DIFFUSION EQUATION Vasily Arzhanov Reactor Physics, KTH Overview • • • • • • • Neutron current Continuity equation Fick’s law Diffusion coefficient One-speed diffusion equation Boundary condition General properties of diffusion equation HT2008 Diffusion equation 2 Neutron Flux and Current v = vΩ, φ ( r, E ) ≡ ∑ vn ( r, Ωi , E ) = i ∫π vn ( r, Ω, E ) dΩ Rx = Σ xφ 4 J ( r, E ) ≡ ∑ v i n ( r, Ωi , E ) = i mv 2 E= 2 ∫π vn ( r, Ω, E ) dΩ 4 dn = J ⋅ dA J dA HT2008 Diffusion equation 3 Balance of Neutrons ⎡Change rate in number ⎤ ⎡ Production ⎤ ⎡ Absorption ⎤ ⎡ Leakage ⎤ ⎢ of neutrons in V ⎥ = ⎢ rate in V ⎥ − ⎢ rate in V ⎥ − ⎢ rate from V ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎡Change rate in number ⎤ d ∂n ⎢ of neutrons in V ⎥ = dt ∫ n(r, E, t )dV = ∫ ∂t dV ⎣ ⎦ V V ⎡ Production ⎤ ⎢ rate in V ⎥ = ∫ stot dV ⎣ ⎦ V ⎡ Absorption ⎤ ⎢ rate in V ⎥ = ∫ Σ aφ dV ⎣ ⎦ V ⎡ Leakage ⎤ ⎢ rate from V ⎥ = ∫ J ⋅ dA = ∫ divJ dV ⎣ ⎦ A V HT2008 Diffusion equation 4 Continuity Equation ⎛ ∂n ⎞ s − + Σ φ + div J ⎟ dV = 0 ∫V ⎜⎝ ∂t tot a ⎠ Exact equation, two unknowns Diffusion theory: Diffusion equation: HT2008 1 ∂φ = s + νΣ f φ − Σ aφ − divJ v ∂t J = − Dgradφ = − D∇φ (Fick’s law) 1 ∂φ = s + νΣ f φ − Σ aφ + D∇2φ v ∂t Diffusion equation 5 Example Se −r L φ (r ) = 4π Dr r S (a) Find the neutron current at distance r (b) Net number of neutrons flowing out through a sphere of radius r HT2008 Diffusion equation 6 Solution d ∇ r = er dr er r S (1) (2) HT2008 d ⎛ Se −r L ⎞ S ⎛ 1 1 ⎞ −r L = J (r ) = − Der ⎜ e ⎟ r ⎜ 2 + ⎟e dr ⎝ 4π Dr ⎠ 4π ⎝ r Lr ⎠ ⎛ r⎞ N (r ) = 4π r 2 ⋅ J = S ⎜1 + ⎟ e −r L ⎝ L⎠ Diffusion equation 7 One-Group Diffusion Model • • • • Infinite homogeneous and isotropic medium Neutron scattering is isotropic in Lab-system Weak absorption Σa << Σs All neutrons have the same velosity v. (One-Speed Approximation) • The neutron flux is slowly varying function of position HT2008 Diffusion equation 8 Plane Angles ds ≡ nds er θ n r ϕ= C R φ R dϕ = ds cos θ er ⋅ ds = r r Full plane angle φ = 2π HT2008 Diffusion equation 9 Solid Angles dA ≡ ndA er ≡ Ω θ n r dΩ = A Ω= 2 R dA cos θ Ω ⋅ dA = 2 r r2 Full solid angle Ω = 4π HT2008 Diffusion equation 10 Spherical Coordinates z dr r rdθ dV = r 2 sin θ dθ dψ dr rsinθdψ θ dθ dψ x HT2008 