Determination of resultant force and moment of light radiation pressure upon a perspective space telescope Millimetron Mr. Nerovny N.A.1 Prof. Zimin V.N.1 Dr. Fedorchuk S.D.2 Mr. Golubev E.S.2 1 Bauman Moscow State Technical University, [email protected] 2 Astro Space Center of P.N. Lebedev Physical Institute "The Fourth International Symposium on Solar Sailing 2017" ISSS-2017, 17th – 20th January, Kyoto, JAPAN. 1 / 52 Contents 1 Introduction 2 Light pressure Infinitesimal light pressure force Tensor representation 3 Analytical examples 4 Numerical method Method definition Model spacecraft Raytracing results 5 Results 6 Conclusions and future plans 2 / 52 Research goal Determination of light radiation pressure upon a space structures with complex geometry. ←? Millimetron / ASC of Physical Institute of RAS JWST / NASA 3 / 52 Light pressure 4 / 52 Infinitesimal light pressure force Major assumptions: Transmittance is not considered; Reflectivity can be both specular or diffuse or both; x3 Diffuse reflection can be Lambertian, or other axis-symmetric dispersion law can be considered; Деформированная форма ŝ A n̂ Temperature is constant in the normal direction; dA dF r x1 O The light flux is parallel; u No self-shadowing and no secondary reflections; x2 Раскройная форма The structure is optically convex. The infinitesimal light pressure force q0 εBσT 4 dF = − n̂ − (1 − ρs)(n̂ · ŝ)ŝ + ρ(1 − s)B(n̂ · ŝ)n̂ − 2ρs(n̂ · ŝ)2 n̂ dA, c q0 (1) after defining of a0 , a1 , a2 , a3 , h i dF = P(R) −a0 n̂ − a1 (n̂ · ŝ)ŝ + a2 (n̂ · ŝ)n̂ − 2a3 (n̂ · ŝ)2 n̂ dA. (2) The moment from infinitesimal light pressure force: dM = r × dF. (3) 5 / 52 Tensor representation Let us introduce the visibility function (similar to D.J. Scheeres and L. Rios-Reyes1 ): f (n̂, ŝ) = n̂ · ŝ − |n̂ · ŝ| . 2 Eq. (2) can be rewritten with visibility function: P(R) dF = − 2a0 n̂ − a1 (n̂ · ŝ)ŝ + a2 (n̂ · ŝ)n̂ − 2a3 (n̂ · ŝ)2 n̂ + a1 |n̂ · ŝ|ŝ 2 −a2 |n̂ · ŝ|n̂ + 2a3 (n̂ · ŝ)|n̂ · ŝ|n̂ dA. (4) (5) As far as n̂ · ŝ ∈ [−1; 1], the |n̂ · ŝ| can be represented as a series of Chebyshev polynomials of the first kind: ∞ 2 4 X (−1)n T2n (n̂ · ŝ) |n̂ · ŝ| = − = π π n=1 −1 + 4n2 =− ∞ n−1 4 X X (−1)n (−1)k n(2n − k − 1)! n−k 4 (n̂ · ŝ)2(n−k) . π n=1 k=0 (−1 + 4n2 )k!(2n − 2k)! (6) After transformations (6) can be written in simplified form: |n̂ · ŝ| = ∞ X Bm (n̂ · ŝ)2m , (7) m=1 where Bm = − ∞ (−1)m 4m+1 X n(n + m − 1)! . π(2m)! n=m (−1 + 4n2 )(n − m)! (8) 1 Rios-Reyes, L. and Scheeres, D. J. Generalized Model for Solar Sails, Journal of Spacecraft and Rockets, 42 (1), 2005, pp.182-185. 6 / 52 The series (8) diverge, but in the final summation (7) the divergences are regularized (it can be simply proven since the original series expansion is convergent). We will limit the number of terms in (7) by Nmax , the upper bound for (8) will be Nmax − 1 Nmax B = , 2 where bxc is a floor function of real x. Convergence of approximation 1 |n̂ · ŝ| N=1 N=3 N=5 N=7 N=9 0.8 0.6 0.4 0.2 0 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 Figure 1: Different approximation rank for |n̂ · ŝ| 7 / 52 Tensor series for F Let us substitute Eq. (7) into Eq. (5): P(R) dF = − 2a0 n̂ − a1 (n̂ · ŝ)ŝ + a2 (n̂ · ŝ)n̂ − 2a3 (n̂ · ŝ)2 n̂+ 2 N N N max max max X X X a1 Bm (n̂ · ŝ)2m ŝ − a2 Bm (n̂ · ŝ)2m n̂ + 2a3 Bm (n̂ · ŝ)2m+1 n̂ dA. m=1 m=1 (9) m=1 Extending the approach of D.J. Scheeres and others, we can introduce the new shape tensors: (n̂ · ŝ) . . . (n̂ · ŝ) n̂ = (n̂ ⊗ n̂ ⊗ . . . ⊗ n̂) · ŝ · . . . · ŝ = JAp+1 · ŝ · . . . · ŝ; | {z } | {z } | {z } | {z } p p+1 p p 2 (n̂ · ŝ) . . . (n̂ · ŝ) ŝ = (n̂ ⊗ n̂ ⊗ . . . ⊗ n̂ ⊗E ) · ŝ · . . . · ŝ = | {z } | {z } | {z } p+1 p p JBp+2 · ŝ · . . . · ŝ . | {z } p+1 After rewriting of Eq. (9) in the tensor notation: P(R) dF = − 2a0 n̂ − a1 JB3 · ŝ · ŝ + a2 JA2 · ŝ − 2a3 JA3 · ŝ · ŝ+ 2 a1 N max X m=1 Bm JB2m+2 · ŝ · . . . · ŝ −a2 | {z } 2m+1 2a3 N max X m=1 N max X m=1 Bm JA2m+1 · ŝ · . . . · ŝ + | {z } 2m Bm JA2m+2 · ŝ · . . . · ŝ dA. | {z } (10) 2m+1 8 / 52 Tensor series for F By grouping of terms in (10) we can write the equation for infinitesimal force of light pressure falling only to the front side: N max X dF = P(R) J 1 + J n · ŝ · . . . · ŝ dA, | {z } n=2 (11) n−1 where J 1 = −a0 n̂; 1 J 2 = a2 JA2 ; 2 1 3 J = − a1 JB3 − 2a3 JA3 − B1 a2 JA3 ; 2 1 − (−1)n 1 + (−1)n 1 − B n−1 a2 JAn + B n−2 (a1 JBn + 2a3 JAn ) , n > 3; Jn = 2 2 2 2 2 JAn (12) (13) (14) (15) = n̂ ⊗ . . . ⊗ n̂; | {z } (16) JBn = n̂ ⊗ . . . ⊗ n̂ ⊗E 2 . | {z } (17) n n−2 9 / 52 Tensor series for M Providing the same procedure for the moment: (n̂ · ŝ) . . . (n̂ · ŝ)(R2 · n̂) = (n̂ ⊗ n̂ ⊗ . . . ⊗ n̂ ⊗R2 · n̂) · ŝ · . . . · ŝ = LAp+1 · ŝ · . . . · ŝ; | {z } | {z } | {z } | {z } p p p 2 2 (n̂ · ŝ) . . . (n̂ · ŝ)(R · ŝ) = (n̂ ⊗ n̂ ⊗ . . . ⊗ n̂ ⊗R ) · ŝ · . . . · ŝ = | {z } | {z } | {z } p+1 p p p LBp+2 · ŝ · . . . · ŝ, | {z } p+1 we can also represent the Eq. (9) as a tensor series: P(R) − 2a0 R2 · n̂ − a1 L3B · ŝ · ŝ + a2 L2A · ŝ− dM = r × dF = R2 · dF = 2 2a3 L3A · ŝ · ŝ + a1 N max X m=1 Bm L2m+2 · ŝ · . . . · ŝ −a2 B | {z } 2m+1 2a3 N max X m=1 N max X m=1 Bm LA2m+1 · ŝ · . . . · ŝ + | {z } 2m Bm LA2m+2 · ŝ · . . . · ŝ dA, | {z } (18) 2m+1 where LnA = n̂ ⊗ . . . ⊗ n̂ ⊗R2 · n̂; | {z } (19) LnB = n̂ ⊗ . . . ⊗ n̂ ⊗R2 . | {z } (20) n−1 n−2 10 / 52 Tensor series for M The tensor series for M will be as the follows: N max X dM = P(R) L1 + Ln · ŝ · . . . · ŝ dA, | {z } n=2 (21) n−1 where L1 = −a0 (R2 · n̂); 1 L2 = a2 L2A ; 2 1 L3 = − a1 L3B − 2a3 L3A − B1 a2 L3A ; 2 1 1 − (−1)n 1 + (−1)n Ln = − B n−1 a2 LnA + B n−2 (a1 LnB + 2a3 LnA ) , n > 3; 2 2 2 2 2 (22) (23) (24) (25) 11 / 52 Resulting equation By integrating of (11) and (21) over the whole surface A, we can get the resultant force and moment upon an optically convex structure: N max X F = P(R) Ĩ 1 + Ĩ n · ŝ · . . . · ŝ ; | {z } (26) N max X M = P(R) K̃1 + K̃n · ŝ · . . . · ŝ , | {z } (27) n=2 n−1 n=2 n−1 where Ĩ n = Z J˜n dA; (28) L̃n dA, (29) A K̃n = Z A where n > 1. It is possible to write the same relations considering self-shadowing and secondary reflections2 . 2 Nerovny, N.A. et al. Representation of light pressure resultant force and moment as a tensor series // Celestial Mechanics and Dynamical Astronomy. [Approved for publication] 12 / 52 Analytical examples 13 / 52 Assumptions In the analytical examples below the light source orientation vector ŝ is defined by two angles α and β as follows: α ∈ [0, 2π] — angle between unit vector ê1 of axis Ox1 and projection of vector ŝ on the plane Ox1 x3 ; β ∈ [− π2 ; π ] 2 — angle between plane Ox1 x3 and vector ŝ. The components of vector ŝ can be written as follows: ŝ = (cos α cos β, sin β, sin α cos β)T . 