• Anatoliy N. SERDYUKOV Francisk Skorina Gomel State University Gomel, Byelorussia •The System of Equations of Interacting Electromagnetic, Scalar Gravitational and Spinor Fields The Classical Particle in the Electromagnetic and Scalar Gravitational Fields Including of Electromagnetic Interaction (By Means of Addition) Λ μc 2 (Comparative analysis) 1 1 v /c A j c 2 2 e L mc2 1 v 2 /c 2 Av e c Including of Gravitational Interaction (By Means of Multiplication) Λ μc 2 1 v 2 /c 2U 2 L mc2 1 v 2 /c 2U 2 The Classical Particle in the Electromagnetic and Scalar Gravitational Fields Including of Electromagnetic Interaction (By Means of Addition) Λ μc 2 (Comparative analysis) 1 1 v /c A j c 2 Λ μc 2 1 v 2 /c 2U 2 2 e L mc2 1 v 2 /c 2 Av e c 1 e Av dt c dPμ m v e A 2 2 1v / c c P 2 i mc e 2 2 c 1v / c L mc2 1 v 2 /c 2U 2 d L L dt v r d L L L v dt v t dPμ dt P Lv , ci v Lv L Including of Gravitational Interaction (By Means of Multiplication) mc2 1 v 2 /c 2 U 2 mv U 2 1 v 2 / c2 P 2 2 i mc U c 2 2 1v / c The Classical Particle in the Electromagnetic and Scalar Gravitational Fields Including of Electromagnetic Interaction (By Means of Addition) L mc 2 (Comparative analysis) e 1 v /c Av e c 2 2 1 e Av dt c dPμ Including of Gravitational Interaction (By Means of Multiplication) L mc2 1 v 2 /c 2U 2 dPμ dt mc2 1 v 2 /c 2 U 2 mv i mc2 p 2 2 , 2 2 1 v / c c 1 v / c dpμ e B u dτ c B A A dp dτ mu g u g u g 2c 2 ln U The Classical Particle in the Electromagnetic and Scalar Gravitational Fields Including of Electromagnetic Interaction (By Means of Addition) dpμ e Bu dτ c B iBE 0iE e A B c (Comparative analysis) u2 c 2 dp dτ p mu Including of Gravitational Interaction (By Means of Multiplication) mu g u g u ( g ) (g, iη) 2 m du u 0 dτ 2 dτ dp μ dpμ dτ Au A A A mu g u g The Classical Particle in the Electromagnetic and Scalar Gravitational Fields Including of Electromagnetic Interaction (By Means of Addition) dpμ dτ e B u c B iE B iE 0 d mv dt 1 v 2 /c 2 F Lor. (Comparative analysis) dp dτ Including of Gravitational Interaction (By Means of Multiplication) mu g u g u 2 m v i mc p , 2 2 c 1 v 2 / c2 1v / c ( g ) (g, iη) d mv dt 1 v 2 /c 2 F Lor. 1 e E v B c Fgrav F grav 1 1 g v v g vη 2 2 2 c c 1 v /c m The Gauge-Invariance of Gravitational Field Fgrav 1 1 g v v g vη 2 c c 1 v 2 /c 2 m g 2c 2 ln U g 2c 2 ln U U e / 2c 2 Λ μc 2 1 v 2 /c 2U 2 E mc2U 2 1v / c 2 2 ( g ) (g , iη) Here is ' λ an arbitrary real constant g g g U U Ue / 2c 2 Λ Λ' Λ e / c2 E E' E e / c2 The Closed Classical Systems: Particles and Fields Λ μc 2 1 v 2 /c 2U 2 Λ Λ' Λ e / c2 Λ Λ U U The Massive Particles and the Gravitational Field Λ μc2 1 v 2 /c 2U 2 c4 U 2 2G The Closed Classical Systems: Particles and Fields (Comparative analysis) The Massive Particles The Charged Particles and the Gravitational Field and the Electromagnetic Field Λ μc2 1 v 2 /c 2 Λ μc2 1 v 2 /c 2U 2 1 1 A j A A 2 c 16 c4 U 2 2G Λ Λ A A