The Pennsylvania State University The Graduate School College of Engineering EXAMINATION AND IMPROVEMENT OF THE SHEM ENERGY GROUP STRUCTURE FOR HTR AND DEEP BURN HTR DESIGN AND ANALYSIS A Dissertation in Nuclear Engineering by Tholakele Prisca Ngeleka © 2012 Tholakele Prisca Ngeleka Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2012 The dissertation of Tholakele Prisca Ngeleka was reviewed and approved* by the following: Kostadin N. Ivanov Distinguished Professor of Nuclear Engineering Dissertation Advisor Chair of Committee Maria Avramova Assistant Professor of Nuclear Engineering Samuel Levine Professor Emeritus of Nuclear Engineering Chimay J. Anumba Professor of Architectural Engineering Arthur Motta Chair of Nuclear Engineering Program *Signatures are on file in the Graduate School. ii Abstract The purpose of this study was to study and improve the SHEM energy group structures (281 and 361) and General Atomics-193 energy group structure utilizing the more systematic, consistent, and sophisticated energy group selection method referred to as contributon and point-wise crosssection driven (CPXSD) method. The SHEM-281 and -361 energy group structures were developed for LWR and General Atomics energy group structure was developed for the fast reactors. Pebble bed and Prismatic hexagonal block type fuel are used for cell analysis. DRAGON transport code was used for this task taking advantage of its capability to compute adjoint fluxes for reactor analysis. MCNP5 was used for generation of the reference solution selected due to its accuracy of neutron transport calculations. Comparisons with DRAGON calculations are presented. Pebble fuel element and Prismatic hexagonal block models were created for both codes. In the DRAGON code, analysis are conducted for the starting energy group structure by computing both forward and adjoint fluxes as well as the reaction rates and keffective. Then forward and adjoint fluxes were used in computing the importance function of the groups, and the groups with high importance function are subdivided accordingly. The whole energy group interval of interest was divided into fast, epithermal and thermal regions. Firstly, the improvement was done for fast region and a new library was created and applied in the fuel cell analysis until the selected target criteria’s were met (10 pcm relative deviation of ∆k / k and 1 percent deviation of reaction rate of interest). Then similar procedure was repeated for epithermal and thermal regions. The dominant parameters for each energy region were considered as required such as the fission cross section for fast region, absorption and scattering iii cross sections for epithermal region and absorption cross section for thermal region and keffective applied for all energy regions. Pebble fuel element and the Prismatic hexagonal block were analyzed for depletion based on the improved energy group structure SHEM_TPN-531. iv Table of Contents List of Figures ........................................................................................................................... ix List of Tables ............................................................................................................................ xi Acknowledgements ................................................................................................................ xvii Chapter 1 ....................................................................................................................................1 Introduction ................................................................................................................................1 1.1 Background .......................................................................................................................1 1.2 Motivation .........................................................................................................................5 1.3 Research Objectives ...........................................................................................................7 1.4 Scope of Research..............................................................................................................8 Chapter 2 ..................................................................................................................................10 Literature Review ......................................................................................................................10 2.1 Introduction .....................................................................................................................10 2.2 Nuclear Energy Group Structures.....................................................................................10 2.2.1 SHEM Energy Group Structure .................................................................................11 2.2.2 Ultra Fine Energy Group Structure ............................................................................16 2.2.3 Contributon and Point-Wise Cross Section Driven Method........................................17 2.2.4 HTR Energy Group Structure Selection Method ........................................................18 2.2.5 An Adaptive Energy Group Constructor ....................................................................19 Chapter 3 ..................................................................................................................................21 Nuclear Physics Theory.............................................................................................................21 v 3.1 Introduction .....................................................................................................................21 3.2 Transport Equation ..........................................................................................................21 3.2.1 Angular Discretization...............................................................................................25 3.2.2 Energy Discretization ................................................................................................28 3.3 Adjoint Transport Equation..............................................................................................30 3.4 Neutron Energy Regions ..................................................................................................31 3.4.1 Neutron Slowing Down .............................................................................................32 3.4.2 Resonance Absorption ...............................................................................................34 3.4.3 Neutron Thermalization .............................................................................................39 Chapter 4 ..................................................................................................................................40 Monte Carlo Reference Results .................................................................................................40 4.1 Introduction .....................................................................................................................40 4.2 MCNP5 Code Description ...............................................................................................40 4.3 HTR Fuel Specifications ..................................................................................................41 4.4 MCNP5 Results ...............................................................................................................46 Chapter 5 ..................................................................................................................................61 Multi-group Structure Analysis .................................................................................................61 5.1 Introduction .....................................................................................................................61 5.2 DRAGON Code Description ............................................................................................61 5.3 Cross Section Library Generation ....................................................................................67 5.4 Sensitivity Analysis Results .............................................................................................72 5.4.1 DRAGON Results used in the Sensitivity Study ........................................................72 5.4.2 Sensitivity Analysis Comparison with MCNP5 Results .............................................75 Chapter 6 ..................................................................................................................................82 Multi-group Energy Structure Improvement ..............................................................................82 vi 6.1 Introduction .....................................................................................................................82 6.2 Contributon and Point-Wise Cross Section Driven Method ..............................................83 6.3 Improvement of SHEM-281 Energy Group Structure.......................................................85 6.3.1 Fast Energy Region Improvement..............................................................................85 6.3.2 Epithermal Energy Region Improvement ...................................................................90 6.3.3 Thermal Energy Region Improvement .......................................................................93 6.3.4 Improved SHEM-281 Energy Group Structure for all Regions ..................................98 6.4 SHEM-361 Energy Group Structure Results .................................................................. 104 6.4.1 Fast Energy Region Improvement............................................................................ 105 6.4.2 Epithermal Energy Region Improvement ................................................................. 110 6.4.3 Thermal Energy Region Improvement ..................................................................... 114 6.4.4 Improved Energy Group Structure for all Regions (SHEM-361) .............................. 119 6.5 General Atomics-193 Energy Group Structure ............................................................... 125 6.5.1 Fast Energy Region Improvement............................................................................ 125 6.5.2 Epithermal Energy Region Improvement ................................................................. 130 6.5.3 Thermal Energy Region Improvement ..................................................................... 135 6.5.4 Improved GA-193 Energy Group Structure for all Regions...................................... 140 Chapter 7 ................................................................................................................................ 147 Comparative Analysis of ENDF Data Files ............................................................................. 147 7.1 Introduction ................................................................................................................... 147 7.2 Comparison Results ....................................................................................................... 147 7.3 Nuclear Data Advancements .......................................................................................... 153 Chapter 8 ................................................................................................................................ 156 Depletion Analysis .................................................................................................................. 156 8.1 Introduction ................................................................................................................... 156 8.2 Pebble Fuel Element ...................................................................................................... 158 8.3 Prismatic Hexagonal Block ............................................................................................ 163 vii Chapter 9 ................................................................................................................................ 169 Conclusions and Recommendations ........................................................................................ 169 9.1 Conclusions ................................................................................................................... 169 9.2 Recommendation ........................................................................................................... 174 References .............................................................................................................................. 176 Appendices ............................................................................................................................. 181 A1 MCNP5 Input Decks ...................................................................................................... 181 A1.1 Pebble Fuel Element ................................................................................................ 181 A1.2 Prismatic Hexagonal Block...................................................................................... 187 A2 DRAGON Input Decks .................................................................................................. 200 A2.1 Pebble Fuel Element ................................................................................................ 200 A2.2 Prismatic Hexagonal Block...................................................................................... 203 A3 Energy Group Structures ................................................................................................ 208 A3.1 SHEM-361 .............................................................................................................. 208 A3.2 SHEM-281 .............................................................................................................. 211 A3.3 GA-193 ................................................................................................................... 213 A3.4 SHEM_TPN-407 ..................................................................................................... 215 A3.5 SHEM_TPN-531 ..................................................................................................... 218 A3.6 GA_TPN-537 .......................................................................................................... 222 A4 Depletion Data Analysis ................................................................................................ 226 A4.1 Pebble Fuel Element Nuclides Concentrations ......................................................... 226 A4.2 Pebble Fuel Element Fission Products Concentrations ............................................. 227 A4.3 Prismatic Hexagonal Block Nuclides Concentrations ............................................... 229 A4.4 Prismatic Hexagonal Block Fission Products Concentrations ................................... 230 A4.5 Pebble Fuel Element Criticality Data per Burnup Step ............................................. 