14 / 52 Flat sail The front side (side 1) has reflection coefficient ρ1 and specularity parameter s1 . The other side (side 2) has reflectivity ρ2 and specularity s2 . The area of the solar sail is A. Components of tensors I and K: I = A (J (n̂1 , ρ1 , s1 ) + J (n̂2 , ρ2 , s2 )) ; K = A (L(n̂1 , r1 , ρ1 , s1 ) + L(n̂2 , r2 , ρ2 , s2 )) ; n̂1 = (0, 0, 1)T ; n̂2 = (0, 0, −1)T ; r1 = r2 = (0, 0, 0)T . Resultant force and moment (Nmax = 6): P(R)A (−6(−2 + ρ1 s1 + ρ2 s2 ) + cos β sin α (15π(ρ1 s1 − ρ2 s2 )+ 30π +8(−2 + ρ1 s1 + ρ2 s2 ) cos β sin α −9 + 4 cos2 β sin2 α cos α cos β; F1 = P(R)A (−6(−2 + ρ1 s1 + ρ2 s2 ) + cos β sin α (15π(ρ1 s1 − ρ2 s2 )+ 30π +8(−2 + ρ1 s1 + ρ2 s2 ) cos β sin α −9 + 4 cos2 β sin2 α sin β; F2 = P(R)A (24(ρ2 (1 − s2 ) − ρ1 (1 − s1 )) + cos β sin α 90π (6(5π(ρ1 (1 − s1 ) + ρ2 (1 − s2 )) + 3(2 + ρ1 s1 ρ2 s2 )) + cos β sin α F3 = (−9(16ρ1 (1 − s1 ) + 5πρ1 s1 − 16ρ2 (1 − s2 ) − 5πρ2 s2 ) + 8 cos β sin α (27(2 + ρ1 s1 + ρ2 s2 ) + 4 cos β sin α(2(ρ1 (1 − s1 ) − ρ2 (1 − s2 ))− −3(2 + ρ1 s2 + ρ2 s2 ) cos β sin α))))) ; M = 0. 15 / 52 Flat solar sail, Nmax = 6, ρ1 = 1, ρ2 = 0, s1 = s2 = 1 a b Figure 2: Projection on Ox1 (a) and on Ox3 (b) of resultant force of light pressure upon two-sided specular solar sail with unit area, Nmax = 6, ρ1 = 1, ρ2 = 0, s1 = s2 = 1. Solid line – approximate solution, dashed line — exact solution. Values are divided by P(R). 16 / 52 Flat solar sail, Nmax = 6, ρ1 = 1, ρ2 = 0, s1 = s2 = 0 a b Figure 3: Projection on Ox1 (a) and on Ox3 (b) of resultant force of light pressure upon two-sided diffuse solar sail with unit area, Nmax = 6, ρ1 = 1, ρ2 = 0, s1 = s2 = 0. Solid line – approximate solution, dashed line – exact solution. Values are divided by P(R). 17 / 52 Sphere Let us consider a sphere of radius R0 with a homogeneous specular-diffusive surface, the reflection coefficient of which is equal to ρ and the degree of specular reflection is s. The expressions for the components of tensors I and K: π I= R20 Z2π Z2 J (n̂, ρ, s)dθdφ; 0 −π 2 π K= R20 Z2π Z2 L(n̂, r, ρ, s)dθdφ; 0 −π 2 n̂ = (cos φ cos θ, sin φ cos θ, sin θ)T ; r = (R0 cos φ cos θ, R0 sin φ cos θ, R0 sin θ)T . The analytical expressions considering Nmax = 6: 4 (175πρ(1 − s) + 3(413 + ρs)) R20 cos α cos β; 1575 4 F2 = P(R) (175πρ(1 − s) + 3(413 + ρs)) R20 sin β; 1575 4 F3 = P(R) (175πρ(1 − s) + 3(413 + ρs)) R20 cos β sin α; 1575 M = 0. F1 = P(R) 18 / 52 Ideally specular sphere For ρ = 1 and s = 1 we get: F1 ≈ P(R)πR20 cos α cos β; (30) F2 ≈ P(R)πR20 sin β; (31) P(R)πR20 (32) F3 ≈ cos β sin α. 19 / 52 Cylinder Let us consider the cylinder with following parameters: ρ0 — reflectance of the envelope; ρ1 — reflectance of the butt surface +x3 ; ρ2 — reflectance of the butt surface −x3 ; s0 — specularity coefficient of the envelope; s1 — specularity coefficient of the butt surface +x3 ; s2 — specularity coefficient of the butt surface −x3 ; R1 — radius of the cylinder; H — height of the cylinder. The expressions for the components of tensors I and K: I = J (n̂1 , ρ1 , s1 )πR21 + J (n̂2 , ρ2 , s2 )πR21 + HR1 Z2π J (n̂0 , ρ0 , s0 )dφ; 0 K = L(n̂1 , r1 , ρ1 , s1 )πR21 + L(n̂2 , r2 , ρ2 , s2 )πR21 + HR1 Z2π L(n̂0 , r0 , ρ0 , s0 )dφ; 0 n̂1 = (0, 0, 1)T ; n̂2 = (0, 0, −1)T ; n̂0 = (cos φ, sin φ, 0)T ; r1 = (0, 0, H/2)T ; r2 = (0, 0, −H/2)T ; r0 = (R1 cos φ, R1 sin φ, 0)T . 20 / 52 Specular-diffuse cylinder For the number of terms of the series Nmax = 6 we can get: P(R)R1 cos α cos β(−8H(3 + 2ρ0 s0 ) cos4 α cos4 β+ 30 + 4H cos2 α cos2 β(12 + 5ρ0 s0 + (6 + 4ρ0 s0 ) cos 2β)+ F1 = + R1 cos β sin α(15π(ρ1 s1 − ρ2 s2 )+ + 8(−2 + ρ1 s1 + ρ2 s2 ) cos β sin α(−9 + 4 cos2 β sin2 α))+ + 2(H(6 − 5πρ0 (−1 + s0 )) − 3R1 (−2 + ρ1 s1 + ρ2 s2 )+ + 2H(15 + 7ρ0 s0 + (3 + 2ρ0 s0 ) cos 2β) sin2 β)); P(R)R1 sin β(−8H(3 + 2ρ0 s0 ) cos4 α cos4 β+ 30 + 4H cos2 α cos2 β(12 + 5ρ0 s0 + (6 + 4ρ0 s0 ) cos 2β)+ F2 = + R1 cos β sin α(15π(ρ1 