B A A B 4 j c The Closed Classical Systems: Particles and Fields (Comparative analysis) The Massive Particles The Charged Particles and the Gravitational Field and the Electromagnetic Field Λ μc2 1 v 2 /c 2 Λ μc2 1 v 2 /c 2U 2 1 1 A j A A 2 c 16 c4 U 2 2G Λ Λ A A Λ Λ U U 2G 2 2 μ 1 v / c U 0 2 c B A A B 4 j c The Closed Classical Systems: Particles and Fields (Comparative analysis) The Massive Particles The Charged Particles and the Gravitational Field and the Electromagnetic Field Λ μc2 1 v 2 /c 2 Λ μc2 1 v 2 /c 2U 2 1 1 A j A A 2 c 16 c4 U 2 2G Λ Λ A A Λ Λ g 2c 2 ln U U U 2G 2 2 μ 1 v / c U 0 2 c B A A 4 B j c 1 2 g 2 g 4Gμ 1 v 2 / c 2 2c The Closed Classical Systems: Particles and Fields (Comparative analysis) The Massive Particles The Charged Particles and the Gravitational Field and the Electromagnetic Field Λ μc2 1 v 2 /c 2 Λ μc2 1 v 2 /c 2U 2 1 1 A j A A 2 c 16 c4 U 2 2G Λ Λ A A Λ Λ g 2c 2 ln U U U 4 A j c B A A 4 B j c 2G 2 2 μ 1 v / c U 0 2 c A 0 1 2 g 2 g 4Gμ 1 v 2 / c 2 2c The Closed Classical Systems: Particles and Fields (Comparative analysis) The Massive Particles The Charged Particles and the Gravitational Field and the Electromagnetic Field Λ μc2 1 v 2 /c 2 Λ μc2 1 v 2 /c 2U 2 1 1 A j A A 2 c 16 c4 U 2 2G Λ Λ A A Λ Λ g 2c 2 ln U U U 4 A j c B A A 4 B j c 2G 2 2 μ 1 v / c U 0 2 c A 0 1 2 g 2 g 4Gμ 1 v 2 / c 2 2c The Closed Classical Systems: Particles and Fields (Comparative analysis) The Massive Particles The Charged Particles and the Gravitational Field and the Electromagnetic Field Λ μc2 1 v 2 /c 2 Λ μc2 1 v 2 /c 2U 2 1 1 A j A A 2 c 16 c4 U 2 2G 4 A j c 2G 2 2 μ 1 v / c U 0 2 c 4 B j c 1 2 g 2 g 4Gμ 1 v 2 / c 2 2c The Closed Classical Systems: Particles and Fields (Comparative analysis) The Massive Particles The Charged Particles and the Gravitational Field and the Electromagnetic Field B A A e B 0 g g g 0 The Closed Classical Systems: Particles and Fields (Comparative analysis) The Massive Particles The Charged Particles and the Gravitational Field and the Electromagnetic Field g g 0 e B 0 B 4 j c dpμ e B u dτ c 4 A j c g 1 2 2 2 g 4 Gμ 1 v / c 2c 2 dp dτ mu g u g u 2G 2 2 2 μ 1 v / c U 0 c Three-dimensional Form of Equations (Comparative analysis) The Massive Particles The Charged Particles and the Gravitational Field and the Electromagnetic Field g g 0 e B 0 B dpμ 4 j c e B u dτ c g 1 2 2 2 g 4 Gμ 1 v / c . 2 2c dp dτ mu g u g u Three-dimensional Form of Equations (Comparative analysis) The Massive Particles The Charged Particles and the Gravitational Field and the Electromagnetic Field g g 0 e B 0 E 1 B c t g 0 1 g η c t B 0 4 B j c 1 E 4 j c t c E 4 B 1 2 g 2 g 4Gμ 1 v 2 / c 2 . 