232 A4.6 Prismatic Hexagonal Block Criticality Data per Burnup Step................................... 232 viii List of Figures Figure 3.1: The position and direction characterizing a neutron .................................................22 Figure 3.2: Low energy resonances for U-238 ...........................................................................34 Figure 3.3: Low energy resonances for Th-232..........................................................................35 Figure 3.4: Flux depreciation under the resonance region ..........................................................36 Figure 3.5: Unresolved resonances for U-235 (t2.lanl.gov) ........................................................37 Figure 3.6: Unresolved resonances for U-238 (t2.lanl.gov) ........................................................37 Figure 4.1: MCNP5 Pebble model .............................................................................................48 Figure 4.2: MCNP5 Prismatic block model ...............................................................................49 Figure 4.3: Pebble keffective and source convergence ...............................................................54 Figure 4.4: Prismatic keffective and source convergence ...........................................................54 Figure 5.1: DRAGON flow chart [11] .......................................................................................66 Figure 5.2: Flow chart for DRAGON library production ...........................................................71 Figure 6.1: Importance function for fast energy region for 281, 309 1nd 323 groups. ................ 87 Figure 6.2: Importance function for epithermal energy region for 281 and 333 groups .............. 91 Figure 6.3: Importance function for thermal energy region for 281, 297 and 313 groups ........... 95 Figure 6.4: Importance function for fast energy region for 361,389 and 403 groups................. 106 Figure 6.5: Importance function for epithermal energy region for 361 and 455 groups ............ 111 Figure 6.6: Importance function for thermal energy region for 361, 393 and 395 groups ......... 115 Figure 6.7: Importance function for fast energy region for 193 and 227 groups ....................... 127 Figure 6.8: Importance function for epithermal energy region ................................................. 132 ix for 193, 235, 319, 355, 399 and 485 groups ............................................................................. 132 Figure 6.9: Importance function for thermal energy region for 193, 205 and 211 groups ......... 137 Figure 7.1: Neutron capture on natural carbon for ENDF/B-VII.1 ........................................... 149 and ENDF/B-VII.0 (Chadwick et al, 2011).............................................................................. 149 Figure 8.1: K-effective versus burnup ..................................................................................... 159 Figure 8.2: Neutron flux spectrum at the beginning of life ....................................................... 160 Figure 8.3: Neutron flux spectrum at the end of life ................................................................. 160 Figure 8.4: Nuclides concentration in atom/barm.cm ............................................................... 162 Figure 8.5: Fission products buildup in a Pebble fuel element ................................................. 163 Figure 8.6: Prismatic block K-effective versus burnup ............................................................ 164 Figure 8.7 Neutron flux spectrum at the beginning of life ........................................................ 164 Figure 8.8: Neutron flux spectrum at the end of life ................................................................. 165 Figure 8.9: Nuclides concentration in atom/barn.cm ................................................................ 167 Figure 8.10: Fission products buildup in a Prismatic hexagonal block ..................................... 168 x List of Tables Table 4.1: Coated Particle specifications (common for all types of fuel) ....................................43 Table 4.2: Material specification (common for all fuel types) ....................................................44 Table 4.3: Pebbles representative of PBMR fuel ........................................................................45 Table 4.4: Prismatic fuel lattice data ..........................................................................................46 Table 4.5: Pebble fuel element results calculated using ENDF/B-VII.0 .....................................50 Table 4.6: Pebble fuel element results calculated using ENDF/B-VI.8.......................................50 Table 4.7: Percent deviation of pebble FE results for ENDF/B-VII.0 and ENDF/B-VI.8 ........... 51 Table 4.8: Prismatic block results calculated using ENDF/B-VII.0 ............................................52 Table 4.9: Prismatic block results calculated using ENDF/B-VI.8 .............................................52 Table 4.10 Percent deviation of prismatic block results for ENDF/B-VII.0 and ENDF/B-VI.8 .. 53 Table 4.11: Pebble fuel element results calculated using ENDF/B-VII.0 ...................................55 Table 4.12: Pebble fuel element results calculated using ENDF/B-VI.8 .....................................56 Table 4.13: Percent deviation of pebble FE results for ENDF/B-VII.0 and ENDF/B-VI.8 ......... 56 Table 4.14: Prismatic block results calculated using ENDF/B-VII.0 ..........................................57 Table 4.15: Prismatic block results calculated using ENDF/B-VI.8 ...........................................57 Table 4.16 Percent deviation of prismatic block results for ENDF/B-VII.0 and ENDF/B-VI.8 .. 58 Table 4.17: ENDF/B-VII.0 and ENDF/B-VI.8 data files improvement comparisons. .................60 Table 5.1: Pebble reaction rates and criticality for SHEM-281 energy group structure ............... 72 Table 5.2: Prismatic block reaction rates and criticality for SHEM-281 energy group structure . 73 Table 5.3: Pebble reaction rates and criticality for SHEM-361 energy group structure ............... 73 xi Table 5.4: Prismatic block reaction rates and criticality for SHEM-361energy group structure .. 74 Table 5.5: Pebble reaction rates and criticality for GA-193 energy group structure ....................74 Table 5.6: Prismatic block reaction rates and criticality for GA-193 energy group structure ...... 75 Table 5.7: Criticality calculation comparisons for ENDF/B-VII.0..............................................76 Table 5.8: Criticality calculation comparisons for ENDF/B-VII.0..............................................76 Table 5.9: Pebble FE reaction rates calculation comparisons for ENDF/B-VII.0........................ 77 Table 5.10: Prismatic block reaction rates calculation comparisons for ENDF/B-VII.0.............. 78 Table 5.11: Pebble FE reaction rates calculation comparisons for ENDF/B-VII.0...................... 80 Table 5.12: Prismatic block reaction rates calculation comparisons for ENDF/B-VII.0.............. 81 Table 6.1: Fast group selected in the fast range..........................................................................86 Table 6.2: Eigen-value results for fast energy group structure improvement ..............................87 Table 6.4: Prismatic block results ..............................................................................................89 Table 6.5: Epithermal energy groups selected in the epithermal range .......................................90 Table 6.6: Eigen-value resulted for epithermal energy group structure improvement ................. 90 Table 6.7: Pebble FE results ......................................................................................................92 Table 6.8: Prismatic block results ..............................................................................................93 Table 6.9: Thermal groups selected in the thermal region ..........................................................94 Table 6.10: Eigen-values resulted for thermal energy group structure improvement .................. 94 Table 6.11: Pebble FE results ....................................................................................................96 Table 6.12: Prismatic block results ...........................................................................................97 Table 6.13: Energy group structure improved from SHEM-281 to 407 ......................................98 Table 6.14: Reaction for SHEM-281 and 407 energy group structures .......................................99 xii Table 6.15: Reaction for SHEM-281 and 407 energy group structures ..................................... 100 Table 6.16: Comparisons for SHEM_TPN-407 with SHEM-281 energy group structure for the pebble FE ................................................................................................................................ 101 Table 6.17: Comparisons for SHEM_TPN-407 with SHEM-281 energy group structure for the prismatic block ........................................................................................................................ 101 Table 6.18: MCNP5 results for the pebble ............................................................................... 102 Table 6.19: Comparisons of SHEM_TPN-407 energy group structure to MCNP5 results for the pebble FE ................................................................................................................................ 103 Table 6.20: MCNP5 results for the prismatic block ................................................................. 103 Table 6.21: Comparisons of SHEM_TPN-407 energy group structure to MCNP5 results for the prismatic block ........................................................................................................................ 104 Table 6.22: Fast group selected in the fast range ...................................................................... 105 Table 6.23: Eigen-value results for fast energy group structure improvement .......................... 107 Table 6.24: Pebble FE results .................................................................................................. 108 Table 6.25: Prismatic block results .......................................................................................... 109 Table 6.26: Epithermal energy groups selected in the epithermal range ................................... 110 Table 6.27: Eigen-value resulted for epithermal energy group structure improvement ............. 111 Table 6.28: Pebble FE results .................................................................................................. 112 Table 6.29: Prismatic block results .......................................................................................... 113 Table 6.30: Thermal groups selected in the thermal region ...................................................... 114 Table 6.31: Eigen-values resulted for thermal energy group structure improvement ................ 116 Table 6.32: Pebble FE results .................................................................................................. 117 Table 6.33: Prismatic block results .......................................................................................... 118 xiii Table 6.34: Energy group structure improved from SHEM-361 to SHEM_TPN-531 ............... 119 Table 6.35: Reaction rates for SHEM-361 and SHEM_TPN-531 energy group structures ....... 120 Table 6.36: Reaction rates for SHEM-361 and SHEM_TPN-531 energy group structures ....... 121 Table 6.37: Comparisons for SHEM_TPN-531 with SHEM-361 energy group structure for the pebble FE ................................................................................................................................ 122 Table 6.38: Comparisons for SHEM_TPN-531 with SHEM-361 energy group structure for the prismatic block ........................................................................................................................ 122 Table 6.39: MCNP5 results for the pebble FE ......................................................................... 123 Table 6.40: Comparisons of SHEM_TPN-531 energy group structures to MCNP5 results for the pebble FE ................................................................................................................................ 123 Table 6.41: MCNP5 results for the prismatic block ................................................................. 124 Table 6.42: Comparisons of SHEM_TPN-531 energy group structures to MCNP5 results for the pebble FE ................................................................................................................................ 124 Table 6.43: Fast group selected in the fast range ...................................................................... 126 Table 6.44: Eigen-values resulted for fast energy group structure improvement ....................... 126 Table 6.45: Reaction rates for GA-193 and 227 energy group structures.................................. 128 Table 6.46: Reaction rates for GA-193 and 227 energy group structures.................................. 129 Table 6.47: Epithermal group selected in the epithermal range ................................................ 131 Table 6.48: Eigen-values resulted for epithermal energy group structure improvement ............ 131 Table 6.49: Reaction rates for GA-193, 235, 319, 355, 399, and 485 energy group structures .. 133 Table 6.50: Reaction rates for GA-193, 235, 319, 355, 399, 485 energy group structures ........ 134 Table 6.51: Thermal groups selected in the thermal region ...................................................... 135 Table 6.52: Eigen-values resulted for thermal energy group improvement ............................... 136 xiv Table 6.53: Pebble FE results .................................................................................................. 138 Table 6.54: Prismatic block results .......................................................................................... 139 Table 6.55: Energy group structure improved from GA-193 to GA_TPN-537 ......................... 140 Table 6.56: Reaction rates for GA-193 and GA_TPN-537 energy group structures.................. 141 Table 6.57: Reaction rates for GA-193 and GA_TPN-537 energy group structures.................. 142 Table 6.58: Comparisons for 537 with GA-193 energy group structure for the pebble FE. ....... 143 Table 6.59: Comparisons for GA_TPN-537 with GA-193 energy group structure for the prismatic block. ....................................................................................................................... 143 Table 6.60: MCNP5 results for the pebble FE ......................................................................... 144 Table 6.61: Comparisons of GA_TPN-537 energy group structures to MCNP5 results for the pebble FE ................................................................................................................................ 145 Table 6.62: MCNP5 results for the prismatic block. ................................................................ 145 Table 6.63: Comparisons of GA_TPN-537 energy group structures to MCNP5 results for the prismatic block. ....................................................................................................................... 146 Table 7.1: Pebble FE results using ENDF/B-VII.0 and ENDF.B-VII.1 comparisons ................ 150 Table 7.2: END/B-VII.0 and ENDF/B-VII.1 % deviations for the pebble reaction rates and keffective in pcm ..................................................................................................................... 151 Table 7.3: Prismatic block results using ENDF/B-VII.0 and ENDF.B-VII.1 comparisons........ 152 Table 7.4: END/B-VII.0 and ENDF/B-VII.1 % deviation for the prismatic block reaction rates and k-effective in pcm ........................................................................................................... 153 Table 7.5: ENDF/B-VII.1, ENDF/B-VII.0 and ENDF/B-VI.8 data file advancements ............. 