s1 − ρ2 s2 )+ + 8(−2 + ρ1 s1 + ρ2 s2 ) cos β sin α(−9 + 4 cos2 β sin2 α))+ + 2(H(6 − 5πρ0 (−1 + s0 )) − 3R1 (−2 + ρ1 s1 + ρ2 s2 )+ + 2H(15 + 7ρ0 s0 + (3 + 2ρ0 s0 ) cos 2β) sin2 β)); 21 / 52 Specular-diffuse cylinder F3 = P(R)R1 (24R1 (ρ2 (1 − s2 ) − ρ1 (1 − s1 ))+ 90 3 cos β(−363H(−1 + ρ0 s0 ) + 16R1 (5π(ρ1 + ρ2 − ρ1 s1 − ρ2 s2 )+ 8 + 3(2 + ρ1 s1 + ρ2 s2 )) + 3H(−1 + ρ0 s0 )(44 cos 2β + 5 cos 4β)) sin α− + − 9R1 (ρ1 (16 + (−16 + 5π)s1 ) + 16ρ2 (−1 + s2 ) − 5πρ2 s2 ) cos2 β sin2 α+ + 64R1 (ρ1 − ρ1 s1 + ρ2 (−1 + s2 )) cos4 β sin4 α+ 9 cos3 β(96R1 (2 + ρ1 s1 + ρ2 s2 ) sin3 α − H(−1 + ρ0 s0 )(13 + 5 cos 2β) sin 3α)+ 4 3 + cos5 β(−64R1 (2 + ρ1 s1 + ρ2 s2 ) sin5 α + 3H(−1 + ρ0 s0 ) sin 5α)); 2 P(R)HR21 M1 = (6ρ1 s1 − 6ρ2 s2 + cos β sin α(15π(−2ρ0 s0 + ρ1 s1 + ρ2 s2 )+ 60 + 8(ρ1 s1 − ρ2 s2 ) cos β sin α(−9 + 4 cos2 β sin2 α))) sin β; + P(R)HR21 (−6ρ1 s1 + 6ρ2 s2 + cos β sin α(15π(2ρ0 s0 − ρ1 s1 − ρ2 s2 )+ 60 + 8(ρ1 s1 − ρ2 s2 ) cos β sin α(9 − 4 cos2 β sin2 α))) cos α cos β; M2 = M3 = 0. 22 / 52 Specular-diffuse cylinder, Nmax = 6, ρ1 = ρ2 = 0, ρ0 = 1, s1 = s2 = 0, s0 = 1 a b Figure 4: Projection on Ox1 (a) and on Ox3 (b) of resultant force of light pressure upon specular-diffuse cylinder, Nmax = 6, ρ1 = ρ2 = 0, ρ0 = 1, s1 = s2 = 0, s0 = 1. Values are divided by P(R). Figure 5: Projection on Ox2 of principal moment of light pressure upon specular-diffuse cylinder, Nmax = 6, ρ1 = ρ2 = 0, ρ0 = 1, s1 = s2 = 0, s0 = 1. Values are divided by P(R). 23 / 52 Numerical method 24 / 52 Method definition Main idea: approximation of shape tensor components using known values of force f(i) = F(i) /P(R) and moment m(i) = M(i) /P(R) for the set of known orientation vector ŝ(i) in a number N. The approximated values for shape tensors components Ĩ n and K̃n : T j [( 32 (3M −1))×1] 2 2 2 3 Ĩ21 Ĩ31 Ĩ111 . . . Ĩ3M. . . 31 Ĩ21 . . . Ĩ3M. . . 32 Ĩ31 . . . Ĩ3M. . . 3 ; = Ĩ11 Ĩ11 | {z } | {z } | {z } M−1 M−1 M (33) T 2 2 2 3 K̃21 K̃31 K̃111 . . . K̃3M. . . 31 K̃21 . . . K̃3M. . . 32 K̃31 . . . K̃3M. . . 3 , k = K̃11 K̃11 | {z } | {z } | {z } [( 23 (3M −1))×1] M−1 M−1 (34) M where M = Nmax . Vector of free terms: (N) T (N) (1) (2) (1) (2) (N) (1) (2) ; = f1 f1 . . . f1 f2 f2 . . . f2 f3 f3 . . . f3 (35) (1) (2) (N) (1) (2) (N) (1) (2) (N) T = m1 m1 . . . m1 m2 m2 . . . m2 m3 m3 . . . m3 . (36) f [3N×1] m [3N×1] Matrix of orientations: S = [3n×( 23 (3M −1))] 25 / 52 1 s(1) 1 s(1) 2 s(1) 3 s(1) s(1) 1 1 . . (1) . (1) s3 . . . s3 | {z } M−1 0 . . . 0 0 . . . 0 ··· 1 (N) s1 (N) s2 (N) s3 0 ··· . . . 0 0 . . . . . . ··· (N) (N) s1 s1 ··· (N) s3 | . . . (N) . . . s3 {z } 0 ··· 0 0 ··· 1 (1) s1 (1) s2 ··· 1 (N) s1 (N) s2 0 ··· M−1 ··· 0 . . . ··· 0 (1) s3 (1) (1) s1 s1 (N) s3 (N) (N) s1 s1 . . . (1) (1) s3 . . . s3 {z } | . . . (N) (N) s3 . . . s3 | {z } ··· M−1 ··· ··· 0 0 . . . . . . 0 0 . . . 0 ··· 1 (1) s1 (1) s2 ··· M−1 ··· 0 . . . ··· 0 (1) s3 (1) (1) s1 s1 . . . (1) (1) s3 . . . s3 | {z } ··· 0 T . . . 0 0 . . . . 0 1 (N) s1 (N) s2 (N) s3 (N) (N) s1 s1 . . . (N) (N) s3 . . . s3 | {z } 26 / 52 Least squares approximation The resolving equation for f and m are overdefined: Sj = f; (38) Sk = m. (39) j and k are approximated by j̃ and k̃ using least squares method: ||Sj − f||2 → min, j̃ = ST S + ST f; + ||Sk − m||2 → min, k̃ = ST S ST m, (40) (41) where + is a pseudo-inverse operator. 27 / 52 Model spacecraft 28 / 52 Millimetron Space Telescope Figure 6: Millimentron space observatory concept. 