y ψ rsinθdψ Diffusion equation 11 Net Current z Upper semi-space J z = J+ − J− 0≤r <∞ 0 ≤θ ≤π 2 0 ≤ ψ ≤ 2π r θ J− dA y x J+ ψ J = J xe x + J ye y + J z e z Purpose is to relate J and HT2008 Diffusion equation φ 12 Current from dV (1) Number of collisions in dV: z dncoll = Σ sφ dV Solid angle dΩ = dA cos θ r2 r (2) Fraction of neutrons scattered towards dA: θ (3) Fraction of neutrons survived while traveling r: dA y ψ e−Σs r (4) Number of neutrons crossing dA from above x HT2008 dΩ 4π d Ω −Σs r ⋅e dn = Σ sφ dV ⋅ 4π Diffusion equation 13 Current from Upper Semi-Space dJ − = J− = ∫ upper dn cos θ −Σs r = Σ sφ e dV 2 dA 4π r ∞ π 2 2π dJ − = ∫ ∫ 0 0 cos θ −Σs r 2 ∫0 Σsφ (r) 4π r 2 e r sin θ dθ dψ dr r = 0 is most important HT2008 Diffusion equation 14 Slowly Varying Flux ⎛ ∂φ ⎞ ⎛ ∂φ ⎞ ⎛ ∂φ ⎞ + y + z ⎜ ⎟ ⎟ ⎜ ⎟ +... ⎝ ∂x ⎠0 ⎝ ∂y ⎠0 ⎝ ∂z ⎠0 φ = φ0 + x⎜ Taylor’s series at the origin: x = r sin θ cosψ ; y = r sin θ sinψ ; z = r cos θ ⎛ ∂φ ⎞ ⎛ ∂φ ⎞ ⎛ ∂φ ⎞ φ (r ) = φ0 + r sin θ cosψ ⎜ ⎟ + r sin θ sinψ ⎜ ⎟ + r cos θ ⎜ ⎟ ⎝ ∂x ⎠0 ⎝ ∂z ⎠0 ⎝ ∂y ⎠0 Σ J− = s 4π HT2008 2π π ∞ ⎡ ⎛ ∂φ ⎞ ⎤ −Σsr + φ r cos θ ⎜ ⎟ ⎥ e sin θ dθ dr dψ ⎢ 0 ∫ ∫ ∫ ⎝ ∂z ⎠0 ⎦ Ψ =0 θ =0 r =0 ⎣ 2 Diffusion equation 15 Net Current φ0 1 ⎛ ∂φ ⎞ J − (0) = + ⎜ ⎟ 4 6Σ s ⎝ ∂z ⎠0 J + (0) = φ0 4 J z (0) = − − 1 ⎛ ∂φ ⎞ ⎜ ⎟ 6Σ s ⎝ ∂z ⎠0 1 ⎛ ∂φ ⎞ ⎜ ⎟ 3Σ s ⎝ ∂z ⎠0 Jz = − 1 ⎛ ∂φ ⎞ 1 ⎛ ∂φ ⎞ 1 ⎛ ∂φ ⎞ J J = − = − ; ; ⎜ ⎟ x y ⎜ ⎟ ⎜ ⎟ 3Σ s ⎝ ∂z ⎠0 3Σ s ⎝ ∂x ⎠0 3Σ s ⎝ ∂y ⎠0 1 ⎛ ∂φ ∂φ ∂φ ⎞ + ey + ez J ≡ ex Jx + ey Jy + ez Jz = − ⎜ ex ⎟ 3Σ s ⎝ ∂x ∂y ∂z ⎠ ∇φ J (r , t ) = − HT2008 1 ∇φ ( r , t ) 3Σ s (r ) Diffusion equation 16 Fick’s Law 1 ∂φ ∂φ ∂φ J (r ) = − ∇φ (r ); ∇φ (r ) = e x + ey + ez 3Σ s ∂x ∂y ∂z Fick’s law: D≡ HT2008 J (r ) = − D∇φ (r ) 1 λ = s 3Σ s 3 The essence of diffusion theory It is essentially based on the hypothesis of isotropic scattering in the Lab system Diffusion equation 17 Fick’s Law Limitations Fick’s law is not accurate • When scattering is strongly anisotropic • In medium with strong absorption • Within about 3 mfp of neutron sources, sinks, or boundaries HT2008 Diffusion equation 18 Transport Approximation Φ ( r, Ω, t ) = 1 3 φ ( r, t ) + Ω ⋅ J ( r, t ) + … 4π 4π Zero order approximation: Φ ( r, Ω, t ) = 1 φ ( r, t ) 4π 1 λs D= = 3Σ s 3 NTE Elementary