155 Table 8.1: Nuclides concentration in atom/barm.cm ................................................................ 161 Table 8.2: Fission products in atom/barn.cm ........................................................................... 162 Table 8.3: Nuclides concentration in atom/barn.cm ................................................................. 166 xv Table 8.4: Fission products in atom/barn.cm ........................................................................... 168 Table 9.1: Pebble fuel element deviations ................................................................................ 170 Table 9.2: Prismatic hexagonal block deviations ..................................................................... 171 xvi Acknowledgements I give great honor to God Almighty for giving me the strength, confidence and patience for undertaking the study. Thank you for providing a great team to work with and all opportunities accompanied the study. A conducive environment and all the campus community and friendly student organizations, worth mentioning is the International Christian Fellowship. My sincere gratitude goes to Dr Kostadin N. Ivanov for his supervision and assistance throughout the study. I thank him for giving me this opportunity to be part of his research group, Fuel Dynamics and Management Research Group. I am thankful to Dr Samuel Levine, for his contribution throughout the study. My special thanks to the Department of Mechanical and Nuclear Engineering of the Pennsylvania State University, and the members of the Reactor Dynamics and Fuel Management Research Group for the assistance and support. I greatly appreciate help rendered by the Idaho National Laboratory (INL) for funding this study. Thank you to Abderrafi Ougouag, Hans Gougar for being part of this work. xvii Not forgetting the technical support obtained from Alan Hebert and Vincent Descotes of the Ecole Polytechnique de Montreal, Michael Pope of INL, Volkan Seker of the University of Michigan. Thanking parents, family and friends for their support, encouragements and lot of prayers. xviii Chapter 1 Introduction 1.1 Background Nuclear energy is presently contributing around 14 % of the world’s electric energy needs and produces vast amount of energy from a small amount of fuel. Its advantages lie on the fact that it does not have green gas emissions (CO 2 , SO 2 and NO 2 ) since it is a major problem with the current fossil fuel power generation industries. Since the advent of nuclear reactor industry, many power reactors have been designed and operated such as Light water reactors (Pressurized and Boiling water reactors), Heavy water reactors (CANDU) and Magnox gas cooled reactor (named after its cladding material magnesium non-oxidizing alloy) [34]. Gas cooled type reactors were also designed and operated such as German Arbeitsgemeinschaft Versuchs Reaktor (AVR) for testing of fuel and other reactor components; however, it was shut down after high temperature fuel instabilities. A demonstration plant (Peach Bottom) and the fuel development plants, the DRAGON reactors were built in the United States of America (USA) but were shut down following technical challenges. Therefore, gas cooled nuclear reactor research and development was not performed for quite some time. 1 In spite of the challenges that gas cooled reactors encountered, the inherent safety features and high outlet temperatures have caused recent interest throughout the world for initiating research to improve their design. They are currently among the proposed generation IV nuclear reactors (NGNP) that are under development, namely gas cooled fast reactor (GFR), very high temperature reactor (VHTR), all grouped under high temperature reactors (HTRs). These reactors promise to provide a secure nuclear system using materials with improved management of nuclear waste, effective utilization of fuel, economically sound characteristics, and a well developed safety performance. Their high temperature outlet can be utilized in other processes such as the hydrogen production and thus make these reactors more useful [9]. There is a need to improve the accuracy of HTR analysis to make HTRs more economically viable. Improvement can be made by reducing the computer analysis uncertainties and using more sophisticated methods. Due to recent interests on these concepts, research facilities were constructed. At this stage, the research (experimental) facilities in operation are a 10 megawatt (MW) high temperature reactor (HTR-10), a high temperature engineering test reactor (HTTR) and the ASTRA critical facility [33] to obtain detailed understanding of HTRs. All these facilities use helium gas as a coolant and are graphite moderated with high temperature outlet of approximately 850°C to 950°C. HTR-10 is a pebble bed type reactor that has been in operation at the Institute of Nuclear Energy in China (INET) since December 2002. HTTR is a 30 MW thermal power reactor using hexagonal assemblies (pin in block) type of fuel, operated in Oarai research reactor of Japan Atomic Research Institute. 2 Whereas ASTRA is a Russian zero power critical facility at the Kurchatov Institute built for the investigation of neutronics of high temperature reactors such as the GT-MHR reactor under development at General Atomics in USA, [30]. Major developments are now focusing on General Atomics design of the GT-MHR and on the VHTR under development at the Idaho National Laboratory (INL). Both GT-MHR and VHTR use a prismatic block fuel type. South Africa had major contributions into the HTR research and developments through the Pebble Bed Modular Reactor that was designed to use pebbles, an extension of the German AVR. The similarities of the Pebble fuel element and the prismatic hexagonal block fuel types are that they are both embedded with tri-structural isotopic coated particles. These coated particles consists of a kernel (UO 2 ), low density carbon (buffer layer), pyrolytic carbon (inner and outer layers) and silicon carbide. Consequently, these coated particles make an HTR design to be a double heterogeneous system, firstly between the particles in a graphite matrix and then between the fuel element and other structural materials like moderator and a reflector. This results in a significant change in the physics of neutron slowing down, absorption and scattering processes in the high temperature reactors as compared to that in the light water reactors. Hence, advanced ways of treating double heterogeneity in graphite moderators and neutron behavior in these reactors is of utmost importance. 3 One of the tasks in meeting the research objectives of the development program is to obtain excellent fine energy group structures that allow accurate calculation of neutron cross sections for reactor analysis. Neutron cross section is the probability that the various types of nuclear reactions (fission, scattering and absorption) will occur. The most important dependent parameters during the reactions for the equilibrium neutron conditions are energy, direction, and space position. Neutron group cross sections play a very important role in reactor core analysis and design calculations [8]. Neutron group cross sections are generated from continuous cross section data files that have been collected for the past decades by experimental measurements and theoretical calculations (in the United States of America). These data files contain all of various types of neutron cross sections, e.g. scattering, absorption etc. for all the important nuclides resulting in a vast volume of data stored in standardized format in the Evaluated Nuclear Data File (ENDF). The ENDF data files contain both neutron and photon cross sections. Its latest version is ENDF/B, which contains the complete and evaluated data ready for use by the nuclear designers and nuclear analysts. Some nuclear data files also exist in other countries such as Evaluated Nuclear Data Library of the Lawrence Livermore National Laboratory (ENDL), United Kingdom Nuclear Data Library (UKNDL), Japanese Evaluated Nuclear Data Library (JENDL), Karlsruhe Nuclear Data File (KEDAK), Russian Evaluated Nuclear Data File (BROND) and Joint Evaluated Fission File of NEA Countries (JEFF), etc. 4 1.2 Motivation To advance the development of the accurate analysis of the HTR and ongoing relevant research, INL, in collaboration with Pennsylvania State University (PSU), have been engaged on sensitivity studies of energy group structures for the analysis of HTRs [10]. Their previous study addressed the broad energy group structure used in analyzing graphite moderated high temperature gas cooled reactors. It is likely that one of the largest sources of error encountered in that study [10] stems from the method through which nodal leakage was incorporated into the spectrum calculation. In these analysis, tables of neutron cross sections were generated for a few selected values of fast and thermal buckling. Neutron cross sections for the core simulation were interpolated from these tables using two group internodal currents, omitting much of the information contained in the fine group energy spectrum. Furthermore, the fine energy group structure hardwired within INL’s COMBINE-6 code that was used to generate broad group constants is fixed for light water reactors and has not been optimized for HTR analysis. If the fine energy group structure is not sufficiently refined in energy regions of importance, such a group structure may prevent the flexibility needed for more accurate cell level energy collapsing. COMBINE-6 has also some limitations that must be addressed explicitly in their own right. As a result, the examination of a new fine energy group structure that is optimized for the compositions expected in the (Next Generation Nuclear Plant) NGNP was necessary. Hence the 5 goal was to study the currently available energy group structures that are in use like SHEM energy group structures of Santamarina and Hfaiedh [17] that were developed for LWRs as well as General Atomics energy group structure, which was developed for the fast reactors. The SHEM energy group structure has been optimized for LWR applications, addressing their fuel components as well as the structural materials expected to be present in them. It was verified to be accurate for both uranium and mixed oxide fuels in LWRs. In addition, it does address actinides extensively in that their resonant reactions are well covered by the structure. This may imply that the SHEM energy group structure might be applicable to NGNP and deep burn (DB) applications without further modifications. However, it is uncertain whether it addresses all the actinides that arise in the case of very high burnup applications, such as those contemplated for NGNP and DB-NGNP. Furthermore, the SHEM energy group structure does not give any particular attention to graphite and its slowing down properties. Although the graphite neutron cross sections appear very smooth (with no resonance structures) at all energies below about 2 MeV, the absence of special consideration of graphite may imply an inadequate coverage of the NGNP and deep burn physical situations. Therefore it was necessary to examine this potential shortcoming of the SHEM energy group structure, and be modified to cover all NGNP and deep burn related physical phenomena. General Atomics energy group structure developed for fast energy reactors has been repeatedly used for the analysis of HTRs without consideration of the effects that may be caused by the 6 underlying purpose of its development. At this point there are no details on the nuclear reactions, isotopes or any materials addressed for this energy group structure. Pelloni et al. [29] noted that the GA-193 energy group structure has 92 fast energy groups below 14.92 MeV that are equally spaced. GA-193 energy group structure is incorporated in MICROX-2 code system that creates the broad group cross sections with resonance interference and self-shielding from fine group and point-wise cross section. Therefore, it is important to give a thorough investigation on its performance towards the thermal reactor physical phenomena. 1.3 Research Objectives The purpose of this PhD research was to study and improve the SHEM energy group structures (281 and 361) as well as GA-193 energy group structure utilizing the more systematic, consistent, and sophisticated energy group selection method referred to as contributon and pointwise cross-section driven (CPXSD) [19], a method developed by PSU. The sensitivity analysis on these energy group structures were conducted for the pebble fuel element and prismatic hexagonal block based on PBR and VHTR respectively. Reference solution was developed with the MCNP5 code, where three energy boundaries were selected for three regions that correspond to the SHEM-281, SHEM-361 and GA-193 energy group structures. This study was based on ENDF/B-VII.0 and ENDF/B-VI.8 nuclear data libraries. Then the energy group structures were improved using the CPXSD method mentioned above. The best performing energy group structure was selected for the depletion calculations on both pebble FE and Prismatic hexagonal block. 7 1.4 Scope of Research The outline is as follows: Chapter 1 presents an overview of the background, motivation of the study and the description of the research objectives, as well as the research scope. Literature review is presented in chapter 2. The currently available energy group structures and methods used during their development are summarized. In chapter 3, nuclear physics theory and neutron transport equation theory is presented. Included is the Boltzmann transport equation accompanied by methods that can be used in solving it. Basic information is provided on neutron slowing down, resonance absorption and thermalization processes. Chapter 4 presents the description of the continuous energy Monte Carlo Neutron Particle Transport (MCNP) code used to develop a reference solution for this study. A detailed description of used HTR fuel specifications is given. Then, the results (reference solution) along with the sensitivity analysis for the evaluated data files (ENDF/B-VI.8 and ENDF/B-VII.0) are provided. A description of DRAGON, a multi-group deterministic transport code used for the energy group structure improvement and burnup calculations is given in Chapter 5. Methods utilized for cross section generation is also given in details. Multi-group energy structure sensitivity analysis are shown. 8 The energy group structure improvement for SHEM-281, SHEM-361 and GA-193 are shown in chapter 6. Each energy group structure was improved for three different energy regions (fast, epithermal and thermal) separately. These were then compared to the reference solution (MCNP5 results in chapter 4). Chapter 7 presents the sensitivity analysis for the evaluated data files (ENDF/B-VII.1 and NDF/B-VII.0) that were conducted in DRAGON for selected energy group structures. The differences in both evaluated data files are also discussed. Depletion analysis and the results are discussed in chapter 8. Conclusions drawn from the study and recommendations made based on findings are given in chapter 9. 