1 – Sun shields; 2 – Cryo-shield; 3 – Primary mirror’s petal; 4 – Secondary mirror; 5 – Central part of Primary mirror; 6 – Cryo-container; 7 – Heat exchanger (radiator); 8 – Warm container; 9 – Sunshields supporting truss; 10 – Adapter ring; 11 – Service module; 12 – Solar power array; 13 – High gain antenna. 29 / 52 Geometrical model Figure 7: Geometrical model of Millimetron space observatory. 30 / 52 Raytracing results Raytracing results, specular and diffuse cases (1000000 rays), Tracer3 a c 3 b a, b — diffuse cases; c, d — specular cases. d Leonov, V.V. Radiation heat transfer in mirror concentrator systems, PhD Thesis, 2012 (in Russian). 31 / 52 Specular case 32 / 52 Specular case, absolute values, Nmax = 2 90 90 0.004 0.003 120 60 120 60 0.003 0.002 150 30 150 30 0.002 0.001 0.001 180 0 210 330 240 300 270 a 180 0 210 330 240 300 270 b Figure 8: Dependency of the absolute value of resultant force and moment of light radiation pressure from the angle of rotation of light source in the radiators plane. Solid line – tensor approximation (Nmax = 2), dots – Monte–Carlo simulation results which were not used for the approximation. Figure a – absolute value of resultant force, N; Figure b – absolute value of the resultant moment, N · m. The whole surface is specular. 33 / 52 Specular case, absolute values, Nmax = 3 90 90 0.004 0.003 120 60 120 60 0.003 0.002 150 30 150 30 0.002 0.001 0.001 180 0 210 330 240 300 270 a 180 0 210 330 240 300 270 b Figure 9: Dependency of the absolute value of resultant force and moment of light radiation pressure from the angle of rotation of light source in the radiators plane. Solid line – tensor approximation (Nmax = 3), dots – Monte–Carlo simulation results which were not used for the approximation. Figure a – absolute value of resultant force, N; Figure b – absolute value of the resultant moment, N · m. The whole surface is specular. 34 / 52 Specular case, absolute values, Nmax = 4 90 90 0.004 0.003 120 60 120 60 0.002 150 30 150 30 0.002 0.001 180 0 210 330 240 300 270 a 180 0 210 330 240 300 270 b Figure 10: Dependency of the absolute value of resultant force and moment of light radiation pressure from the angle of rotation of light source in the radiators plane. Solid line – tensor approximation (Nmax = 4), dots – Monte–Carlo simulation results which were not used for the approximation. Figure a – absolute value of resultant force, N; Figure b – absolute value of the resultant moment, N · m. The whole surface is specular. 35 / 52 Specular case, absolute values, Nmax = 5 90 90 0.004 0.003 120 60 120 60 0.002 150 30 150 30 0.002 0.001 180 0 210 330 240 300 270 a 180 0 210 330 240 300 270 b Figure 11: Dependency of the absolute value of resultant force and moment of light radiation pressure from the angle of rotation of light source in the radiators plane. Solid line – tensor approximation (Nmax = 5), dots – Monte–Carlo simulation results which were not used for the approximation. Figure a – absolute value of resultant force, N; Figure b – absolute value of the resultant moment, N · m. The whole surface is specular. 36 / 52 Specular case, absolute values, Nmax = 6 90 90 0.004 0.003 120 60 120 60 0.002 150 30 150 30 0.002 0.001 180 0 210 330 240 300 270 a 180 0 210 330 240 300 270 b Figure 12: Dependency of the absolute value of resultant force and moment of light radiation pressure from the angle of rotation of light source in the radiators plane. Solid line – tensor approximation (Nmax = 6), dots – Monte–Carlo simulation results which were not used for the approximation. Figure a – absolute value of resultant force, N; Figure b – absolute value of the resultant moment, N · m. The whole surface is specular. 