Neutron Diffusion Equation

DIFFUSION EQUATION
Vasily Arzhanov
Reactor Physics, KTH
Overview
•
•
•
•
•
•
•
Neutron current
Continuity equation
Fick’s law
Diffusion coefficient
One-speed diffusion equation
Boundary condition
General properties of diffusion equation
HT2008
Diffusion equation
2
Neutron Flux and Current
v = vΩ,
φ ( r, E ) ≡ ∑ vn ( r, Ωi , E ) =
i
∫π vn ( r, Ω, E ) dΩ
Rx = Σ xφ
4
J ( r, E ) ≡ ∑ v i n ( r, Ωi , E ) =
i
mv 2
E=
2
∫π vn ( r, Ω, E ) dΩ
4
dn = J ⋅ dA
J
dA
HT2008
Diffusion equation
3
Balance of Neutrons
⎡Change rate in number ⎤ ⎡ Production ⎤ ⎡ Absorption ⎤ ⎡ Leakage ⎤
⎢ of neutrons in V ⎥ = ⎢ rate in V ⎥ − ⎢ rate in V ⎥ − ⎢ rate from V ⎥
⎣
⎦ ⎣
⎦ ⎣
⎦ ⎣
⎦
⎡Change rate in number ⎤ d
∂n
⎢ of neutrons in V ⎥ = dt ∫ n(r, E, t )dV = ∫ ∂t dV
⎣
⎦
V
V
⎡ Production ⎤
⎢ rate in V ⎥ = ∫ stot dV
⎣
⎦ V
⎡ Absorption ⎤
⎢ rate in V ⎥ = ∫ Σ aφ dV
⎣
⎦ V
⎡ Leakage ⎤
⎢ rate from V ⎥ = ∫ J ⋅ dA = ∫ divJ dV
⎣
⎦ A
V
HT2008
Diffusion equation
4
Continuity Equation
⎛ ∂n
⎞
s
−
+
Σ
φ
+
div
J
⎟ dV = 0
∫V ⎜⎝ ∂t tot a
⎠
Exact equation,
two unknowns
Diffusion theory:
Diffusion equation:
HT2008
1 ∂φ
= s + νΣ f φ − Σ aφ − divJ
v ∂t
J = − Dgradφ = − D∇φ
(Fick’s law)
1 ∂φ
= s + νΣ f φ − Σ aφ + D∇2φ
v ∂t
Diffusion equation
5
Example
Se −r L
φ (r ) =
4π Dr
r
S
(a) Find the neutron current at distance r
(b) Net number of neutrons flowing out through a sphere of radius r
HT2008
Diffusion equation
6
Solution
d
∇ r = er
dr
er
r
S
(1)
(2)
HT2008
d ⎛ Se −r L ⎞
S ⎛ 1 1 ⎞ −r L
=
J (r ) = − Der ⎜
e
⎟ r
⎜ 2 + ⎟e
dr ⎝ 4π Dr ⎠
4π ⎝ r
Lr ⎠
⎛ r⎞
N (r ) = 4π r 2 ⋅ J = S ⎜1 + ⎟ e −r L
⎝ L⎠
Diffusion equation
7
One-Group Diffusion Model
•
•
•
•
Infinite homogeneous and isotropic medium
Neutron scattering is isotropic in Lab-system
Weak absorption Σa << Σs
All neutrons have the same velosity v. (One-Speed
Approximation)
• The neutron flux is slowly varying function of position
HT2008
Diffusion equation
8
Plane Angles
ds ≡ nds
er
θ
n
r
ϕ=
C
R
φ
R
dϕ =
ds cos θ er ⋅ ds
=
r
r