2c g 1 η 1 2 g 2 η2 4Gμ 1 v 2 / c 2 c t 2c Three-dimensional Form of Equations (Comparative analysis) The Massive Particles The Charged Particles and the Gravitational Field and the Electromagnetic Field dpμ e B u dτ c d mv 1 e E v B dt 1 v 2 /c 2 c dp dτ mu g u g u d mv m 1 1 g v v g vη 2 2 2 2 2 dt 1 v / c c 1v / c c Three-dimensional Form of Equations (Comparative analysis) The Massive Particles The Charged Particles and the Gravitational Field and the Electromagnetic Field g 0 1 B E c t B 0 1 E 4 j c t c E 4 B d mv 1 e E v B dt 1 v 2 /c 2 c 1 g η c t g 1 η 1 2 g 2 η2 4Gμ 1 v 2 / c 2 c t 2c d mv m 1 1 g v v g vη 2 2 2 2 2 dt 1 v / c c 1v / c c Newtonian Limit of Relativistic Equations The Massive Particles and the Gravitational Field g 0 g 0 1 g η c t g 1 η 1 2 g 2 η2 4Gμ 1 v 2 / c 2 c t 2c g 4Gμ c d mv m 1 1 g 2 v v g vη 2 2 2 2 dt 1 v / c c 1v / c c 2G 2 2 2 μ 1 v / c U 0 c g 0 t 1 η 0 c t d mv mg dt v c 4Gμ v c, c ,U e 2 / 2c 2 1 2c 2 Newtonian Limit of Relativistic Equations The Massive Particles and the Gravitational Field U e / 2c 2 GM 1 2 2c r GM r gr GM r r 2 1 2 2c r 1 g 2 g 2 4Gμ 2c 2 2G 2 μ U 0 c 1 M 2 c g 2G 2 2 2 μ 1 v / c U 0 c 2 2 g 2U 2 μc U dV 8G 1 η 1 2 g 2 η2 4Gμ 1 v 2 / c 2 c t 2c Newtonian Limit of Relativistic Equations The Massive Particles and the Gravitational Field E mc2 1 v /c 2 2 e / c2 U e gr / 2c 2 1 v2 1 2 2c 1 v 2 /c 2 2 e / c 1 2 c 1 g2 / c2 W e 8G GM 2c 2r GM r GM r r 2 1 2 2c r mv 2 E mc m 2 2 1 c2 g2 W 8G e / 2c 1 2 r GM c2 2c 2 gr GM r GM r 2 r r The Energy-Momentum Tensor: Particles and Fields (Comparative analysis) The Electromagnetic Field 1 Λ μc2 1 v 2 /c 2 A j c 1 A A 2 16 1 ( ef ) Λ A A 2 16 can T Λ ( ef ) Λ(ef ) A ( A ) The Gravitational Field Λ μc2 1 v 2 /c 2U 2 c4 U 2 2G 4 c Λ(gf ) U 2 2G can T Λ(gf ) Λ(gf ) U (U ) The Energy-Momentum Tensor: Particles and Fields (Comparative analysis) The Electromagnetic Field can T Tcan Λ ( ef ) Λ(ef ) A ( A ) The Gravitational Field can T Λ ( gf ) Λ(gf ) U (U ) 1 2 1 can c4 1 2 A B B T U U U 16 G 2 4 1 A H TBel Tcan 4 1 2 Bel 1 T B B B 16 4 1 U 2 Ug 2c 2 U 1 2 can T g g g 4G 2 The Energy-Momentum Tensor: Particles and Fields (Comparative analysis) The Electromagnetic Field The Gravitational Field 2 U 1 2 can T g g g 4G 2 1 2 Bel 1 T B B B 16 4 1 2 2 W E B 8 c S EB 4 1 π EB 4c W 1 2 2 2 U g η 8G π S c U 2ηg 4G 1 U 2ηg 4cG Once more about the Gauge-Invariance of Gravitational Field ' λ g g g Λ μc 2 1 v 2 /c 2U 2 E mc2U 2 1v / c 2 2 U2 1 2 T g g g 4G 2 U U Ue / 2c 2 Λ Λ' Λ e / c2 E E' E e / c2 T T' T e / c2 Once more about the Gauge-Invariance of Gravitational Field The System of Gauge-Invariant Equations dp dτ mu g u g u g g 0 1 2 g 2 g 4Gμ 1 v 2 / c 2 . 2c 2G 2 2 μ 1 v / c U 0 2 c The Extended System of Charge Particles, Electromagnetic and Gravitational Fields 1 Λ μc2 1 v 2 /c 2 A j c Λ μc 2 1 v 2 /c 2U 2 c4 U 2 2G 1 A A 2 16 ? λ / 2c 2 U Ue Λ Λ Λe / c2 The Extended System of Charge Particles, Electromagnetic and Gravitational Fields 1 Λ μc2 1 v 2 /c 2 A j c 1 A A 2 16 Λ Λ Λe Λ μc 2 1 v 2 /c 2U 2 c4 U 2 2G / c2 To take into account the presence of gravitation field of system (in the frame of scalar model of gravitation) it