9 Chapter 2 Literature Review 2.1 Introduction This section gives an overview of the work conducted in developing energy group structures and the method used by other researchers [1] [10] [17] [18] [24] [25]. It also highlights the considerations made during those developments to account for important phenomena such as self-shielding, resonance absorption and overlapping and other nuclear reactor physics assumptions made. 2.2 Nuclear Energy Group Structures The distribution of neutron production, slowing down and interaction in a core of a reactor depends on the neutron energy. At high energy, neutron energy dependence is dominated by fission spectrum. At intermediate energies, it is dominated by both neutron slowing down and resonance absorption. While at the low energies it is dominated by thermalization process [8]. Since neutronic calculations form the basis of the research and development of the nuclear industry, energy group structures have been studied to reduce the errors in these calculations. However, physics related challenges such as self-shielding are the major concerns and many researchers are involved in ongoing improvements of the currently used energy group structures to eliminate all the errors experienced. These energy group structures are used to generate 10 neutron cross section libraries utilized by different transport and diffusion codes for reactor simulations, analysis and design. Some codes e.g. Monte Carlo utilizes continuous energies and some utilize multi-group energies e.g. DRAGON, COMBINE etc. Due to the current advances in both computing and programming languages it has became feasible to develop and use finer energy group structures for improved core calculations and simulations [18], so finer energy group structures has been developed and in some places developments are still in progress to reduce the errors in reactor calculations. 2.2.1 SHEM Energy Group Structure One of the latest multi-group energy structure developed by Hfaiedh and Santamarina is the optimized SHEM energy group structure that promised to eliminate simplified self-shielding calculations of thermal resonances [17]. SHEM energy group structure determination was meant to correct the setback that was encountered in the XMAS-172 neutron energy group structure used and developed in CEA-UKEA. The intention was also to elude the use of self-shielding model in U-238 first large resonances and also in those for LWR absorbers, such as Silver (Ag), Indium (In), Cadmium (Cd) and Hafnium (Hf) claiming that the assumptions involved in XMAS were to crude. Reason for elimination of self-shielding model was due to their hypotheses that were made: (i) Pure slowing down, (ii) Asymptotic flux and fine structure uncoupling ( Φ ≅ ψ .ϕ ) (iii) Wide resonance assumption, 11 P ij (inaccurate probability on a neutron interaction) from interface current method for (iv) Dancoff calculations Work conducted by Mosca et al, [26] for fast reactors also showed similar problems related to the self-shielding model approximations as applied in APPOLO-2. SHEM energy group structure’s expectations were to account for the mutual-shielding effects (resonance overlapping). The isotopes and resonances that were accounted for included mostly actinides, fission products and absorbers, moderators/coolants and the structural materials. The resonances of the isotopes were considered up to 23 eV . The actinides involved are U-234, U-235, U-236, U-238, Np-237, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Am-241, Am-243, Cm-243 and Cm244 whom resonances possibly appear at different energies within the range of interest. Whereas, fission product resonances involved were for Xe-135, Sm-149, Rh-103, Xe-131, Cs-133, Pm147, Sm-152, Tc-99, Nd-145, Eu-153, Mo-95, Eu-155 and Eu-154. Absorber isotopes considered were Ag-107, Ag-109, Cd-113, In-115, Hf-176, Hf-177, Hf-178 and Hf-179, and the burnable poisons were Gd-155, Gd-157 and Er-167. For structural materials and coolants, the isotopes considered were Mn-55, Ni-58, Fe-56, Al-27, Na-23 and O-16. The multi-group resonance reaction rate (Equation 2.1) was compared to point-wise mesh reaction rate (Equation 2.2), which was taken as a reference. R mg = ∑ σ gφ g 2.1 g R ref = umax ∫ duσ ( u ) φ ( u ) 2.2 umin 12 E u = log 0 E σg = 2.3 1 duσ ( u ) ∆u ∫g 2.4 Where: σ ( u ) - is the cross section at lethargy u φ ( u ) - is the neutron flux at lethargy u σ g - is the group g cross section g - present a group number with flat slowing down flux assumption φ g - is the group g flux Resonant absorption approximation and fine structure is presented in equation 2.5 where subscript c and m represents fuel and moderator respectively. Vc Rcϕc Pcc + Vm Rmϕm Pmc = Vc Rcϕc 2.5 Then a reciprocity theorem was applied, which details are found in Nasr and Roushdy [27]. The flux was simplified to be ϕ ≅ ψ .φ , where ψ = Rmϕm - is the macroscopic slowing down flux. The ∑m discretization technique of energy group structure was used with small group numbers consequently reaching the required target of accuracy (about 1%) on reaction rate. Point-wise 13 resonances were calculated using Breit and Wigner multilevel approximation while the flux was calculated based on heavy nuclide slowing down models such as wide resonance (WR) and narrow resonance (NR) models. The NR model was used for high energy resonances (actinides) and it assumes that the neutrons absorbed in the resonance have been scattered at energies higher than that of the resonance. WR model was also used for low energy resonances with an assumption that the resonance is very wide compared to the energy change of the scattered nuclide. Though wide resonance assumptions has reported to cause problems for self-shielding model, in this work it was used on resonant nuclide slowing down operator shown to give accurate results. An algorithm was developed for the groups inside the resonance consisting of discretization of energy variable for equal distribution of reaction rate errors between energy groups of the resonance. The central peak group was determined and the central group boundaries fixed as the nearest point-wise energy values around the peak energy value. Then the group was extended from both ends of the resonance resulting in an increase in a group error. The calculation was stopped when the total group error reached the target accuracy, which was fixed in the external iteration. Group widths under the resonance were selected as wide as possible without violating the established error. The findings concluded that SHEM energy group structure (281 groups) has proven its accuracy in calculating the resonance absorption up to 23 eV without using self-shielding approximation method and also it managed to account for actinides, fission products and absorbers. It also 14 contributed in solving the mutual-shielding effects between resonant isotopes. The SHEM energy group structure reproduced the structural material neutron cross sections and accounted for U238 threshold reactions, oxygen and sodium coolant resonances, which is well suited for fast spectra calculations (e.g. LMFBR). The overall contribution of the SHEM energy group structure optimization task was the introduction of an innovative energy scheme that will eliminate selfshielding model. Its contribution to calculation of reaction rates more accurately will be advantageous for the nuclear industry, because it allows better design, safety, and control of the reactor. The SHEM energy group structure was later refined from 281 to 361 energy groups by Hebert and Santamarina, [13] by expanding the number of groups in the ranges between 22.5 eV and 11.4 keV using subgroup projection method (SPM). This took advantage of the computing resource of DRAGON code version 4.02. This work increased the number of groups in the above mentioned energy ranges from 38 to 118 groups. The idea was to remove the slowing down correlation model used before, and it is assumed that below 22.5 eV the effects were taken care of in the previous optimization work and above 11.4 keV the correlation effects vanishes. SPM is a subgroup approach based on the CALENDF type probability tables. Detailed description of this method is published by Hebert and Santamarina [13]. 15 2.2.2 Ultra Fine Energy Group Structure Hurai and Ouislomen, 2008 [18] also developed an optimized ultra fine energy group structure with the intention of avoiding the entire self-shielding problem, and also expected to eliminate the errors that are caused by resonance interference and overlapping effects. This broadens their applications to different fuel assemblies. Major concern was the simplifying approximations that are used in PARAGON and WIMS for self-shielding treatment. The ultra fine energy group structure has 6064 groups and it was developed based on SHEM energy group structure as discussed above. It is also developed for light water reactors. The group boundaries of the SHEM energy group structure were refined keeping in mind the importance of the location and the practical widths of the resonances. A certain number of iterations were performed before attaining the final ultra fine energy group structure. This work used MCNP5 for comparisons of the group boundary selection method. The equation below presents the iteration method used, wherein the cell iterates until equation 2.6 is satisfied. Max σ Pg − σ Mg ≤ ε , ∀ g , ∀σ Mg ≥ ξ 2.6 Where ε was set to 3%, ξ was chosen to be equal to 10 barns, σ Pg is the multi-group cross section, σ Mg is the Monte Carlo derived cross sections from the reaction rates and flux calculations and ∀ represents all groups. Then, the resulting broad group distribution for their proposed ultra fine energy group structure was: fast energy range is 20 MeV to 9.118 keV (about 64 groups), resonance energy range is 9.118 keV to 4.0 eV (5877 groups) and the thermal energy 16 range is 4.0 eV to 0.0 eV (123 groups). The proposed energy group structure was then tested and compared to MCNP calculations where the results showed deviations in an acceptable range resulting in confidence that their use will lead to the reduction of neutronic calculation errors. 2.2.3 Contributon and Point-Wise Cross Section Driven Method Alpan and Haghighat, 2003 [1] developed a method for the selection of energy group structure based on contributon theory (William, 1991) [35]. Contributon and Point-wise Cross Section Driven (CPXSD) method focus on the self-shielding problem as well. CPXSD method refined the selected initial arbitrary group structure by using the importance of energy groups in the initial energy group structure and point-wise cross section of an important isotope/material in the problem. Cross sections were processed for the initial energy group structures using NJOY. Then self-shielding calculations were performed. Adjoint and forward fluxes were calculated and further used in the calculation of the importance function. Where maximum importance is identified, the relevant group structures are refined considering the point-wise cross section of the important material. If there is a resonance structure, resonance and non-resonance parts are determined and their areas are computed. Those resonances with larger areas are enclosed in a sub-group and the remaining resonances and non-resonances are combined about the size of the largest resonance area. Thus sub-groups are placed within the important groups. If that is not the case, the group is partitioned evenly by the user’s judgement. 17 The number of subdivisions in other groups is set based on their importance compared to the maximum importance. The iteration is performed until the subdivisions set for that group are closely matched. Then a new multi-group energy structure is constructed and ready for use in generation of the new library. 2.2.4 HTR Energy Group Structure Selection Method For HTR analysis, Mkhabela et al, 2007 [24] developed a neutron energy group structure selection method based on systematic survey of the group structures that can predict the modeling objectives such as effective multiplication factor, reaction rates, and flux distributions. COMBINE6 code was used for cross section generation, Nodal Expansion Method (NEM) for core calculations and Monte Carlo Neutron Particle (MCNP) code for the reference solution. The objectives produced by the group structure were compared to the group structure of the reference solution. Later, Han, 2008 continued with similar work in determining the best broad energy group structures consisting of 5, 6, 7, 8 or 9 groups. The starting group structure was COMBINE6 fine group structure developed at INL. It consisted of 166 energy groups. Mphahlele, 2008 [25] also conducted a broad group structure selection for PBR analysis. The starting energy group structure was a recommended best energy group structures by Han, 2008. It was improved by adding the suitable group boundaries for point-wise resonance calculations using MICROX-2 code. 18 The new group structure boundaries were examined based on the boundaries of General Atomics-193 energy group structure. K-effective for the pebble bed reactor was used as the parameter for these tests and where the minimum deviation between k-effective was observed, those boundaries were selected as good boundaries. The k-effective for the reference solution was calculated using Monte Carlo methods. This selection was done for three different temperatures (800K, 1000K and 1200K). The best boundaries from all three temperatures were combined into one energy group structure. Also the effectiveness of the new energy group structure was tested. The iterative method was repeated until 8-group, 10-group and 13-group structures were obtained. 2.2.5 An Adaptive Energy Group Constructor Mosca et al, 2011 [26] developed another method to construct a multi-group energy structure referred to as an adaptive energy mesh constructor (AEMC) and integrated it into nuclear data processing project GALILEE. AEMC is used to optimize the energy group over infinite homogeneous medium neutron problems characterizing a given reactor, in this case a fast reactor. Parameters that were considered are medium temperature, isotopic concentration, cross section and slowing down of neutrons. 19 The optimization was carried out in two steps, namely, the investigation of the energy group structure that have results close to the Monte Carlo solutions used as references and followed by the selection of the appropriate self-shielding model. However, the use of a shielding model later revealed that it underestimates the U-238 fission production rates as it was pointed out by Hfaiedh and Santamarina, 2005 [17]. Nonetheless, three self-shielding models were used, that is sub-group self-shielding, LivolantJeanpierre approach and the extended Livolant-Jeanpierre approach. Then, the fine energy group structure was collapsed into broad energy group structure. AEMC tool searches for the optimal boundaries with minimum errors during multi-group transport calculations for a specified problem using swarm algorithm. At the end, the optimization technique was tested with heterogeneous medium for accuracy where the neutron flux is known to be anisotropic. Details on the technique used and the outcomes for using different shielding models are published on Mosca et al, 2011 [26]. 20 Chapter 3 Nuclear Physics Theory 3.1 Introduction This chapter gives a brief summary of forward and adjoint transport equation used to solve neutron problems. Other neutron physics concepts such as neutron slowing down, resonance absorption, and thermalization process are highlighted since they form part of the problem statement of this work. 3.2 Transport Equation The rate at which nuclear reactions occur is determined by the neutron flux distribution and the corresponding material distribution in the reactor. Neutron’s behavior and population as occurs in the reaction rates is the key element in the reactor and chain reaction control. Neutron distribution has been studied by investigating their motion as they stream inside the reactor [8]. Diffusion theory has been used to analyze nuclear reactors using neutron multi-group theory. However, this technique has limitations because it is not valid between regions of different compositions. Therefore, the Boltzmann transport equation adopted from gas dynamics (equation 3.1) is used to study neutrons transport in the reactors in developing the neutron energy group spectrum. 