferentcolouredpolarboards,the energiestobreakthefollowingcombinationsofboardsweredeterminedbasedontheaboveaverage valuesforindividualboards(Figure6above).Withcombinationsofjust2boardsofeachcolour,arange ofbreakingenergiescanbespecifiedfrom12kJto180kJ–a15foldrange. Sum Combination individual 1W 12.09 1R 20.49 2W 24.18 1B 31.99 1W+1R 32.58 2R 40.98 3W 36.27 1W+1B 44.08 1R+1B 52.48 2W+1R 44.67 1W+2R 53.07 2B 63.98 2W+1B 56.17 4W 48.36 3R 61.47 1W+1R+1B 64.57 2R+1B 72.97 1W+2B 76.07 2W+2R 65.16 1R+2B 84.47 3B 95.97 2W+2B 88.16 2R+2B 104.96 Board Board junctions multiplier Predicted 12.09 20.49 1 1.2 29.016 31.99 1 1.2 39.096 1 1.2 49.176 2 1.2 52.2288 1 1.2 52.896 1 1.2 62.976 2 1.2 64.3248 2 1.2 76.4208 1 1.2 76.776 2 1.2 80.8848 3 1.2 83.56608 2 1.2 88.5168 2 1.2 92.9808 2 1.2 105.0768 2 1.2 109.5408 3 1.2 112.5965 2 1.2 121.6368 2 1.2 138.1968 3 1.2 152.3405 3 1.2 181.3709 Table3Predictedvaluesforboardcombinations Predictedenergyrequiredtobreak(KJ) 200 180 Predictedenergyrequiredtobreakboardcombinations 160 140 120 100 80 60 40 20 0 BoardCombination Figure8Predictedenergyforboardcombinations Recommendations Incompetitionandingradingstherequirementsfordestructionsarefrequentlybasedonguesswork andassumptionthatsimpleadditiveenergytobreaksingleboardscanbeutilisedtopredictenergy requiredtobreakmultipleboards.Afarmoreacuratemethodforpredictingtheenergyformultiple breaksisoutlinedabove. Incompetitionitisimportantthatcompetitorstrainappropriatelyfortherequirementsoftheevent. Thereislittlepointtrainingtobreak1blackpolarboardforaneventrequiring3whitepolarboards.As seenabovetheenergyrequiredisapproximatelydoublethatofasingleblackpolarboard! Forofficialsrunningtheevent–itisusefultohaveanaccuratemeasureofincrementallyincreasingthe requirementforbreakinginthecaseofatie,orbreakoffbeingrequired.Withvariouscolouredboards availabletherangemaybestepedupappropriately,ratherthanlargestepswhichmayprolongthe eventtryingtodetermineawinner,orunneccisarilyexposethecompetitorstoinjuryiftheyhavenot conditionedthemselvessufficientlyforatargetrequiringvastlymoreenergytobreak. Alistofrankedboardcombinationswouldbeusefulinpreparingstandardsforbothgradingand competition. References: JohnRennie,September2,2010.BustedExplanationsforKarateBreaking http://blogs.plos.org/retort/2010/09/02/busted-explanations-for-karate-breaking/ Feld,M.S.et.al.“ThePhysicsofKarate,”ScientificAmerican,pp.150-158,April1979 JasekWasilk“Powerbreakingintaekwon-do–physicalanaylsis”,ArchivesofBudo,2007;Vol3:68-71 Brainiac:BrickBreak,YouTube www.youtube.com/watch?v=ONotvKTqpEU MasterBillPottle,”PineBoardBreakingintheMartialArts” www.kattaekwondo.com(personalcommunication) i ApproximateYoungsModulus(Gpa)pine–9,polypropylene1.5-2.0,highstrengthconcrete30,glass50-90
© Copyright 2025 Paperzz