is necessary to ensure the next transformation law of complete Lagrangian at gauge transformation ' = of gravitation potential. The Extended System of Charge Particles, Electromagnetic and Gravitational Fields 1 Λ μc2 1 v 2 /c 2 A j c Λ μc 2 1 v 2 /c 2U 2 c4 U 2 2G 1 A A 2 16 Λ μc 2 4 c 21A j 2 2 2 U 1 v /c U c 2G λ / 2c 2 U Ue Λ Λ Λe / c2 ? The Extended System of Charge Particles, Electromagnetic and Gravitational Fields 1 Λ μc2 1 v 2 /c 2 A j c Λ μc 2 1 v 2 /c 2U 2 c4 U 2 2G 1 A A 2 16 Λ μc 2 4 c 2 1 2 2 2 A j U 1 v /c U c 2G λ / 2c 2 U Ue Λ Λ Λe / c2 A AU 2 The Extended System of Charge Particles, Electromagnetic and Gravitational Fields 1 Λ μc2 1 v 2 /c 2 A j c Λ μc 2 1 v 2 /c 2U 2 c4 U 2 2G 1 A A 2 16 Λ μc 2 4 c 2 1 2 2 2 A j U 1 v /c U c 2G λ / 2c 2 U Ue Λ Λ Λe / c2 A AU 2 The Extended System of Charge Particles, Electromagnetic and Gravitational Fields 1 Λ μc2 1 v 2 /c 2 A j c Λ μc 2 1 v 2 /c 2U 2 c4 U 2 2G 1 A A 2 16 Λ μc 2 4 c 2 1 2 2 2 A j U 1 v /c U c 2G λ U Ue / 2c 2 Λ Λ Λe / c 2 A A A e / c 2 The Extended System of Charge Particles, Electromagnetic and Gravitational Fields 1 Λ μc2 1 v 2 /c 2 A j c Λ μc 2 1 v 2 /c 2U 2 c4 U 2 2G 1 A A 2 16 Λ μc 2 4 1 c 2 2 1 2 2 2 A j A A U 1 v /c U c 16 2G λ / 2c 2 U Ue A A e / c2 Λ Λ Λe / c2 A A 2 ? A A e 2 2 / c 2 The Extended System of Charge Particles, Electromagnetic and Gravitational Fields 1 Λ μc2 1 v 2 /c 2 A j c Λ μc 2 1 v 2 /c 2U 2 c4 U 2 2G 1 A A 2 16 Λ μc 2 4 1 c 2 2 2 1 2 2 2 A j A A U 1 v /c U U c 16 2G λ / 2c 2 U Ue A A e / c2 Λ Λ Λe / c2 The Extended System of Charge Particles, Electromagnetic and Gravitational Fields Λ μc c4 U 2 1 A j 1 A A 2U 2 1 v /c U 2G c 16 2 2 λ U Ue / 2c 2 A A e / c2 2 2 The Extended System of Charge Particles, Electromagnetic and Gravitational Fields The movement equations of classical particles Λ μc 2 c4 U 2 1 A j 1 A A 2U 2 1 v /c U 2G c 16 2 L 2 2 mac 2 1 v a2 /c 2U 2 a a ea Av a ea c The Extended System of Charge Particles, Electromagnetic and Gravitational Fields The movement equations of classical particles Λ μc 2 c4 U 2 1 A j 1 A A 2U 2 1 v /c U 2G c 16 2 L 2 2 mac 2 1 v a2 /c 2U 2 a d L L dt v a ra d mvU 2 dt 1 v 2 / c 2 a ea Av a ea c mU 2 1 v 2 / c 2 g eE e v B c The Extended System of Charge Particles, Electromagnetic and Gravitational Fields The movement equations of classical particles Λ μc 2 c4 U 2 1 A j 1 A A 2U 2 1 v /c U 2G c 16 2 L 2 2 mac 2 1 v a2 /c 2U 2 a d mvU 2 dt 1 v 2 / c 2 a ea Av a ea c mU 2 1 v 2 / c 2 g eE e v B c E 1 A c t B A The Extended System of Charge Particles, Electromagnetic and Gravitational Fields The movement equations of classical particles Λ μc 2 c4 U 2 1 A j 1 A A 2U 2 1 v /c U 2G c 16 2 L 2 2 mac 2 1 v a2 /c 2U 2 a d mvU 2 dt 1 v 2 / c 2 a ea Av a ea c mU 2 1 v 2 / c 2 g eE e v B c E 1 A c t B A B A A B iBE iE 0 The Extended System of Charge Particles, Electromagnetic and Gravitational Fields The movement equations