21 ∂n ˆ ⋅∇n r , Ω ˆ , E , t +ν ∑ n r , Ω ˆ , E, t = + νΩ t ∂t ( ) ( ) ∫ π d Ωˆ ' ∫ 4 where: ∞ 0 ( ) ( ) ( ˆ '→Ω ˆ n r , E ', Ω ˆ ', t + s r , E , Ω ˆ ,t d E'ν ' ∑ s E ' → E , Ω ) 3.1 ∂n - is the rate of change of neutrons of neutron density ∂t ˆ = iΩ ˆ + jΩ ˆ + kΩ ˆ = angular distribution of neutrons. The omega in equation 3.1 is given by Ω x y z ˆ =sin θ sin θ and Ω ˆ =sin θ cos θ , Ω ˆ =cos θ as shown in Figure 3.1 where Ω y z x Z ΩZ ΩX θ Ω ΩY Y φ X Figure 3.1: The position and direction characterizing a neutron 22 Streaming term ( ) ˆ ⋅∇n r , Ω ˆ , E , t This term defines the flow of neutrons in a volume d 3 r about r at energies νΩ ˆ about Ω̂ . Angular flux is presented by between E and E + dE traveling in a direction dΩ ( ) ˆ and Ω̂ is the unit vector that gives a direction of a particle. nv r , E , Ω Collision term ( ) ˆ , E , t - is the rate at which neutron suffer collisions at point r in a volume d 3 r at ν ∑t n r , Ω ˆ about Ω̂ . The collision types energies between E and E + dE traveling in a direction dΩ involved are elastic, fission, inelastic scattering, and absorption. ∑t ( r , E ) , is the total macroscopic cross section at point r and energy E giving the probability that a neutron will interact per unit length. Scattering term ∫ π d Ωˆ ' ∫ 4 ∞ 0 ( ) ( ˆ '→Ω ˆ n r , E ', Ω ˆ ', t dE 'ν ' ∑ s E ' → E , Ω ) is the neutron gain at time t due to scattering in a volume d 3 r about r at energies between E ' and E '+ dE to energies between E and E + dE traveling in direction Ω '+ d Ω ' and scattered in direction Ω + d Ω . 23 Source term ^ s r , E , Ω, t This is the source of neutrons in a volume d 3 r . Rate of neutron are produced at position r having energy E , moving in direction Ω at time t . The analysis in this program deal with a reactor in equilibrium where ∂n = 0 . Therefore the transport equation becomes: ∂t ˆ ⋅∇n ( r , Ω, E ) + v ∑ n ( r , Ω, E ) = vΩ t ( ) ( ) ( ∞ ∫ d Ω '∫ d Ev' ' ∑ s E ' → E, Ωˆ ' → Ωˆ n r , E, Ωˆ + s r , E, Ωˆ 4π 0 ) 3.2 It is complicated to solve the transport equation due to space, energy and angular dependence of neutrons. There are methods to simplify transport calculations to obtain solutions. In this program the numerical discretization methods are applied to solve the transport equation. Here, ( ) ˆ is expanded as explained in the next section. φ r, E, Ω 24 3.2.1 Angular Discretization The angular discretization method is most appropriate for obtaining solution in transport theory codes where the energy spectrum is initially represented by many energy groups. PN method uses a flux expansion into a series of Ω̂ (angle), which results in an accurate flux presentation at position r and energy E in direction Ω . The reaction rate accuracy then depends on the accuracy of the cross section as given in ENDF data files. Discrete Ordinates method results in S N equations. The Discrete Ordinates divides the 4π solid angle into segments ∆Ω n and approximates each segment by a linear expression or weights defined by its value, w within the segment. The value of n determines the order of the approximation. The S 2 approximation is better than diffusion theory and the S 4 approximation is adequate for many practical purposes. Normally, the ∆Ω n is expressed as units of 4π or that = φ (r , E ) N = w φ (r , E), n ∑ n =1 n m ∑w n = 1 and 1, N The transport equation reduces to: ( ) ˆ ⋅∇φ r, Ω ˆ , E + ∑ φ ( r, E ) = Ω n t n ( ) ∑ wn '∫ dE ' ∑ s E '− E , Ωˆ 'n → Ωˆ n φn ( r , E ') + sn ( r , E ) N n =1 25 3.3 Thus a treatment of the neutron directional dependence is summarized. Equation 3.3 is solved to determine neutron flux in the S N method where: φ= (r , E ) ( ) ˆ dΩ ˆ ,Ω ∫ φ r , E= 4π ∑ w φ (r , E) N n =1 3.4 m m ( ) ˆ in terms of spherical harmonics: The first step in the PN method is to expand φ r , E , Ω ( N +l l=0 m= −l ) ∑ ∑ϕ ˆ = φ r, E, Ω ( ) ˆ where: Ylm Ω lm ( r.E ) Ylm ( Ωˆ ) 3.5 represents the spherical harmonics. Here φ ( r , E ) = ∫π d ΩY ( Ωˆ ) φ ( r , E, Ω ) . lm 4 Considering a one dimensional equation to simplify a problem, r = z , x= y= 0 ˆ =∑ 2l + 1P ( µ ) Ylm Ω l l = 0 4π ( ) N where µ = Cosθ Pl ( µ ) is a Legendre polynomial 26 In one dimension, the flux expands into: 2l + 1 φn ( z , E ) Pl ( µ ) l = 0 4π N φ ( z, E , µ ) = ∑ 3.6 Pl ( µ ) = Legendre polynomial The general form of the equation becomes: ( l + 1) ∂ϕl +1 + l ∂ϕl −1 + ∑ ϕ z, E = ) t l ( ( 2l + 1) ∂z ( 2l + 1) ∂z 3.7 ∞ ∫ dE ' ∑ ( E ' → E ) ϕ ( z, E ) + s ( z, µ , E ) sl l 0 +1 P du ∫ P= l m 1= if l m −1 = 0 if l ≠ m The angular components in the PN expansion of the differential scattering cross section is +1 ∑ sl ( E ' → = E ) 2π ∫ d µ0 ∑ s ( E ' → E , µ0 ) Pl ( µ0 ) −1 ˆ '⋅ Ω ˆ µ0 = Ω 27 3.8 l ( n − m )!P m µ ' P m µ cos m φ '− φ Here Pl ( µ0 ) = Pl ( µ ') Pl ( µ ) + 2∑ ) l ( ) ( ) l ( m =1 ( n + m ) ! 3.9 where µ0 = cos θ 0 , µ = cos θ and µ ' = cos θ ' . The orthorgonality of the Legendre equations eliminates the last term in the above equation. 3.2.2 Energy Discretization Both the spherical harmonic formulation ( PN ) of the transport equation as given in equation 3.7 and discrete ordinates ( S N ) formulation use the multi-group discretization of the energy variable E . The discretization of energy in equation 3.7 will provide adequate results, particularly for the higher PN equations and S N equations. Of importance in solving the multi-group equations are the different reaction rates that occur over the overall energy interval from 10−3 eV to 107 eV in a nuclear reactor. The neutron spectrum is quite different in each of the three broad energy ranges, fast, epithermal and thermal. In the fast region, the energy spectrum is dominated by the fission, in the epithermal region by the slowing down and resonance absorption, and in the thermal region by thermalization. The solutions to PN and S N equations are handled in energy groups of three broad regions. The energy spectrum is divided into many energy groups, maybe up to several hundred groups, forming a large matrix. In each group g , the group cross sections are determined as shown in equation 3.10. 28 ∫ Eg −1 Eg ∑ xg = dE ∑ x ( E ) ϕ ( E ) ∫ Eg −1 Eg 3.10 dEϕ ( E ) where ∑ xg = macroscopic cross section for reaction x . x = f (fission), a (absorption), etc. For example, the actual S N equation then reduces to: 1 ∂ϕ ng ^ + Ω n ⋅∇ϕng += ∑tg ϕng ν g ∂t ∑w ∑∑ n' n' g '→ g sn '→n ϕng'' + Sng 3.11 g' Eg −1 n = 1,..............., N and g = 1................, G and ϕ g = ∫ ϕ ( E )dE Eg The equation 3.11 is the S N solved to obtain ϕ g . 29 3.3 Adjoint Transport Equation The adjoint operator is defined as: Eg −1 ∫ψ Eg −1 + Mψ dψ = Eg ∫ ψM ψ + + dψ + 3.12 Eg where, ψ + is the adjoint flux and M + is the adjoint operator matrix. g g' M = Ω ⋅∇ψ ng + ∑tg ψ ng − ∑ wg ' ∑ ∑ sgn''→ ψ n ' + S ng →n 3.13 g' M + = transposed of M when the matrix M = M ij and M + = M ji formed by interchanging rows and columns. The Eigen - functions of ψ + are then orthogonal to those of M , so that ( Mψ ) = λψ ( M ψ ) = ηψ + + + The matrix multiplication of the S N multi-group equation is ψ M +ψ + − ψ + Mψ = 0 (η − λ ) ψψ + = 3.14 since ψ and ψ + are orthogonal, thus M +ψ ng = Ω ⋅∇ψ ng + + ∑tg ψ ng + − ∑ wg ' ∑ ∑ ggn'→'→ngψ ng' '+ + S gg + 30 3.15 These equations can be shown to define the adjoint function to be the importance function where ψ g + is the probability that a neutron born in energy group g will fission. Therefore, the importance of the group ( g ) is given by: Cg= ∫ V d 3 r ∫ d Ω ψ g ( r , Ω )ψ g + ( r , Ω ) 3.16 4π Adjoint function/flux is the response of a detector in the core to a unit point source inserted at position ( r0 , Ω0 , E0 ) , such as it is a measure of the importance of neutron events contributing to the response of a detector [8] [3]. So it does not perform the neutron flux calculation for neutron source or energy. An important application of adjoint flux is in the perturbation theory where it is used to analyze the small changes that occur in the reactor [3] [15] [21]. The neutron importance and its properties are discussed thoroughly by Henry, 1975 [16]. 3.4 Neutron Energy Regions As stated previously, neutron energy regions in nuclear reactors are estimated to be in the range of 10 -3 to 107 electron volts. This large energy range is conveniently subdivided into three regions, fast, epithermal and thermal. The fast region is dominated by slowing down process through elastic and inelastic scattering processes. Epithermal also known as 1/E region is dominated by resonance absorption and scattering processes in which slowing down of neutrons also occurs. In the thermal region both up scattering and down scattering occur as the neutrons are thermalized, and subsequently are absorbed. 31 3.4.1 Neutron Slowing Down Neutron slowing down is governed by two processes, elastic and inelastic scattering where elastic scattering can easily occur with neutron of any energy while the inelastic scattering requires a sufficiently high energy to excite the target nucleus to a higher energy level. It occurs in the fast energy region. The slowing down process also depends on the atomic mass of a moderator, the lighter the nucleus the better the moderating ability. However, a moderator must exhibit low neutron absorption. Graphite (carbon) has the highest atomic mass, M C =12 of any moderator whereas the hydrogen in water has the lowest mass M H =1. Thus, during the slowing down of neutrons from the fast to thermal energies due to mainly elastic scattering, neutrons lose less energy per collision with graphite than hydrogen. During elastic scattering, the initial neutron energy E1 is related to the scattered energy EL by: E = 2 E1 (1 + α ) + (1 − α ) Cosθ 2 3.17 u −1 where α = and θ = scattered angle of the neutron u +1 2 For C , α = 0.716 whereas α = 0 for H . 32 Of importance is the average energy lost per collision in a moderator. It is convenient to calculate the energy loss as a function of lethargy u . The average gain in lethargy per collision is independent of the neutron energy. dE E u = ln 0 and du = − E E where, (−) indicates a decrease in E , as u increases. +1 E1 = ξ ln= E2 E1 d ( Cosθ ) 2 ∫ ln E −1 3.18 +1 ∫ d ( Cosθ ) −1 ξ = 1+ α ln α 1−α 3.19 Lethargy is the convenient variable used to perform fast spectrum calculations. The average lethargy change per collision ξ is used to calculate the average number of collisions needed to thermalize neutrons starting at 2 MeV . It takes 118 collisions for neutrons to thermalize in graphite whereas only 18 collisions are needed in H . The large energy changes that take place in light water reactor allow the neutron to escape the resonances relatively often while slowing down in the epithermal energy range. It also allows the total energy spectrum to be divided into two groups, fast and thermal, for successful analysis of the light water reactors. This is not the case for graphite moderated 33 reactors. Due to the extra number of scattering required for a neutron to slow down through the epithermal region, there is greater chance for the neutrons to be captured by the resonance cross sections. For this reason, more energy groups are required in analyzing graphite moderated reactors. 3.4.2 Resonance Absorption Resonance absorption is dominant in the epithermal energy region of the nuclear reactor because neutrons with low energies have a high possibility to collide during slowing down thereby have high probability to be absorbed [8]. The significant resonance absorption in thermal reactors is in the lower energy resonances (resolved) such as those resonances of heavy nuclides such as U238 and Th-232 (see Figure 3.2 and 3.3). Figure 3.2: Low energy resonances for U-238 34 Figure 3.3: Low energy resonances for Th-232 This resonance absorption cannot be ignored since it affects the multiplication factor, fuel burnup, breeding and reactor control characteristics (reactivity, control rods, period, prompt and delayed neutrons) [8]. Generally, in strong resonance regions there will be a depression of neutron flux (see figure 3.4), and this need to be treated thoroughly to ensure the accurate kinetic behavior of a reactor. This is known as energy self-shielding. There is also a related spatial selfshielding encountered in some cases but it is not a major concern in this study. 35 Resonance σ φ φ (E) E Figure 3.4: Flux depreciation under the resonance region At energies of keV, the resonance structure becomes fine such that they cannot be treated as individual resonances (unresolved resonances) and in this case they are solved by means of models. Examples of unresolved resonances are given in Figure 3.5 and 3.6. 36 Figure 3.5: Unresolved resonances for U-235 (t2.lanl.gov) Figure 3.6: Unresolved resonances for U-238 (t2.lanl.gov) 37 The models are narrow resonance (NR) and wide resonance (WR). Narrow resonance assumes that the practical width of the resonance is small compared to the average energy lost in the collision with a moderator. Wide resonance assumes that the practical width of the resonance is very wide compared to the energy lost in the collision with a moderator. Details assumptions and equations of these models are given in literature [8] [3] [31]. In heterogeneous cases, which is true for all nuclear reactors flux now depends on both lethargy and position. So, they can be computed by considering average values per region by assuming first collision probabilities. This considered that the probability that a neutron born in the fuel region will undergo its first collision in the moderator region (equation 3.20). Resonant absorption and Wigner and Bell-Wigner approximations are used for proper considerations of heterogeneity. Vc N 0 I eff = p exp − (V ξ ∑ S ) ' f + (V ξ ∑ S ) 'm 3.20 I eff = ∫ σ a ,eff ( u ) du 3.21 Subscript f and m represents the fuel and moderator regions respectively. V is the volume of the fuel region and moderator, N is the neutron density and (ξ ∑ ) is the moderating power. Equation 3.21 is the effective resonance integral. 38 3.4.3 Neutron Thermalization In this region, the thermal neutron cross section depends on temperature and the physical state of the scattering medium. This complicates the nuclear reactor analysis in this region since there is a neutron up-scattering during the collisions. The equivalence of the thermal neutron energy and the binding energy of the scattering nucleus also make the analysis difficult when determining the change in neutron energy and angle. In heterogeneous reactor cores such as HTGRs where considerable absorption occurs at thermal energies a detail modeling is required. In pure graphite, the thermalization process is described by the Maxwell-Boltzmann distribution (equation 3.22). Neutron energy ( ET ) and its speed ( vT ) as functions of temperature ( T ) are expressed in equation 3.23 and 3.24 respectively. Subscript ( m ) is the neutron mass. M (E) = 2π (π kT ) 3 2 E E exp − kT 3.22 E= kT = 8.62 ×10−5 T (eV ) T = vT 3.23 2kT = 1.28 ×104 T ( cm / sec ) m 3.24 However in reality for an actual reactor, the thermal spectrum is modified by the presence of absorption, in-scattering, leakages etc. There are methods available for use to model such conditions [8] [20]. 