Full plane angle φ = 2π
HT2008
Diffusion equation
9
Solid Angles
dA ≡ ndA
er ≡ Ω
θ n
r
dΩ =
A
Ω= 2
R
dA cos θ Ω ⋅ dA
=
2
r
r2
Full solid angle Ω = 4π
HT2008
Diffusion equation
10
Spherical Coordinates
z
dr
r
rdθ
dV = r 2 sin θ dθ dψ dr
rsinθdψ
θ
dθ
dψ
x
HT2008
y
ψ
rsinθdψ
Diffusion equation
11
Net Current
z
Upper semi-space
J z = J+ − J−
0≤r <∞
0 ≤θ ≤π 2
0 ≤ ψ ≤ 2π
r
θ
J−
dA
y
x
J+
ψ
J = J xe x + J ye y + J z e z
Purpose is to relate J and
HT2008
Diffusion equation
φ
12
Current from dV
(1) Number of collisions in dV:
z
dncoll = Σ sφ dV
Solid angle
dΩ =
dA cos θ
r2
r
(2) Fraction of neutrons
scattered towards dA:
θ
(3) Fraction of neutrons
survived while traveling r:
dA
y
ψ
e−Σs r
(4) Number of neutrons
crossing dA from above
x
HT2008
dΩ
4π
d Ω −Σs r
⋅e
dn = Σ sφ dV ⋅
4π
Diffusion equation
13
Current from Upper Semi-Space
dJ − =
J− =
∫
upper
dn
cos θ −Σs r
= Σ sφ
e dV
2
dA
4π r
∞ π 2 2π
dJ − = ∫
∫
0 0
cos θ −Σs r 2
∫0 Σsφ (r) 4π r 2 e r sin θ dθ dψ dr
r = 0 is most important
HT2008
Diffusion equation
14
Slowly Varying Flux
⎛ ∂φ ⎞
⎛ ∂φ ⎞
⎛ ∂φ ⎞
+
y
+
z
⎜ ⎟
⎟
⎜ ⎟ +...
⎝ ∂x ⎠0 ⎝ ∂y ⎠0 ⎝ ∂z ⎠0
φ = φ0 + x⎜
Taylor’s series at the origin:
x = r sin θ cosψ ; y = r sin θ sinψ ; z = r cos θ
⎛ ∂φ ⎞
⎛ ∂φ ⎞
⎛ ∂φ ⎞
φ (r ) = φ0 + r sin θ cosψ ⎜ ⎟ + r sin θ sinψ ⎜ ⎟ + r cos θ ⎜ ⎟
⎝ ∂x ⎠0
⎝ ∂z ⎠0
⎝ ∂y ⎠0
Σ
J− = s
4π
HT2008
2π
π
∞
⎡
⎛ ∂φ ⎞ ⎤ −Σsr
+
φ
r
cos
θ
⎜ ⎟ ⎥ e sin θ dθ dr dψ
⎢ 0
∫
∫
∫
⎝ ∂z ⎠0 ⎦
Ψ =0 θ =0 r =0 ⎣
2
Diffusion equation
15
Net Current
φ0
1 ⎛ ∂φ ⎞
J − (0) = +
⎜ ⎟
4 6Σ s ⎝ ∂z ⎠0
J + (0) =
φ0
4
J z (0) = −
−
1 ⎛ ∂φ ⎞
⎜ ⎟
6Σ s ⎝ ∂z ⎠0
1 ⎛ ∂φ ⎞
⎜ ⎟
3Σ s ⎝ ∂z ⎠0
Jz = −
1 ⎛ ∂φ ⎞
1 ⎛ ∂φ ⎞
1 ⎛ ∂φ ⎞
J
J
=
−
=
−
;
;
⎜ ⎟
x
y
⎜ ⎟
⎜ ⎟
3Σ s ⎝ ∂z ⎠0
3Σ s ⎝ ∂x ⎠0
3Σ s ⎝ ∂y ⎠0
1 ⎛ ∂φ
∂φ
∂φ ⎞
+ ey
+ ez
J ≡ ex Jx + ey Jy + ez Jz = −
⎜ ex
⎟
3Σ s ⎝ ∂x
∂y
∂z ⎠
∇φ
J (r , t ) = −
HT2008
1
∇φ ( r , t )
3Σ s (r )
Diffusion equation
16
Fick’s Law
1
∂φ
∂φ
∂φ
J (r ) = −
∇φ (r ); ∇φ (r ) = e x
+ ey
+ ez
3Σ s
∂x
∂y
∂z
Fick’s law:
D≡
HT2008
J (r ) = − D∇φ (r )
1
λ
= s
3Σ s 3