of classical particles Λ μc 2 c4 U 2 1 A j 1 A A 2U 2 1 v /c U 2G c 16 2 L 2 2 mac 2 1 v a2 /c 2U 2 a d mvU 2 dt 1 v 2 / c 2 a ea Av a ea c mU 2 1 v 2 / c 2 g eE e v B c E 1 A c t B A B A A B iBE d mv m 1 e 1 g v v g v η e D vH 2 2 2 2 2 dt 1 v / c 1 v / c c c c iE 0 The Extended System of Charge Particles, Electromagnetic and Gravitational Fields The movement equations of classical particles Λ μc 2 c4 U 2 1 A j 1 A A 2U 2 1 v /c U 2G c 16 2 L 2 2 mac 2 1 v a2 /c 2U 2 a d mvU 2 dt 1 v 2 / c 2 a ea Av a ea c mU 2 1 v 2 / c 2 g eE e v B c E 1 A c t B A B A A B iBE d mv m 1 e 1 g v v g v η e D vH 2 2 2 2 2 dt 1 v / c 1 v / c c c c D U 2E H U 2B iE 0 The Extended System of Charge Particles, Electromagnetic and Gravitational Fields The movement equations of classical particles Λ μc 2 c4 U 2 1 A j 1 A A 2U 2 1 v /c U 2G c 16 2 L 2 2 mac 2 1 v a2 /c 2U 2 a d mvU 2 dt 1 v 2 / c 2 a ea Av a ea c mU 2 1 v 2 / c 2 g eE e v B c E 1 A c t B A B A A B iBE iE 0 H iHD iD 0 d mv m 1 e 1 g v v g v η e D vH 2 2 2 2 2 dt 1 v / c 1 v / c c c c D U 2E H BU 2 H U 2B The Extended System of Charge Particles, Electromagnetic and Gravitational Fields The movement equations of classical particles Λ μc 2 c4 U 2 1 A j 1 A A 2U 2 1 v /c U 2G c 16 2 L 2 2 mac 2 1 v a2 /c 2U 2 a d mvU 2 dt 1 v 2 / c 2 a ea Av a ea c mU 2 1 v 2 / c 2 g eE e v B c E 1 A c t B A B A A B iBE iE 0 H iHD iD 0 d mv m 1 e 1 g v v g v η e D vH 2 2 2 2 2 dt 1 v / c 1 v / c c c c A A e / c λ U Ue / 2c 2 2 A A A f B e / c B B H H H 2 D U 2E H BU 2 H U 2B The Extended System of Charge Particles, Electromagnetic and Gravitational Fields The equations of interacting electromagnetic and gravitational fields Λ μc 2 c4 U 2 1 A j 1 A A 2U 2 1 v /c U 2G c 16 2 2 2 g g 0 e B 0 Λ Λ A A H 4 j c g 2 A A A f B e / c B B Λ Λ (U ) U 1 2 G 2 2 2 g H 4 Gμ 1 v / c 2c 2 4c 2 2G 1 2 2 2 μ 1 v / c H U 0 2 2 c 16c H BU 2 A A e / c 2 H H H λ U Ue / 2c 2 g g g The Extended System of Charge Particles, Electromagnetic and Gravitational Fields Three-dimensional form of field equations Λ μc E 2 c4 U 2 1 A j 1 A A 2U 2 1 v /c U 2G c 16 2 2 2 1 B c t B 0 1 D 4 H j c t c D 4 D U 2E 2 H U B A A A f 1 f c t g 1 η 1 G 2 g 2 η2 2 D2 H 2 4Gμ 1 v 2 / c 2 c t 2c 2c λ U Ue / 2 c g g g η η η 2 E E Ee / c2 A A Ae λ / c / c2 φ φ φe λ / c B B Be 2 2 The System of Equations of Interacting Electromagnetic, Scalar Gravitational and Spinor Fields c4 1 Λ U 2 A A 2U 2 2G 16 e Λ cψ i A ψ mc2ψ ψ c c4 1 e Λ U 2 A A 2U 2 cψ i A ψ mc2ψ ψU 2 2G 16 c e 2 i A mcU ψ 0 c 2G 1 2 H U 0 2 mψ ψ 2 c 16c e ψ i A mcU 2 0 c U U e / 2c 2 Λ Λ eλ / c 2 A A e / c ψ ψ e λ / c2 2 e B 0 H 4 j c B UH A A f j ceψ ψ ψ ψ e(ie / c ) f B A A The System of Equations of Interacting Electromagnetic, Scalar Gravitational and Spinor Fields c4 1 e Λ U 2 A A 2U 2 cψ i A ψ mc2ψ ψU 2 2G 16 c e 2 i A mcU ψ 0 c 2G 1 2 H U 0 2 mψ ψ 2 c 16c e ψ i A mcU 2 0 c e B 0 H 4 j c B UH
© Copyright 2026 Paperzz