39 Chapter 4 Monte Carlo Reference Results 4.1 Introduction This chapter presents the MCNP5 work as a reference solution to the study. An overview of Monte Carlo code, MCNP (version 5.1.5) is given in section 4.2. MCNP5 is used to give a reference detailed accurate solution to be compared with the DRAGON code results. The DRAGON code is a deterministic code having inherent approximations resulting in some inaccuracy in the solution; techniques are available to reduce these inaccuracies. The MCNP5 code gives accurate solutions to the same problem, which can be used to guide technique to increase the accuracy of the DRAGON code. HTR fuel specifications that are used for the analysis are tabulated in section 4.3 4.2 MCNP5 Code Description Monte Carlo Neutron Particle Transport code system (MCNP) is a continuous energy statistical code developed at Los Alamos National Laboratory [23]. For this study, the used MCNP5 version 5.1.5 was supplied by the Radiation Safety Information Computational Center (RSICC) organization of USA that conducts and regulates the use of nuclear computational tools. The MCNP5 code models exactly the geometry in the calculation and then tracks individual neutron particles as they traverse nuclear region based on accurate reactor physics laws and stores all 40 reactions of the neutron as it travels through the medium as the history of that particle. The results are therefore statistical and the more histories the more accurate the solution. Running thousands of histories gives an accurate solution that is a reference solution to be compared with other codes that are less accurate such as deterministic codes. MCNP5 can handle both simple and complex geometries and uses continuous energy neutron cross section data. It is the best choice for analysis that involves complex geometries since it statistically can evaluate the system without geometric approximations. However it is time consuming, especially when many histories are being sampled to obtain solutions having small uncertainties. A random number generation method is used to determine the particle interactions (absorption, scattering, fission) as well as energy losses, new scattered direction, and the number of neutrons created in a fission process. For criticality calculations, k-effective cycle (multiplication factor is a ratio of the number of neutrons generated at the end of the cycle to those created during previous cycle) is estimated by averaging over the events in the life time cycle. The first few cycles are discarded to eliminate bad initial source distributions. MCNP5 is chosen to give reference solution to this study. 4.3 HTR Fuel Specifications There are two forms of HTR fuel used in this research work. Pebbles (fuel element of 6 cm diameter) are used for pebbled bed reactors and prismatic (hexagonal blocks) are used for modular high temperature gas cooled reactors. Both fuel elements are composed of TRISO 41 coated particles (CP) that are dispersed or embedded in a graphite matrix. The current design for pebble fuel element has 15000 of CP’s and each prismatic cylinder in the hexagonal block has about 3000 CP’s each. The fuel specifications used in this study were taken from the benchmark specification by DeHart [6] for the HTGR fuel element under the US Department of Energy (DOE)’s NGNP development program. Table 4.1 presents the CP’s specifications, and the lattice data and material specification is presented in Table 4.2. Table 4.3 and Table 4.4 give the specifications for the pebble bed and prismatic lattice data respectively. 42 Table 4.1: Coated Particle specifications (common for all types of fuel) Coated Particle specifications Item Units Value UO 2 fuel density g/cm3 10.4 Uranium enrichment (by % 8.2 ppm 1 Outer coated particle radius mm 0.455 Fuel kernel radius mm 0.25 Coated material - C/C/SiC/C Coated thickness mm 0.09/0.04/0.035/0.04 Coated densities g/cm3 1.05/1.9/3.18/1.9 mass 235U/(235U+238U) Fuel natural boron impurity by mass Coated Particle lattice data Item Units Value Unit cell grain square array cm 0.16341 cm 0.10137 Grain outer radius cm 0.0455 Packing fraction of coated % 9.043 Graphite matrix density g/cm3 1.75 Graphite matrix natural ppm 0.5 g 6.806e-04 pitch (cubical outer boundary) Unit cell grain outer radius (spherical outer boundary particles boron impurity by mass UO 2 fuel mass 43 Table 4.2: Material specification (common for all fuel types) Material Nuclide Atoms per barn cm ( concentrations) UO 2 fuel U-238 2.12877e-02 U-235 1.92585e-03 O 4.64272e-02 B-10 1.14694e-07 B-11 4.64570e-07 C (natural) 5.26449e-02 C (natural) 9.52621e-02 C (natural) 4.77240e-02 S (natural) 4.77240e-02 Pebble/Compact carbon C (natural) 8.77414e-02 matrix B-10 9.64977e-09 B-11 3.90864e-08 Pebble outer C (natural) 8.77414e-02 coating/Prismatic block (note: B-10 9.64977e-09 fuel grain has the same B-11 3.90864e-08 He-3 3.71220e-11 He-4 2.65156e-05 Inner low density carbon kernel coating Pyrolytic carbon kernel coating (inner and outer) Silicon carbide kernel coating packing) Helium Coolant 44 Table 4.3: Pebbles representative of PBMR fuel Item Units Value Unit cell coolant outer radius cm 3.53735 Pebble radius cm 3.0 Radius of fuel zone cm 2.5 Pebble outer carbon coating cm 0.5 ppm 0.5 - 15,000 % 9.043 Graphite matrix density g/cm3 1.75 Graphite matrix natural boron ppm 0.5 Pebble outer carbon density g/cm3 1.75 UO 2 fuel mass per pebble g 10.210 (spherical outer boundary) thickness Pebble outer carbon natural boron impurity by mass Number of coated particles per pebble Packing fraction of coated particles impurity by mass 45 Table 4.4: Prismatic fuel lattice data Item Units Value Triangular pitch (coolant channel – rod cm 1.880 Fuel channel diameter cm 1.270 Coolant channel diameter cm 1.588 Fuel compact (centered in fuel channel) cm 1.245 Compact height cm 4.93 Number of coated particles per compact - 3000 Packing fraction of coated particles % 19.723 Graphite matrix density g/cm3 1.75 Graphite matrix natural boron impurity by ppm 0.5 g 2.042 channel and rod channel – rod channel) diameter mass UO 2 fuel mass per compact 4.4 MCNP5 Results The HTR models developed in MCNP5 for both the Pebble fuel element and Prismatic hexagonal block fuel are shown in Figures 4.1 and 4.2 below. The corresponding results are given in Table 4.5 to 4.16. The reaction rates were sampled for three energy regions, fast, epithermal and thermal regions. The energy ranges were selected as 1.100 ×10−10 → 3.142 ×10−6 MeV for thermal region, 3.142 ×10−6 → 1.156 ×10−1 MeV for epithermal region and 1.156 ×10−1 → 1.964 ×10+1 MeV for fast region and these values corresponds to the SHEM energy group structures that form the foundation of this work. The pebble absorption rates, nu- 46 fission rates and the average flux for all energy regions are presented in Table 4.5 that were calculated using the ENDF/B-VII.0 version of the evaluated Nuclear Data files and Table 4.6 presents results for ENDF/B-VI.8 which was succeeded by ENDF/B-VII.0. The percent deviation of the pebble reaction rates is presented in Table 4.7 where thermal region is shown to be higher than 1 percent, but epithermal and fast regions have percent deviations below 1 percent. The eigenvalue relative deviation in pcm of ∆k / k between the data files is below the acceptable 500 pcm difference. The average flux from the ENDF/B-VI.8 calculations is higher compared to the ENDF/B-VII.0 results. It is observed that the difference was in the helium region of the pebble. This is thought to be due to the updates that are in ENDF/B-VII.0 for He-3 (see Table 4.17). 47 Figure 4.1: MCNP5 Pebble model 48 Figure 4.2: MCNP5 Prismatic block model 49 Table 4.5: Pebble fuel element results calculated using ENDF/B-VII.0 PEBBLE ENDF/B-VII.0 Energy Range Reaction Rates and criticality Thermal Epithermal Fast Absorption (collisions/cm3-s) 7.24977E-01 2.51396E-01 5.33901E-03 Nu-Fission (fissions/cm3-s) 1.40447E+00 1.01377E-01 8.65859E-03 Average Flux (particles/cm2-s) 1.09878E+00 1.32725E+00 5.97252E-01 1.52881 ± 0.00046 K-effective and deviation Table 4.6: Pebble fuel element results calculated using ENDF/B-VI.8 PEBBLE ENDF/B-VI.8 Energy Range Reaction Rates and criticality Thermal Epithermal Fast Absorption (collisions/cm3-s) 7.34328E-01 2.50483E-01 5.35821E-03 Nu-Fission (fissions/cm3-s) 1.42250E+00 1.01017E-01 8.68439E-03 Average Flux (particles/cm2-s) 1.29381E+00 1.22106E+00 5.05711E-01 1.52858 ± 0.00047 K-effective and deviation 50 Table 4.7: Percent deviation of pebble FE results for ENDF/B-VII.0 and ENDF/B-VI.8 PEBBLE ENDF/B-VII.0 Energy Range Reaction Rates and criticality Thermal Epithermal Fast Absorption -1.28991 0.36327 -0.35949 Nu-Fission -1.28361 0.35469 -0.29800 Average flux -17.74941 8.00124 15.32708 K-effective- Relative Deviation in pcm of ∆k / k 23 with previous version of ENDF Table 4.8 and 4.9 presents the reaction rates for the prismatic block fuel element in the same energy ranges. In this case the percent deviation (Table 4.10) for all reactions is below 1 percent except for the nu-fission in the thermal region. The average fluxes deviation percent is also below 1. The criticality relative deviation in pcm of ∆k / k is also below the acceptable 500 pcm difference. 51 Table 4.8: Prismatic block results calculated using ENDF/B-VII.0 PRISMATIC ENDF/B-VII.0 Energy Range Reaction Rates and criticality Thermal Epithermal Fast Absorption (collisions/cm3-s) 6.97577E-01 2.97869E-01 7.38072E-03 Nu-Fission (fissions/cm3-s) 1.37041E+00 1.30683E-01 1.08548E-02 Average Flux (particles/cm2-s) 1.45410E+00 2.19054E+00 9.41143E-01 1.46946 ± 0.00156 K-effective and deviation Table 4.9: Prismatic block results calculated using ENDF/B-VI.8 PRISMATIC ENDF/B-VI.8 Energy Range Reaction Rates and criticality Thermal Epithermal Fast Absorption (collisions/cm3-s) 6.93087E-01 2.97834E-01 7.45265E-03 Nu-Fission (fissions/cm3-s) 1.32850E+00 1.30331E-01 1.07793E-02 Average Flux (particles/cm2-s) 1.44680E+00 2.18889E+00 9.42938E-01 1.46923 ± 0.00160 K-effective and deviation 52 Table 4.10 Percent deviation of prismatic block results for ENDF/B-VII.0 and ENDF/B-VI.8 PRISMATIC ENDF/B-VII.0 and ENDF/B-VI.8 % deviation Energy Range Reaction Rates and criticality Thermal Epithermal Fast Absorption 0.64366 0.011907 -0.97457 Nu-Fission 3.05850 0.26963 0.69606 Average Flux 0.50197 0.074997 -0.19075 K-effective- Relative Deviation in pcm 23 of ∆k / k with previous version of ENDF Figure 4.3 and 4.2 below presents the keffective and source convergence for the Pebble and Prismatic block respectively. For the pebble fuel element the runs had 2000 cycles (150 cycles skipped) and 15000 histories per cycle. While for the Prismatic block the runs had 1000 cycles (150 were skipped) and 200 histories per cycle. The results were normalized to the mean of the active cycles. 53 1.015 Keffective and source_entropy 1.01 Source_entropy Keffective 1.005 1 0.995 0.99 0.985 0.98 0 500 1000 1500 Number of cycles 2000 2500 Figure 4.3: Pebble keffective and source convergence 1.15 Keffective and source_entropy Source_entropy 1.1 Keffective 1.05 1 0.95 0.9 0.85 0.8 0 200 400 600 800 Number of cycles 1000 1200 Figure 4.4: Prismatic keffective and source convergence 54 The General Atomics energy group structure was also studied in this work. The energy ranges for GA-193 group structure were selected to be between 5.000 ×10−10 → 3.059 ×10−6 MeV for thermal, 3.059 ×10−6 → 1.111×10−1 MeV for epithermal, and 1.111×10−1 → 1.49182 ×10+1 MeV for fast region. This cutoff energies are the closest possible to the cutoffs used for the SHEM energy group structures. GA-193 energy group structure was developed for fast reactors, the fast region consists of 49 groups while the slowing down (epithermal) region consists of 42 groups and the thermal region consists of 102 groups. The reference solution was computed for the corresponding cutoff points in MCNP5 to ensure accuracy during DRAGON results comparisons. Table 4.11 and 4.12 presents Pebble fuel elements reaction rates calculated using ENDF/B-VII.0 and ENDF/B-VI.8 respectively. The comparisons are shown in Table 4.13. Similarly, the prismatic hexagonal block results are shown in Table 4.14 and 4.15, with their comparisons in Table 4.16. Table 4.11: Pebble fuel element results calculated using ENDF/B-VII.0 PEBBLE ENDF/B-VII.0 Energy Range Reaction Rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 0.72463533 0.251696718 0.005378067 Nu-Fission (fissions/cm3-s) 1.403901224 0.101907034 0.008697482 Average Flux (particles/cm2-s) 1.085554073 1.321156429 0.616512002 55 Table 4.12: Pebble fuel element results calculated using ENDF/B-VI.8 PEBBLE ENDF/B-VI.8 Energy Range Reaction Rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 0.734000653 0.250770526 0.005395323 Nu-Fission (fissions/cm3-s) 1.421954896 0.101527706 0.008721427 Average Flux (particles/cm2-s) 1.291840555 1.218793081 0.509942205 Table 4.13: Percent deviation of pebble FE results for ENDF/B-VII.0 and ENDF/B-VI.8 PEBBLE ENDF/B-VII.0 and ENDF/B-VI.8 results % deviation Energy Range Reaction Rates Thermal Epithermal Fast Absorption -1.29242 0.36798 -0.32085 Nu-Fission -1.28596 0.37223 -0.27531 Average Flux -19.00287 7.74801 17.28592 56 Table 4.14: Prismatic block results calculated using ENDF/B-VII.0 PRISMATIC ENDF/B-VII.0 Energy Range Reaction Rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 0.697164716 0.298228638 0.007429926 Nu-Fission (fissions/cm3-s) 1.336392733 0.131598539 0.01080447 Average Flux (particles/cm2-s) 1.440463559 2.185138181 0.950793997 Table 4.15: Prismatic block results calculated using ENDF/B-VI.8 PRISMATIC ENDF/B-VI.8 Energy Range Reaction Rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 0.693019287 0.298201228 0.007487775 Nu-Fission (fissions/cm3-s) 1.327794793 0.130979016 0.010827201 Average Flux (particles/cm2-s) 1.442456795 2.183731411 0.952400355 57 Table 4.16 Percent deviation of prismatic block results for ENDF/B-VII.0 and ENDF/B-VI.8 PRISMATIC ENDF/B-VII.0 and ENDF/B-VI.8 results % deviation Energy Range Reaction Rates Thermal Epithermal Fast Absorption 0.59461 0.00919 -0.77860 Nu-Fission 0.64337 0.47077 -0.21039 Average Flux -0.13837 0.06438 -0.16895 The Evaluated Nuclear Data Files (ENDF/B-VII.0) version contains data with reactions with incident neutrons, protons and photons of approximately 400 isotopes. Its advancements compared to ENDF/B-VI.8 are that it has new cross sections for U , Pu , Th , Np and Am actinides isotopes resulting in the improved performance in integral validation criticality and neutron transmission [5]. It also has more precise standard cross sections for neutron reactions on H , 6 Li , 10 B , Au and for 235 U and 238U fission. The thermal neutron scattering was improved including a set of neutron cross sections on fission products. Neutron and proton induced evaluations were extended up to 150 MeV and new light nucleus neutron proton reactions were added. Among these developments are large suites of photonuclear reactions, post fission beta delayed photon decay spectra, new radioactive decay beta, new method for uncertainties and covariance’s with covariance evaluations, new actinides fission energy deposition [4]. These advances attribute to the reaction rates deviations for ENDF/B-VII.0 and ENDF/B-VI.8 results shown above for the pebble fuel element and the prismatic hexagonal block fuel. Table 4.17 58 below presents the comparisons for ENDF/B-VII.0 and ENDF/B-VI.8 libraries. NSUB is the sub-library identification number in ENDF/B-VI format. The last two columns present the number of materials (or isotopes) for specified libraries. 59 Table 4.17: ENDF/B-VII.0 and ENDF/B-VI.8 data files improvement comparisons. No. NSUB Sub-library name Short name ENDF/B-VII.0 ENDF/B-VI.8 1 0 Photonuclear g 163 - 2 3 Photo-atomic photo 100 100 3 4 Radioactive decay decay 3838 979 4 5 Spontaneous s/fpy 9 9 fission yields 5 6 Atomic relaxation ard 100 100 6 10 Neutron n 393 328 7 11 Neutron 31 31 fission n/fpy yields 8 12 Thermal scattering tsl 20 15 9 19 Standards std 8 8 10 113 Electro-atomic e 100 100 11 10010 Proton p 48 35 12 10020 Deuteron d 5 2 13 10030 Triton t 3 1 14 20030 3 He-3 2 1 He 60 Chapter 5 Multi-group Structure Analysis 5.1 Introduction Sensitivity analysis were peformed on the currently available energy group structures, SHEM281, SHEM-361 and GA-193. The DRAGON transport code is used for the analysis. Section 5.2 describes the DRAGON code. The method used for the library generation is discussed in section 5.3. DRAGON libraries were generated using ENDF/B-VII.0 data files and used to analyze the pebble fuel element and prismatic hexagonal block models for reaction rates and criticality. The results and the observations are discussed in section 5.4. 5.2 DRAGON Code Description DRAGON code is a lattice physics code, which is divided into many different calculation modules linked together using a GAN generalized driver. A GAN generalized driver is used to call sequential series of modules sharing a common calling convention and template to build FORTRAN applications through linking independent modules. The modules exchange the information through defined data structures. These data structures are memory resident or persistent [22]. A simplified flow chart in Figure 5.1 presents the data structure and sequence of modules and its brief description is given below. MACROLIB 61 MICROLIB GEOMETRY TRACKING ASMPIJ FLUXUNK EDITION BURNUP DRAGLIB MULTICOMPO MACROLIB is a standard data structure used to transfer group ordered macroscopic cross sections between its modules. It can either be used on its own or included into MICROLIB or EDITION structures. It can be created by MAC (macro library generation), LIB (micro library generation) and EDI (editing) modules or modified by SHI (perform self-shielding using generalized Stammler’s method), USS (perform self-shielding using subgroup method) and EVO (burnup) modules. It is required for a successful execution of assembly (ASM) and flux (FLU) modules. MICROLIB is used to transfer microscopic and macroscopic cross sections between modules. It follows the MACROLIB substructure. It can be created by LIB and EDI modules or modified by MAC, SHI, USS and EVO modules. 62 GEOMETRY is used to transfer the geometry between modules. It is created by the GEO (generate a geometry) module. It is required for a successful execution of the tracking modules SYBILT, EXCELT and MCCGT modules. TRACKING is used to transfer the general tracking information between its modules. It is a stand-alone structure. It is created by either: SYBILT, EXCELT or MCCGT modules. It is required for a successful execution of the ASM (assembly) module. ASMPIJ is used to transfer multi-group response and collision probability matrices between modules. It is a stand-alone structure. It can be created by the ASM module. It is required for a successful execution of the FLUX module. FLUXUNK is used to transfer fluxes between modules. It is a stand-alone structure. It can be created by the FLUX module. It is required for a successful execution of the EDI and EVO modules. EDITION is used to store condensed and merged microscopic and macroscopic cross sections. It is a stand-alone structure but can contain MICROLIB and MACROLIB sub-structures. It can be created by EDI module. It is required for a successful execution of the COMPO (database construction) module. 63 BURNUP is used to store burnup information. It is created by the EVO module. It is required to deplete the fuel assembly. DRAGLIB is used to recover isotopic, dilution and temperature dependent information including multi-group microscopic cross sections and burnup data. It is a stand-alone structure. It is created by the DRAGR module which is in NJOY. MULTICOMPO is used to store reactor related information and to classify it using immutable list of local and global parameters. It is a stand-alone structure. It is created by the COMPO module. For details in specific modules refer to [22]. The DRAGON code is designed to simulate the neutronic behavior of a unit cell, a fuel assembly and multi-assembly arrays of the nuclear reactor. It has a number of lattice code functional characteristics such as the interpolation of microscopic cross sections supplied by the standard library. It computes the resonance self-shielding in multi-dimensional geometries and the multigroup and multi-dimensional neutron flux that can take into account the neutron leakage. It considers transport-transport and transport-diffusion equivalence calculations and can edit the condensed and homogenized properties of nuclear reactor calculations. It also performs the depletions analysis. DRAGON has two main components, one solves the multi-group flux and the other calculates the collision probabilities (CP). It contains a multi-group iterator to control the different algorithms to solve the neutron transport equation. These algorithms are SYBIL 64 option that solves the integral transport equation using the collision probability method (for 1-D) and the interface current method (for 2-D) Cartesian or hexagonal assemblies. EXCELL option solves the integral transport equation using collision probability method for 2-D and 3-D geometries. There is also the MCCG option that uses a long characteristics method for 2D and 3D geometries. An option is also available for treating specular boundary conditions in 2D rectangular geometry. In solving of the integral transport equations, the results include reaction rates, neutron flux and the multiplication factor (k-effective). 65 BIVACT GEO TRIVACT SYBILT Geometry SNT Track ASM EXCELT SHI Track NXT MCCGT USS Draglib LIB asmpij FLU flux Microlib (Macrolib) 2 Microlib(Macrolib) 1 EVO Microlib(Macrolib) 2 EDI burnup edition COMPO compo END Figure 5.1: DRAGON flow chart [11] 66 5.3 Cross Section Library Generation The DRAGON library is referred to as DRAGLIB and is generated using a Python Script [14]. The ENDF/B data files are processed using NJOY through an object oriented Python Script named PyNjoy. NJOY is a nuclear data processing system that converts the evaluated nuclear data files ENDF/B format into usable libraries for nuclear reactor analysis. It transforms continuous cross section data stored in data files like ENDF/B format for use with Monte Carlo codes or lattice physics transport codes. It handles all nuclear reactor parameters such as resonances, Doppler broadening, heating, radiation damage, scattering, gas production, neutrons and charged particles, photo-atomic interactions, self-shielding, probability tables, photon production and high energy interactions. NJOY consists of a set of modules from which several can be selected to perform specific calculations. For DRAGON library generation, the following modules are used: RECONR BROADR GROUPR UNRESR PURR THERMR GROUPR 67 The RECONR module reads ENDF/B data and produces a common energy grid for all reactions to obtain all cross sections within specified tolerance by linear interpolation. It then reconstructs resonance cross sections from resonance parameters and cross sections from ENDF/B using nonlinear interpolation schemes. The output is written in point-wise- ENDF (PENDF) file with all cross sections kept on a unionized energy grid where they are improved for accuracy and usability. BROADR generates Doppler broadened cross sections from the PENDF module, the output file of RECONR. It uses the SIGMA1 module, also called the kernel broadening because it uses a detailed integration of the integral transport equation defining the cross section. It is known to be accurate since it treats all resonances and non-resonance cross section including multilevel effects. The output is written on the PENDF file. The GROUPR produces self-shielded multi-group cross sections, anisotropic group to group scattering matrices as well as anisotropic photon production matrices. It presents fission as a group to group matrix. If necessary, self-shielding for scattering matrices and the photon production matrices may be modeled. It uses the Bondarenko narrow resonance weighting scheme. It also allows an option for computing a weighted flux for various mixtures of heavy absorbers with light moderators. GROUPR uses an accurate point-wise solution of the integral slowing down equation to account for intermediate resonance effects in the epithermal range. It uses the PENDF module for input. 68 The UNRESR module produces the effective self-shielded cross sections for resonance reactions in the unresolved energy range. The unresolved resonance range begins at the energy where it is difficult to measure individual resonances. It extends to energies where the effects of fluctuations in the resonance cross section become unimportant for analysis. Resonance information is averaged for resonance widths and spacing. This is then converted to the effective cross sections. The UNRESR module uses PENDF module and the ENDF data from BROADR as input. The effective cross sections are then written into the PENDF module. The PURR module produces the probability tables that are used to treat unresolved resonance self-shielding cross section. The unresolved self-shielding data generated by UNRESR is suitable for use in multi-group calculation after processing by GROUPR. This is done by the generation of resonances using statistical analysis. Then, cross sections sampling is random at selected energies and are accumulated into probability tables and Bondarenko moments. These will not be used for Monte Carlo codes where the probability tables are used. The probability tables are written on an output file (PENDF module). The THERMR module generates point-wise neutron scattering cross sections in the thermal range. It generates elastic cross sections for crystalline materials and non crystalline materials. It also generates inelastic cross sections and energy to energy transfer matrices for gas free atoms or for a bound scatters. Since in thermal energy range, neutron scatterings are temperature dependent, THERMR module considers this temperature. Therefore it expects the requested 69 temperature (T) to be of the temperature included in the ENDF/B thermal file or within few degrees of the value such that it can pick the closest possible value if necessary. It uses ENDF and PENDF module from the RECONR as input. DRAGR is an interface module developed to perform advanced lattice code functions. These are self-shielding models that have capabilities of presenting distributed and mutual resonance selfshielding effects, leakage models with space dependent isotropic or anisotropic streaming effects, availability of the characteristics method and burnup calculations featuring energy production reactions [12]. The capability of radiative transport of gamma energy produced by decay or any nuclear reaction in the lattice is among the essential features. DRAGR produces a DRAGLIB which is a direct access cross section library in a format compatible for DRAGON code. The list of modules discussed are the ones specifically used for the generation of library for this study, Please note that NJOY has a various modules to select depending on the user’s need. For NJOY details can review the NJOY, 99.90 manual [28]. 70 ENDFB/VI or VII NJOY RECONR BROADR PURR THERMR PENDF GROUPR GENDF DRAGR DRAGLIB Figure 5.2: Flow chart for DRAGON library production 71 5.4 Sensitivity Analysis Results 5.4.1 DRAGON Results used in the Sensitivity Study In this section, DRAGON analysis results are given, which are used in the sensitivity analysis for optimization of multi-group libraries. The cross section libraries were generated for the available group structures, SHEM-281, SHEM-361 and GA-193 using ENDF/B-VII.0. These libraries were used to compute the reaction rates and criticality of pebble fuel element and prismatic hexagonal block with specifications given in Chapter 4. The results are shown in Tables 5.1 through 5.6. Table 5.1: Pebble reaction rates and criticality for SHEM-281 energy group structure PEBBLE Energy Range Group Structure Reaction Rates Thermal Epithermal Fast SHEM-281 Absorption (collisions/cm3-s) 7.35093E-01 2.58643E-01 6.26975E-03 Nu-Fission (fissions/cm3-s) 1.40377E+00 1.04519E-01 8.63650E-03 Average Flux (particles/cm2-s) 1.07132E+00 1.32069E+00 5.97364E-01 K-effective 1.51692 (convergence = 2.79E-09) 72 Table 5.2: Prismatic block reaction rates and criticality for SHEM-281 energy group structure PRISMASTIC Energy Range Group Structure Reaction Rates Thermal Epithermal Fast SHEM-281 Absorption (collisions/cm3-s) 6.86963E-01 3.05376E-01 7.65777E-03 Nu-Fission (fissions/cm3-s) 1.31823E+00 1.31597E-01 1.11035E-02 Average Flux (particles/cm2-s) 1.46823E+00 2.25204E+00 1.03317E+00 K-effective 1.46094 (convergence =1.53E-07) Table 5.3: Pebble reaction rates and criticality for SHEM-361 energy group structure PEBBLE Group Structure SHEM-361 Energy Range Reaction Rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 7.350480E-01 2.586860E-01 6.261710E-03 Nu-Fission (fissions/cm3-s) 1.403680E+00 1.047250E-01 8.636350E-03 Average Flux (particles/cm2-s) 1.071270E+00 1.320840E+00 5.973630E+00 K-effective 1.517046 (convergence = 3.44E-08) 73 Table 5.4: Prismatic block reaction rates and criticality for SHEM-361energy group structure PRISMATIC Energy Range Group Structure Reaction Rates Thermal SHEM-361 Absorption (collisions/cm3-s) 6.86881E-01 3.05456E-01 7.65884E-03 Nu-Fission (fissions/cm3-s) 1.31808E+00 1.31889E-01 1.11035E-02 Average Flux (particles/cm2-s) 1.46805E+00 2.25232E+00 1.03317E+00 K-effective Epithermal Fast 1.46107 (convergence = 3.44E-07) Table 5.5: Pebble reaction rates and criticality for GA-193 energy group structure PEBBLE Energy Range Group Structure Reaction Rates Thermal Epithermal Fast GA-193 Absorption (collisions/cm3-s) 6.25219E-01 3.68398E-01 6.36363E-03 Nu-Fission (fissions/cm3-s) 1.11943E+00 1.04135E-01 8.71626E-03 Average Flux (particles/cm2-s) 8.98270E-01 1.30071E+00 6.10101E-01 K-effective 1.30713 (convergence = 4.22E-08) 74 Table 5.6: Prismatic block reaction rates and criticality for GA-193 energy group structure PRISMATIC Energy Range Group Structure Reaction Rates GA-193 Absorption (collisions/cm3-s) 5.609600E-01 4.312260E-01 7.790330E-03 Nu-Fission (fissions/cm3-s) 1.076820E+00 1.307680E-01 1.120650E-02 Average Flux (particles/cm2-s) 1.177660E+00 2.220720E+00 1.055180E+00 K-effective 1.218799 (convergence = 5.02E-07) Thermal Epithermal Fast 5.4.2 Sensitivity Analysis Comparison with MCNP5 Results The reaction rates for Pebble FE and prismatic hexagonal block computed with DRAGON using the SHEM-281, SHEM-361 and GA-193 generated libraries are compared to the reference solution calculations from MCNP5 (chapter 4). K-effective relative percent deviation in pcm is given in Table 5.7 and 5.8 for each model. Table 5.9 and 5.10 shows the relative percent deviation for the reaction rates comparisons. 