37 / 52 Specular case, projections 0.002 0.001 8e-06 6e-06 0.001 0.0005 4e-06 Fz Fy Fx 0 2e-06 0 -0.001 0 -0.0005 -0.002 -2e-06 -0.003 -4e-06 0 1 2 3 4 5 6 7 -0.001 0 1 2 3 alpha 4 5 6 7 0 1 2 3 a b 3e-05 4 5 6 7 4 5 6 7 alpha alpha c 0.004 0.0001 0.002 5e-05 0 My Mx 1e-05 Mz 2e-05 0 0 -1e-05 -2e-05 -0.002 -5e-05 -0.004 -0.0001 -3e-05 -4e-05 0 1 2 3 4 alpha d 5 6 7 0 1 2 3 4 alpha e 5 6 7 0 1 2 3 alpha f Figure 13: Approximation results (Nmax = 6) for principal force (a, c, e), N, and for principal moment (b, c, f), N · m, of light radiation pressure depending on angle of rotation of light source in the plane of radiators (solid line) comparing results of Monte–Carlo simulations (dots). The results in subfigures b, c, and f are non-zero because of random noise. The dotted values were not used in the construction of approximation. Specular case. 38 / 52 Diffuse case 39 / 52 Diffuse case, absolute values, Nmax = 2 90 90 0.003 120 0.003 60 120 60 0.002 0.002 150 30 150 30 0.001 0.001 180 0 210 330 240 300 270 a 180 0 210 330 240 300 270 b Figure 14: Dependency of the absolute value of resultant force and moment of light radiation pressure from the angle of rotation of light source in the radiators plane. Solid line – tensor approximation (Nmax = 2), dots – Monte–Carlo simulation results which were not used for the approximation. Figure a – absolute value of resultant force, N; Figure b – absolute value of the resultant moment, N · m. The whole surface is diffuse. 40 / 52 Diffuse case, absolute values, Nmax = 3 90 90 0.003 120 0.003 60 120 60 0.002 0.002 150 30 150 30 0.001 0.001 180 0 210 330 240 300 270 a 180 0 210 330 240 300 270 b Figure 15: Dependency of the absolute value of resultant force and moment of light radiation pressure from the angle of rotation of light source in the radiators plane. Solid line – tensor approximation (Nmax = 3), dots – Monte–Carlo simulation results which were not used for the approximation. Figure a – absolute value of resultant force, N; Figure b – absolute value of the resultant moment, N · m. The whole surface is diffuse. 41 / 52 Diffuse case, absolute values, Nmax = 4 90 90 0.003 120 0.003 60 120 60 0.002 0.002 150 30 150 30 0.001 0.001 180 0 210 330 240 300 270 a 180 0 210 330 240 300 270 b Figure 16: Dependency of the absolute value of resultant force and moment of light radiation pressure from the angle of rotation of light source in the radiators plane. Solid line – tensor approximation (Nmax = 4), dots – Monte–Carlo simulation results which were not used for the approximation. Figure a – absolute value of resultant force, N; Figure b – absolute value of the resultant moment, N · m. The whole surface is diffuse. 42 / 52 Diffuse case, absolute values, Nmax = 5 90 90 0.003 120 0.003 60 120 60 0.002 0.002 150 30 150 30 0.001 0.001 180 0 210 330 240 300 270 a 180 0 210 330 240 300 270 b Figure 17: Dependency of the absolute value of resultant force and moment of light radiation pressure from the angle of rotation of light source in the radiators plane. Solid line – tensor approximation (Nmax = 5), dots – Monte–Carlo simulation results which were not used for the approximation. Figure a – absolute value of resultant force, N; Figure b – absolute value of the resultant moment, N · m. The whole surface is diffuse. 