diffusion First order approximation: Φ ( r, Ω, t ) = NTE 1 3 φ ( r, t ) + Ω ⋅ J ( r, t ) 4π 4π Σtr ≡ Σt − μ ⋅ Σ s ; HT2008 D= λtr ≡ 1 Σtr Diffusion equation λ 1 = tr 3Σtr 3 Transport approximation 2 μ= 3A 19 Improved Diffusion Coefficient 1 1 λtr ≡ = Σtr Σt − μ ⋅ Σ s Weak absorption: 1 1 1 1 D= = ≈ = 3Σtr 3 ( Σt − μ ⋅ Σ s ) 3 ( Σ s − μ ⋅ Σ s ) 3Σ s (1 − μ ) Scattering from heavy nuclides: HT2008 1 λtr D= = 3Σtr 3 D= 1 1 1 = ≈ 3Σ s (1 − μ ) 3Σ s (1 − 2 3A ) 3Σ s Diffusion equation 20 Making Scattering Isotropic D= λs 3 Neutron remembers its original direction ψ λs = 1 Σ s One combined collision ψ HT2008 Diffusion equation Neutron does not remember its original direction 21 Transport Mean Free Path Information about the original direction is lost ψ Transport correction = A number of anisotropic collisions is replaced by one isotropic ψ ψ λs λs ⋅ μ λs ⋅ μ Initial direction 2 λtr No absorption: HT2008 λtr = λs + λs μ + λs μ + λs μ + … = 2 Diffusion equation 3 λs 1− μ 22 Transport mfp with Absorption λs 1− μ No absorption: λtr = λs + λs μ + λs μ 2 + λs μ 3 + … = With absorption: 1 λt λtr ≡ = = Σt − μ ⋅ Σ s Σt (1 − μ ⋅ Σ s Σt ) 1 − μ ⋅ Σ s Σt HT2008 1 Diffusion equation 23 Example The scattering X-section of carbon at 1 ev is 4.8 b. Estimate the diffusion coefficient. The atom density of graphite is 0.08023x1024 HT2008 Diffusion equation 24 Solution The scattering X-section of carbon at 1 ev is 4.8 b. Estimate the diffusion coefficient. The atom density of graphite is 0.08023x1024 D= 1 3Σ s (1 − μ ) 2 2 μ= = = 0.555 3 A 36 Σ s = σ s × NC = 4.8 ×10−24 × 0.08023 ×1024 = 0.385 D = 0.916 HT2008 Diffusion equation 25 Interpretation of Fick’s Law Neutron density increases J (r ) = − D∇φ (r ) Current HT2008 J (r ) Diffusion equation ∇φ (r ) Gradient 26 Two Kinds of Transport Random walk Collective (self-diffusion) transport (a) (b) Molecules do collide with each other Neutrons do not collide with each other Examples: Neutrons in reactor Gas molecules Equation: NTE Boltzmann HT2008 Diffusion equation n ~ 108 NB ~ 1022 27 Warning Fick’s law: J (r ) = − D∇φ (r ) is valid only for completely chaotic movement (random walk) with weak absorption φ (r ) = vn = const J (r ) = vn = Ωφ Collimated beam of neutrons: φ ( x) = φ (0)e −Σ x J (r ) = Ωφ No collisions only absorption a x HT2008 Diffusion equation 28 One-Speed Diffusion Equation 1 ∂φ ( r, t ) = s ( r, t ) +νΣ f φ ( r, t ) − Σ aφ ( r, t ) − divJ ( r, t ) Balance of neutrons: v ∂t Diffusion theory: J ( r, t ) = − Dgradφ = − D ( r ) ∇φ ( r, t ) (Fick’s law) Diffusion coefficient: D ( r ) = Diffusion equation: Leakage from a unit volume: HT2008 1 3Σtr ( r ) , Σtr ( r ) = Σt ( r ) − μ ⋅ Σ s ( r ) 1 ∂φ = s +νΣ f φ − Σ aφ + ∇ ( D∇φ ) v ∂t L = −∇ ( D∇φ ) = − D∇ 2φ Diffusion equation 29 Net and Partial Currents Arbitrary direction n: +n –n ⎛ φ D ∂φ ⎞ J − n (r ) = − n ⋅ ⎜ + ⎟ ⎝ 4 2 ∂n ⎠ r ⎛ φ D ∂φ ⎞ J +n (r ) = n ⋅ ⎜ − ⎟ ⎝ 4 2 ∂n ⎠ J ( r ) = − D∇φ ( r ) z x y HT2008 Diffusion equation 30 Interface Conditions x φ D ∂φ J− = + 4 2 ∂x φ A φ D ∂φ J+ = − 4 2 ∂x B φB φA x φ A ≡ φ ( x − 0) φB ≡ φ ( x + 0) J + ( A) = J + ( B) J − ( A) = J − ( B) HT2008 φA D A ∂φA φB DB ∂φB = − 4 2 ∂x 4 2 ∂x φA D A ∂φA φB DB ∂φB + = + 4 2 ∂x 4 2 ∂x − Diffusion equation φ ( x − 0) = φ ( x + 0) ∂φ ∂φ DA ∂x = DB x −0 ∂x x+0 31 Boundary Condition J− = φ 4 + D ∂φ 2 ∂x J+ = φ 4 − D ∂φ 2 ∂x Vacuum Diffusion theory predicts: Diffusion theory is not accurate near: • Sources • Sinks B x • Interfaces • Boundaries First step: HT2008 J− = φ 4 + λtr ∂φ 6 ∂x =0 Diffusion equation (φ ) B ⎛ ∂φ ⎞ ⎜ ⎟ =− 2 3 λtr ⎝ ∂x ⎠ B 32 Extrapolated Length BC: Vacuum φ (φ ) B ⎛ ∂φ ⎞ ⎜ ⎟ =− 2 3 λtr ⎝ ∂x ⎠ B Neutron flux in reality (φ ) B Linearly extrapolated flux: φext ( x) = (φ ) B − 0 B HT2008 2 3 λtr ⋅x x dext Extrapolated length: (φ ) B dext 2 = λtr = 0.66λtr 3 Diffusion equation (φ ) B ⎛ ∂φ ⎞ ⎜ ⎟ =− dext ⎝ ∂x ⎠ B 33 Improved Boundary Condition Transport solution Improved diffusion Elementary diffusion x 0.66λtr 0.71λtr (φ ) B ⎛ ∂φ ⎞ ⎜ ⎟ =− dext ⎝ ∂x ⎠ B HT2008 Diffusion equation 34 Practical Boundary Condition Transport solution Natural curvature Improved diffusion x=0 dext = 0.71λtr xB HT2008 Diffusion equation x φ ( xB + dext ) = 0 35 General Properties • • • • • Flux is finite and non-negative Flux preserves the symmetry No return from the free surface Flux and current are continues Diffusion equation describes the balance of neutrons HT2008 Diffusion equation 36 The END HT2008 Diffusion equation 37
© Copyright 2026 Paperzz