07.02 Trapezoidal Rule for Integration-More Examples Chemical Engineering Example 1 In an attempt to understand the mechanism of the depolarization process in a fuel cell, an electro-kinetic model for mixed oxygen-methanol current on platinum was developed in the laboratory at FAMU. A very simplified model of the reaction developed suggests a functional relation in an integral form. To find the time required for 50% of the oxygen to be consumed, the time, T s is given by 6.73x 4.3025 10 7 1.2210 6 2.316 10 11 x T 0.6110 6 dx a) Use single segment Trapezoidal rule to find the time required for 50% of the oxygen to be consumed. b) Find the true error, E t , for part (a). c) Find the absolute relative true error, t , for part (a). Solution a) f a f b I b a , where 2 a 1.22 10 6 b 0.61 10 6 6.73x 4.3025 10 7 f ( x) 2.316 10 11 x f 1.22 10 6 6.73 1.22 10 6 4.3025 10 7 11 3.0581 10 11 6 2.316 10 1.22 10 6.73 0.61 10 6 4.3025 10 7 11 f 0.61 10 3.2104 10 11 6 2.316 10 0.61 10 11 3.0582 10 3.2104 1011 I 0.61 10 6 1.22 10 6 2 6 1.9119 10 5 s 07.02.1 07.02.2 Chapter 07.02 b) The exact value of the above integral is, 7 0.6110 6 6.73x 4.3025 10 T 1.2210 6 2.316 10 11 x dx 1.9014 10 5 s so the true error is Et True Value Approximate Value 1.9014 10 5 1.9119 10 5 1056.2 c) The absolute relative true error, t , would then be True Error 100 True Value 1056.2 100 1.9014 10 5 0.55549 % t Example 2 In an attempt to understand the mechanism of the depolarization process in a fuel cell, an electro-kinetic model for mixed oxygen-methanol current on platinum was developed in the laboratory at FAMU. A very simplified model of the reaction developed suggests a functional relation in an integral form. To find the time required for 50% of the oxygen to be consumed, the time, T s is given by 6.73x 4.3025 10 7 1.2210 6 2.316 10 11 x T 0.6110 6 dx a) Use two- segment Trapezoidal rule to find the time required for 50% of the oxygen to be consumed. b) Find the true error, E t , for part (a). c) Find the absolute relative true error, t , for part (a). Solution a) ba n1 f ( a ) 2 f (a ih ) f (b) 2n i 1 n2 a 1.22 10 6 b 0.61 10 6 6.73x 4.3025 10 7 f ( x) 2.316 10 11 x I Trapezoidal Rule-More Examples: Chemical Engineering ba n 0.61 10 6 1.22 10 6 2 0.30500 10 6 f x0 f 1.22 10 6 07.02.3 h 6.73 1.22 10 6 4.3025 10 7 11 f 1.22 10 3.0581 10 11 6 2.316 10 1.22 10 6 6 f x1 f 1.22 10 0.30500 10 f 0.91500 10 6 6 6.73 0.915 10 6 4.3025 10 7 11 f 0.91500 3.1089 10 11 6 2.316 10 0.915 10 6 f x 2 f x n f 0.61 10 6.73 0.61 10 6 4.3025 10 7 11 f 0.61 10 6 3.2104 10 11 6 2.316 10 0.61 10 0.61 10 6 1.22 10 6 21 6 6 I f 1 . 22 10 2 f a ih f 0.61 10 22 i 1 6 0.61 10 f 1.22 10 6 2 f 0.915 10 6 f 0.61 10 6 4 0.61 10 6 3.0581 1011 2 3.1089 1011 3.2104 1011 4 1.9042 10 5 s b) The exact value of the above integral is, 7 0.6110 6 6.73x 4.3025 10 dx T 6 11 1.2210 2.316 10 x 1.90140 10 5 s so the true error is Et True Value Approximate Value 1.90140 10 5 1.9042 10 5 282.12 c) The absolute relative true error, t , would then be True Error 100 True Value 282.12 100 1.9014 10 5 0.14838 % t 07.02.4 Chapter 07.02 Table 1 Values obtained using multiple-segment Trapezoidal rule for 7 0.6110 6 6.73x 4.3025 10 dx T 6 11 1.2210 2 . 316 10 x n Value Et 1 2 3 4 5 6 7 8 191190 190420 190260 190210 190180 190170 190160 190150 1056.2 282.12 127.31 72.017 46.216 32.142 23.636 18.107 t % 0.55549 0.14838 0.066956 0.037877 0.024307 0.016905 0.012431 0.0095231 a % --0.40711 0.081424 0.029079 0.013570 0.0074020 0.0044740 0.0029079
© Copyright 2026 Paperzz