The essence of diffusion theory
It is essentially based on the hypothesis
of isotropic scattering in the Lab system
Diffusion equation
17
Fick’s Law Limitations
Fick’s law is not accurate
• When scattering is strongly anisotropic
• In medium with strong absorption
• Within about 3 mfp of neutron sources,
sinks, or boundaries
HT2008
Diffusion equation
18
Transport Approximation
Φ ( r, Ω, t ) =
1
3
φ ( r, t ) +
Ω ⋅ J ( r, t ) + …
4π
4π
Zero order approximation:
Φ ( r, Ω, t ) =
1
φ ( r, t )
4π
1
λs
D=
=
3Σ s 3
NTE
Elementary
diffusion
First order approximation:
Φ ( r, Ω, t ) =
NTE
1
3
φ ( r, t ) +
Ω ⋅ J ( r, t )
4π
4π
Σtr ≡ Σt − μ ⋅ Σ s ;
HT2008
D=
λtr ≡ 1 Σtr
Diffusion equation
λ
1
= tr
3Σtr
3
Transport
approximation
2
μ=
3A
19
Improved Diffusion
Coefficient
1
1
λtr ≡
=
Σtr Σt − μ ⋅ Σ s
Weak
absorption:
1
1
1
1
D=
=
≈
=
3Σtr 3 ( Σt − μ ⋅ Σ s ) 3 ( Σ s − μ ⋅ Σ s ) 3Σ s (1 − μ )
Scattering from
heavy nuclides:
HT2008
1
λtr
D=
=
3Σtr
3
D=
1
1
1
=
≈
3Σ s (1 − μ ) 3Σ s (1 − 2 3A ) 3Σ s
Diffusion equation
20
Making Scattering Isotropic
D=
λs
3
Neutron remembers
its original direction
ψ
λs = 1 Σ s
One combined collision
ψ
HT2008
Diffusion equation
Neutron does not remember
its original direction
21
Transport Mean Free Path
Information about the
original direction is lost
ψ
Transport correction =
A number of anisotropic
collisions is replaced by
one isotropic
ψ
ψ
λs
λs ⋅ μ
λs ⋅ μ
Initial direction
2
λtr
No absorption:
HT2008
λtr = λs + λs μ + λs μ + λs μ + … =
2
Diffusion equation
3
λs
1− μ
22
Transport mfp with Absorption
λs
1− μ
No absorption:
λtr = λs + λs μ + λs μ 2 + λs μ 3 + … =
With absorption:
1
λt
λtr ≡
=
=
Σt − μ ⋅ Σ s Σt (1 − μ ⋅ Σ s Σt ) 1 − μ ⋅ Σ s Σt
HT2008
1
Diffusion equation
23
Example
The scattering X-section of carbon at 1 ev is 4.8 b.
Estimate the diffusion coefficient.
The atom density of graphite is 0.08023x1024
HT2008
Diffusion equation
24
Solution
The scattering X-section of carbon at 1 ev is 4.8 b.
Estimate the diffusion coefficient.