43 / 52 Diffuse case, absolute values, Nmax = 6 90 90 0.003 120 0.003 60 120 60 0.002 0.002 150 30 150 30 0.001 0.001 180 0 210 330 240 300 270 a 180 0 210 330 240 300 270 b Figure 18: Dependency of the absolute value of resultant force and moment of light radiation pressure from the angle of rotation of light source in the radiators plane. Solid line – tensor approximation (Nmax = 6), dots – Monte–Carlo simulation results which were not used for the approximation. Figure a – absolute value of resultant force, N; Figure b – absolute value of the resultant moment, N · m. The whole surface is diffuse. 44 / 52 6e-06 0.002 4e-06 0.0015 2e-06 0.001 0 0.0005 -2e-06 0 -4e-06 -0.0005 0.0015 0.001 0.0005 Fz 0.0025 Fy Fx Diffuse case, projections -0.001 -6e-06 -0.001 -8e-06 0 1 2 3 4 5 6 7 -0.0015 0 1 2 3 alpha 4 5 6 7 0 1 2 alpha a 6e-05 0.003 4e-05 0.002 3 4 5 6 7 4 5 6 7 alpha b 2e-05 c 0.00015 0.0001 0.001 Mz 5e-05 0 My Mx 0 -0.0005 0 -2e-05 0 -0.001 -4e-05 -5e-05 -0.002 -6e-05 -8e-05 -0.003 0 1 2 3 4 alpha d 5 6 7 -0.0001 0 1 2 3 4 alpha e 5 6 7 0 1 2 3 alpha f Figure 19: Approximation results (Nmax = 6) for principal force (a, c, e), N, and for principal moment (b, c, f), N · m, of light radiation pressure depending on angle of rotation of light source in the plane of radiators (solid line) comparing results of Monte–Carlo simulations (dots). The results in subfigures b, c, and f are non-zero because of random noise. The dotted values were not used in the construction of approximation. Diffuse case. 45 / 52 Specular-diffuse case Specular-diffuse case Ĩ 1 ≈ Ĩ 1 |s=0 ≈ Ĩ 1 |s=1 ; 2 (42) 2 Ĩ ≈ (1 − s)Ĩ |s=0 ; (43) Ĩ 3 ≈ (1 − s)Ĩ 3 |s=0 + sĨ 3 |s=1 ; (44) Ĩ n ≈ (1 − s)Ĩ n |s=0 + sĨ n |s=1 , n > 3; (45) K̃1 ≈ K̃1 |s=0 ≈ K̃1 |s=1 ; (46) 2 2 K̃ ≈ (1 − s)K̃ |s=0 ; (47) K̃n ≈ (1 − s)K̃n |s=0 + sK̃n |s=1 , n > 2, (48) 46 / 52 Specular–diffuse case, s = 0.75 0.003 2e-05 0.002 1.5e-05 0.0005 1e-05 0 5e-06 Fz Fy 0.001 Fx 0.001 0 0 -0.001 -5e-06 -0.002 -1e-05 -0.003 -1.5e-05 0 1 2 3 4 5 6 7 -0.0005 -0.001 0 1 2 3 4 5 6 7 0 1 2 3 alpha alpha a b 0.0001 5 6 7 4 5 6 7 c 0.003 0.0002 0.002 5e-05 4 alpha 0.0001 0.001 0 Mz My Mx 0 0 -5e-05 -0.0001 -0.001 -0.0001 -0.0002 -0.002 -0.00015 -0.003 0 1 2 3 4 alpha d 5 6 7 -0.0003 0 1 2 3 4 alpha e 5 6 7 0 1 2 3 alpha f Figure 20: Approximation results (Nmax = 6) for principal force (a, c, e), N, and for principal moment (b, c, f), N · m, of light radiation pressure depending on angle of rotation of light source in the plane of radiators (solid line) comparing results of Monte–Carlo simulations (dots). The results in subfigures b, c and f are non-zero because of random noise. The approximation was constructed as a linear combination of specular and diffuse cases. Specular–diffuse case, s = 0.75. 47 / 52 Specular–diffuse case, s = 0.5 1.5e-05 0.003 0.001 1e-05 0.002 0.0005 5e-06 Fz 0 Fy Fx 0.001 0 -5e-06 0 -1e-05 -0.001 -0.0005 -1.5e-05 -0.002 -2e-05 0 1 2 3 4 5 6 7 -0.001 0 1 2 3 4 5 6 7 0 1 2 alpha alpha a 5 6 7 3 4 alpha 5 6 7 c 0.003 0.0001 0.002 5e-05 4 alpha b 0.0001 3 5e-05 0.001 0 Mz My Mx 0 0 -5e-05 -5e-05 -0.001 -0.0001 -0.0001 -0.002 -0.00015 -0.003 0 1 2 3 4 alpha d 5 6 7 -0.00015 0 1 2 3 4 alpha e 5 6 7 0 1 2 f Figure 21: Approximation results (Nmax = 6) for principal force (a, c, e), N, and for principal moment (b, c, f), N · m, of light radiation pressure depending from angle of rotation of light source in the plane of radiators (solid line) comparing results of Monte–Carlo simulations (dots). The results in subfigures b, c and f are non-zero because of random noise. The approximation was constructed as a linear combination of specular and diffuse cases. Specular–diffuse case, s = 0.5. 