The atom density of graphite is 0.08023x1024
D=
1
3Σ s (1 − μ )
2
2
μ=
=
= 0.555
3 A 36
Σ s = σ s × NC = 4.8 ×10−24 × 0.08023 ×1024 = 0.385
D = 0.916
HT2008
Diffusion equation
25
Interpretation of Fick’s Law
Neutron density increases
J (r ) = − D∇φ (r )
Current
HT2008
J (r )
Diffusion equation
∇φ (r )
Gradient
26
Two Kinds of Transport
Random walk
Collective
(self-diffusion)
transport
(a)
(b)
Molecules do
collide with
each other
Neutrons do
not collide with
each other
Examples:
Neutrons in reactor
Gas molecules
Equation:
NTE
Boltzmann
HT2008
Diffusion equation
n ~ 108
NB ~ 1022
27
Warning
Fick’s law:
J (r ) = − D∇φ (r )
is valid only for completely chaotic movement
(random walk) with weak absorption
φ (r ) = vn = const
J (r ) = vn = Ωφ
Collimated beam of neutrons:
φ ( x) = φ (0)e −Σ x
J (r ) = Ωφ
No collisions
only absorption
a
x
HT2008
Diffusion equation
28
One-Speed Diffusion Equation
1 ∂φ ( r, t )
= s ( r, t ) +νΣ f φ ( r, t ) − Σ aφ ( r, t ) − divJ ( r, t )
Balance of neutrons:
v ∂t
Diffusion theory: J ( r, t ) = − Dgradφ = − D ( r ) ∇φ ( r, t ) (Fick’s law)
Diffusion coefficient: D ( r ) =
Diffusion equation:
Leakage from
a unit volume:
HT2008
1
3Σtr ( r )
,
Σtr ( r ) = Σt ( r ) − μ ⋅ Σ s ( r )
1 ∂φ
= s +νΣ f φ − Σ aφ + ∇ ( D∇φ )
v ∂t
L = −∇ ( D∇φ ) = − D∇ 2φ
Diffusion equation
29
Net and Partial Currents
Arbitrary direction n:
+n
–n
⎛ φ D ∂φ ⎞
J − n (r ) = − n ⋅ ⎜ +
⎟
⎝ 4 2 ∂n ⎠
r
⎛ φ D ∂φ ⎞
J +n (r ) = n ⋅ ⎜ −
⎟
⎝ 4 2 ∂n ⎠
J ( r ) = − D∇φ ( r )
z
x
y
HT2008
Diffusion equation
30
Interface Conditions
x
φ
D ∂φ
J− = +
4 2 ∂x
φ
A
φ
D ∂φ
J+ = −
4 2 ∂x
B
φB
φA
x
φ A ≡ φ ( x − 0)
φB ≡ φ ( x + 0)
J + ( A) = J + ( B)
J − ( A) = J − ( B)
HT2008
φA
D A ∂φA φB DB ∂φB
=
−
4
2 ∂x
4
2 ∂x
φA D A ∂φA φB DB ∂φB
+
=
+
4
2 ∂x
4
2 ∂x
−
Diffusion equation
φ ( x − 0) = φ ( x + 0)
∂φ
∂φ
DA
∂x
= DB
x −0
∂x
x+0
31
Boundary Condition
J− =
φ
4
+
D ∂φ
2 ∂x
J+ =
φ
4
−
D ∂φ
2 ∂x
Vacuum
Diffusion theory predicts:
Diffusion theory is
not accurate near:
• Sources
• Sinks
B
x
• Interfaces
• Boundaries
First step:
HT2008
J− =
φ
4
+
λtr ∂φ
6 ∂x
=0
Diffusion equation
(φ ) B
⎛ ∂φ ⎞
⎜ ⎟ =−
2 3 λtr
⎝ ∂x ⎠ B
32
Extrapolated Length
BC:
Vacuum
φ
(φ ) B
⎛ ∂φ ⎞
⎜ ⎟ =−
2 3 λtr
⎝ ∂x ⎠ B
Neutron flux in reality
(φ ) B
Linearly extrapolated flux:
φext ( x) = (φ ) B −
0
B
HT2008
2 3 λtr
⋅x
x
dext
Extrapolated length:
(φ ) B
dext
2
= λtr = 0.66λtr
3
Diffusion equation
(φ ) B
⎛ ∂φ ⎞
⎜ ⎟ =−
dext
⎝ ∂x ⎠ B
33
Improved Boundary Condition
Transport solution
Improved diffusion
Elementary diffusion
x
0.66λtr
0.71λtr
(φ ) B
⎛ ∂φ ⎞
⎜ ⎟ =−
dext
⎝ ∂x ⎠ B
HT2008
Diffusion equation
34
Practical Boundary Condition
Transport solution
Natural curvature
Improved diffusion
x=0
dext = 0.71λtr
xB
HT2008
Diffusion equation
x
φ ( xB + dext ) = 0
35
General Properties
•
•
•
•
•
Flux is finite and non-negative
Flux preserves the symmetry
No return from the free surface
Flux and current are continues
Diffusion equation describes the balance
of neutrons
HT2008
Diffusion equation
36
The END
HT2008
Diffusion equation
37