48 / 52 Specular–diffuse case, s = 0.25 0.003 0.001 1e-05 5e-06 0.002 0.0005 0 Fz Fy Fx 0.001 -5e-06 0 0 -1e-05 -0.0005 -0.001 -1.5e-05 -0.002 -2e-05 0 1 2 3 4 5 6 7 -0.001 0 1 2 3 alpha a 5 6 7 0 1 2 4 5 6 7 3 4 alpha 5 6 7 c 0.0001 0.003 0.0002 5e-05 0.002 0.00015 0 0.001 0.0001 Mz -5e-05 3 alpha b My Mx 4 alpha 0 5e-05 0 -0.0001 -0.001 -0.00015 -5e-05 -0.002 -0.0002 -0.0001 -0.003 0 1 2 3 4 alpha d 5 6 7 -0.00015 0 1 2 3 4 alpha e 5 6 7 0 1 2 f Figure 22: Approximation results (Nmax = 6) for principal force (a, c, e), N, and for principal moment (b, c, f), N · m, of light radiation pressure depending from angle of rotation of light source in the plane of radiators (solid line) comparing results of Monte–Carlo simulations (dots). The results in subfigures b, c and f are non-zero because of random noise. The approximation was constructed as a linear combination of specular and diffuse cases. Specular–diffuse case, s = 0.25. 49 / 52 Conclusions and future plans 50 / 52 Conclusions and future plans Conclusions The presented model can describe the SRP of complex space body. In the model the geometrical and optical parameters of structure are analytically divided from the attitude towards the sun. If the bodies A and B are both optically convex, as well as the their composition A + B = C, the components of shape tensors for C can be calculated as a simple sum of corresponding components of shape tensors for A and B. Future plans Dynamics around the center of inertia under SRP moment. Optimal stabilization law. Investigation of connections to the dynamics of the satellites in the upper Earth atmosphere under hyperthermal flow.4 4 Beletskii V., Yanshin A. Vliyanie aerodinamicheskikh sil na vrashchatel’noe dvizhenie iskusstvennykh sputnikov (Effect of the aerodynamic forces on the rotary motion of satellites). Kiev: Naukova Dumka, 1984. P. 187. (in Russian) 51 / 52 Main publications Main publications 1 Nerovnyi N, Zimin V (2014) Determination of the radiation pressure force acting on a solar sail taking into account stress-dependent optical parameters of sail material (in Russian). Herald of the Bauman Moscow State Technical University Series Mechanical Engineering 96(3):61–78, URL http://vestnikmach.ru/eng/catalog/simul/hidden/486.html 2 Zimin VN, Nerovnyy NA (2015) Analysis of the deformed shape of a heliogyro solar sail blade taking into account stress-dependent reflectivity of the material (in Russian). Proceedings of Higher Educational Institutions chine Building 658(1):18–23, URL http://izvuzmash.ru/eng/catalog/calcmach/hidden/1125.html 3 Zimin VN, Nerovnyi NA (2016) To the calculation of the main vector and the main momentum of light pressure force on a solar sail (in Russian). Herald of the Bauman Moscow State Technical University Series Mechanical Engineering 106(1):17–28, DOI 10.18698/0236-3941-2016-1-17-28, URL http://vestnikmach.ru/eng/catalog/avroc/airdyn/1055.html 4 Nerovny NA (2017) The resultant vector and principal moment of light radiation pressure upon an optically convex space structure (in Russian). Vestnik St. Petersburg State University Series 1. Mathematics. Mechanics. Astronomy [Approved for publication] 5 Nerovny NA et al. (2017) Representation of light pressure resultant force and moment as a tensor series. Celestial Mechanics and Dynamical Astronomy. [Approved for publication] 52 / 52
© Copyright 2026 Paperzz