75 Table 5.7: Criticality calculation comparisons for ENDF/B-VII.0 PEBBLE deviation in pcm Group Structure K-effective MCNP5 - 1.52881 DRAGON SHEM-281 1.51692 1189 SHEM-361 1.517046 1176.4 GA-193 1.307130 22168.5 Table 5.8: Criticality calculation comparisons for ENDF/B-VII.0 PRISMATIC deviation in pcm Codes Group Structure K-effective MCNP5 - 1.46946 DRAGON SHEM-281 1.46094E+00 852.4 SHEM-361 1.461067E+00 839.3 GA-193 1.21880E+00 25066.1 76 Table 5.9: Pebble FE reaction rates calculation comparisons for ENDF/B-VII.0 PEBBLE Energy Range MCNP5 Reaction rates Thermal Epithermal Fast 2.51396E-01 5.33901E-03 1.40447E+00 1.01377E-01 8.65859E-03 Average Flux (particles/cm2-s) 1.09878E+00 1.32725E+00 5.97252E-01 3 SHEM-281 Absorption (collisions/cm -s) 7.350480E-01 2.586430E-01 6.26975E-03 Absorption (collisions/cm3-s) 7.24977E-01 Nu-Fission (fissions/cm3-s) DRAGON Nu-Fission (fissions/cm3-s) % deviation 1.40377E+00 1.04519E-01 8.63650E-03 Average Flux (particles/cm2-s) 1.07132E+00 1.32069E+00 5.97364E-01 Absorption -1.389212277 -2.882545451 -17.43271822 Nu-Fission 0.05013748 -3.099762817 0.255135027 Average Flux 2.499473073 0.494391026 -0.018703628 3 SHEM-361 Absorption (collisions/cm -s) 7.350480E-01 2.586860E-01 6.261710E-03 Nu-Fission (fissions/cm3-s) 1.403680E+00 1.047250E-01 8.636350E-03 Average Flux (particles/cm2-s) 1.071270E+00 1.320840E+00 5.973630E-01 % deviation Absorption -1.389212277 -2.899649913 -17.28212864 Nu-Fission 0.056545572 -3.302965595 0.25686741 Average Flux 2.504023558 0.483089478 -0.018536195 77 Table 5.10: Prismatic block reaction rates calculation comparisons for ENDF/B-VII.0 PRISMATIC Energy Range MCNP5 Reaction rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 6.97577E-01 2.97869E-01 7.38072E-03 Nu-Fission (fissions/cm3-s) 1.37041E+00 1.30683E-01 1.08548E-02 Average Flux (particles/cm2-s) 1.45410E+00 2.19054E+00 9.41143E-01 Absorption (collisions/cm3-s) 6.869630E-01 3.053760E-01 7.65777E-03 DRAGON SHEM-281 % deviation SHEM-361 Nu-Fission (fissions/cm3-s) 1.31823E+00 1.31597E-01 Average Flux (particles/cm2-s) 1.46823E+00 2.25204E+00 1.03317E+00 Absorption 1.521522941 -2.520222601 -3.753748785 Nu-Fission 3.807588733 -0.699405992 -2.290771967 1.11035E-02 Average Flux -0.972081048 -2.807681093 -9.778257997 Absorption (collisions/cm3-s) 6.868810E-01 3.054560E-01 7.658840E-03 Nu-Fission (fissions/cm3-s) 1.318080E+00 1.318890E-01 1.110350E-02 Average Flux (particles/cm2-s) 1.468050E+00 2.252320E+00 1.033170E+00 % deviation Absorption 1.53327792 -2.547080042 -3.768246022 Nu-Fission 3.818534366 -0.922847458 -2.290771967 Average Flux -0.959702214 -2.820463348 -9.778257997 78 Since the cutoff points for GA-193 energy group structure were slightly different from the SHEM energy group structures, their reference solution was generated separately. Though there might not be much difference in the results due to the fact that the cutoff points were selected to be as close as possible to the SHEM energy group structures. The comparisons are therefore presented in Table 5.11 and 5.12 for both models. The observation is that the reaction rates percent deviation is very high in some cases for the GA-193 group structure, thus the energy group structure should not be used or either trusted for simulation for other reactors other than fast reactors for which it was developed. Note that the errors in k-effective are greater than 1000 pcm for the SHEM energy group structure for both the Pebble fuel element and the Prismatic hexagonal block. This large difference in k-effective is probably due to the large deviations of 17 % in the fast absorption reaction rate in the Pebble fuel element. However, the large difference in k-effective for the Prismatic hexagonal block appears to be due to the 3.8 % deviation in the thermal nu-fission reaction rate. The k-effective deviation is more sensitive to deviations in thermal nu-fission reaction rate than fast absorption rate reaction rates. 79 Table 5.11: Pebble FE reaction rates calculation comparisons for ENDF/B-VII.0 PEBBLE Energy Range MCNP5 Reaction rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 7.24635E-01 2.51697E-01 5.37807E-03 Nu-Fission (fissions/cm3-s) 1.40390E+00 1.01907E-01 8.69748E-03 Average Flux (particles/cm2-s) 1.08555E+00 1.32116E+00 6.16512E-01 Absorption (collisions/cm3-s) 6.25219E-01 3.68398E-01 6.36363E-03 Nu-Fission (fissions/cm3-s) 1.19427E+00 1.04135E-01 8.71626E-03 DRAGON GA-193 Average Flux (particles/cm2-s) 8.98270E-01 % deviation 1.30708E+00 6.10101E-01 Absorption 13.719498 -46.365834 -18.325594 Nu-Fission 14.932049 -2.186273 -0.215900 Average Flux 17.252395 1.065463 1.039883 80 Table 5.12: Prismatic block reaction rates calculation comparisons for ENDF/B-VII.0 PRISMATIC Energy Range MCNP5 Reaction rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 6.97165E-01 2.98229E-01 7.42993E-03 Nu-Fission (fissions/cm3-s) 1.33639E+00 1.31599E-01 1.08045E-02 Average Flux (particles/cm2-s) 1.44046E+00 2.18514E+00 9.50794E-01 Absorption (collisions/cm3-s) 5.60960E-01 4.31226E-01 7.79033E-03 Nu-Fission (fissions/cm3-s) 1.07682E+00 1.30768E-01 1.12065E-02 Average Flux (particles/cm2-s) 1.17766E+00 2.22072E+00 1.05518E+00 DRAGON GA-193 % deviation Absorption 19.5369492 -44.5957717 -4.8507087 Nu-Fission 19.4233870 0.6311153 -3.7209620 Average Flux 18.2443740 -1.6283556 -10.9788243 81 Chapter 6 Multi-group Energy Structure Improvement 6.1 Introduction The SHEM multi-group energy structure has been optimized for LWRs. The objective of this dissertation was to optimize it for graphite moderated reactors, both the Pebble bed and the Prismatic type reactors by altering the energy group structure. The DRAGON-4 code was used for the optimization process where the currently available energy group structure (SHEM-281, SHEM-361 and GA-193) are improved, and the obtained results are compared to the MCNP5 results wherein the MCNP5 results are assumed to be reference results. The advantages of using the DRAGON code are its capabilities to calculate the flux and the adjoint flux for each of its energy groups. The adjoint flux allows computing the neutron importance function of each energy group, which is used to improve the energy group structure. The group that has higher importance function was subdivided into two groups or more and a new energy group structure was developed from which a new library was created. The new library is applied in the DRAGON code to analyze a pebble fuel element and prismatic hexagonal block. Then, a pebble fuel element and prismatic hexagonal block were analyzed for k-effective, flux spectrum and reaction rates (absorption, scattering, production, fission cross sections). These parameters were analyzed for three macro energy groups, fast, epithermal and thermal regions. A pebble fuel element comprises of 15000 TRISO coated particles consisting of fuel kernel of UO 2 which is surrounded by low density carbon, inner pyrolitic carbon, silicon carbide and outer pyrolitic 82 carbon. It has a diameter of 6 cm. Each prismatic cylinder in a hexagonal block has 3000 coated particles of the same specifications. A fuel rod of 1.245 cm diameter is placed in a fuel channel diameter of 1.270 cm and the compact height is 4.93 cm. 6.2 Contributon and Point-Wise Cross Section Driven Method The improvement of the energy group structures was conducted using the contributon and pointwise cross section driven method (CPXSD) developed by Alpan and Haghighat in 2005 initially for shielding problems [2]. Nateekol [19] in her PhD extended the method to TRIGA (Penn State) reactor. In this study the method was applied for first time to HTR problems. In the former two applications the method was applied using S N formulation. In this study the method was applied in Collision Probability. The CPXSD method was derived based on the product of the forward and adjoint angular fluxes, and the point-wise cross section of important isotope/material of interest. It is an iterative method that selects effective fine and broad group energy structures for a problem of interest. The energy dependent response flux referred to as contributon is expressed by equation 6.1: = C (E) ∫ d r∫π d ΩΨ ( r , E, Ωˆ )Ψ ( r , E, Ωˆ ) v + 6.1 4 ( ˆ In equation 6.1, C ( E ) is the importance function, Ψ r , E , Ω ( ) ) is the forward flux and ˆ is the adjoint flux dependent on position ( r ), energy (E) and direction ( Ω̂ ). When Ψ + r , E, Ω 83 considering spherical harmonics expansion of forward flux and its adjoint, and using orthogonality, the group-dependent contributon C ( E ) is given by: = Cg L 2l + 1 m Ψ l , g , s Ψ lm, g,+, s m =0 4π l ∑V ∑ ∑ s∈D s l =0 6.2 In equation 6.2, s presents a uniform material region in D , Vs is the volume of the sub-domain. Where l and m are polar and azimuthal indices for the spherical harmonic polynomial, and g is the energy group [1]. Also, Ψ lm, g , s is the flux moment and Ψ lm, g,+, s is the adjoint flux moment. Therefore, the fine energy group structure improvement followed in this study is as follows: (i) An initial multi-group energy structure was selected (SHEM-281 and SHEM-361 groups) and GA-193 group structures. (ii) Cross sections were generated for the initial multi-group energy structure with the established procedure of cross section generation relevant to DRAGON transport code as discussed in chapter 5. (iii) The forward and adjoint flux calculations were performed to determine the importance function of the groups in the initial energy group structure of interest. (iv) After identifying the energy groups with higher importance, this energy group structure is improved by the resonance structure of a spectrum representing the unit cell (fuel) by dividing the energy group into two or more energy groups. 84 (v) When the improvement process was complete for all energy groups, the new energy group structure was used for cross section generation. The new cross section library was used to calculate the reaction rates and k-effective of the problem of interest. (vi) The reaction rates and k-effective calculated using the new library are compared with the results obtained from the previous library analysis. If the results are within a specified tolerance, the procedure ends; otherwise, steps (iii) through (v) were repeated. 6.3 Improvement of SHEM-281 Energy Group Structure In this section the SHEM-281 energy group structure was improved for three different energy regions (Fast, Epithermal and Thermal) separately. After each region has met the target criteria, they are combined to make up a whole SHEM-281 improved energy group structure. This was done to study the effect of each region behavior during the energy group structure improvement and to ensure that there was no under estimations in the procedure. 6.3.1 Fast Energy Region Improvement The fast energy region was selected to be between 1.156235 ×10−6 → 1.964030 ×10+1 MeV . The starting energy group structure is SHEM-281. The two selected criteria for determining fine group structure were 10 pcm relative deviation of ∆k / k and 1% relative deviation of the reaction rates. The reaction rate used for the fast region was the total neutron production (Nu-fission) (ν ∑ ) and f the k-effective. During the fast region energy group structure improvement the 85 epithermal (163 groups) and thermal (81 groups) regions were kept constant. Table 6.1 shows the number of groups obtained during fast energy group structure improvement. Table 6.1: Fast group selected in the fast range SHEM 281-group structure improvement Number of Groups in different energy ranges Group structure number Fast Epithermal Thermal Total 1 37 163 81 281 2 65 163 81 309 3 79 163 81 323 The importance function for the starting and improved energy group structure is presented in Figure 6.1. It was observed that as the energy groups with high importance function are split as defined previously their importance was reduced. The relative deviation differences of ∆k / k and the percent relative deviation for selected reaction rates are shown in Table 6.2. The 1% relative deviation in the reaction rate was met in the 309 energy group structure, however, the relative deviation for ∆k / k was slightly higher than that of the target criteria. Then further improvement to 323 energy groups resulted in the achievement of both target criteria’s, thus, the fast range of the energy derived from 323 energy group structure was selected to be used for further improvement in the final energy group structure. 86 0.1 281-groups 0.08 309 groups 323 groups Importance 0.06 0.04 0.02 0 1.00E-01 1.00E+00 1.00E+01 Energy (MeV) Figure 6.1: Importance function for fast energy region for 281, 309 1nd 323 groups. Table 6.2: Eigen-value results for fast energy group structure improvement Eigen-values results of fine energy group structure Relative Nu-fission rate for Deviation in pcm Fast region Group structure K-effective SHEM-281 1.516920E+00 of ∆k / k with previous group (ν ∑ ) % Relative Deviation with previous group - 8.63650E-03 - f 309 1.516816E+00 10.4 8.60509E-03 0.363688994 323 1.516797E+00 1.9 8.59872E-03 0.074025954 87 Table 6.3 and 6.4 gives the data for each energy group structure for the Pebble FE and Prismatic hexagonal block, respectively. It was anticipated that the reaction rates in each energy group would increase with the energy group structure improvement, however, this did not happen in the groups wherein reaction rates decreased and the k-effective also decreased. Note that the changes are very small. Table 6.3: Pebble FE results PEBBLE Energy Range Group Structure Reaction Rates Thermal SHEM-281 Absorption (collisions/cm3-s) 7.35093E-01 2.58643E-01 6.26975E-03 Nu-Fission (fissions/cm3-s) 1.40377E+00 1.04519E-01 8.63650E-03 Average Flux (particles/cm2-s) 1.07132E+00 1.32069E+00 5.97364E-01 K-effective 309 Fast 1.51692 (convergence =2.79E-09) Absorption (collisions/cm3-s) 7.35102E-01 2.58647E-01 6.24979E-03 Nu-Fission (fissions/cm3-s) 1.40369E+00 1.04522E-01 8.60509E-03 Average Flux (particles/cm2-s) 1.07423E+00 1.32072E+00 5.96607E-01 K-effective 323 Epithermal 1.516816 (convergence = 1.171E-08) Absorption (collisions/cm3-s) 7.35095E-01 2.58656E-01 6.24692E-03 Nu-Fission (fissions/cm3-s) 1.40368E+00 1.04521E-01 8.59872E-03 Average Flux (particles/cm2-s) 1.07420E+00 1.32071E+00 5.96446E-01 K-effective 1.516797 (convergence = 2.92E-08) 88 Table 6.4: Prismatic block results PRISMATIC Energy Range Group Structure Reaction Rates Thermal Epithermal Fast SHEM-281 Absorption (collisions/cm3-s) 6.86963E-01 3.05376E-01 7.65777E-03 Nu-Fission (fissions/cm3-s) 1.31823E+00 1.31597E-01 1.11035E-02 309 323 Average Flux (particles/cm2-s) 1.46823E+00 2.25204E+00 1.03317E+00 K-effective 1.46094+1.53E-07 Absorption (collisions/cm3-s) 6.86974E-01 3.05382E-01 7.64310E-03 Nu-Fission (fissions/cm3-s) 1.31817E+00 1.31601E-01 1.10625E-02 Average Flux (particles/cm2-s) 1.47142E+00 2.25208E+00 1.03184E+00 K-effective 1.46083 (convergence = 1.39E-07) Absorption (collisions/cm3-s) 6.86965E-01 3.05393E-01 7.63941E-03 Nu-Fission (fissions/cm3-s) 1.31815E+00 1.31599E-01 1.10542E-02 Average Flux (particles/cm2-s) 1.47137E+00 2.25207E+00 1.03156E+00 K-effective 1.46080 (convergence = 1.26E-07) 89 6.3.2 Epithermal Energy Region Improvement Similarly, starting from the SHEM-281 energy group structure the epithermal energy region ( 3.14 ×10 −6 → 1.156 ×10−1 ) MeV was improved. The absorption reaction rate was used for comparisons in this energy range as well as the k-effective. The energy group numbers per region are given in Table 6.5 where both fast (37 groups) and thermal (81 groups) regions were kept constant. Table 6.5: Epithermal energy groups selected in the epithermal range SHEM 281-group structure improvement Group structure number Number of Groups in Different energy ranges Fast Epithermal Thermal Total 1 37 163 81 281 2 37 215 81 333 Table 6.6: Eigen-value resulted for epithermal energy group structure improvement Eigen-values results of fine energy group structure Relative Deviation in pcm Group structure K-effective of ∆k / k with previous group Absorption % Relative Deviation with previous group SHEM-281 1.51692E+00 - 2.58643E-01 - 333 1.51699E+00 6.6 2.58696E-01 0.02049157 90 The importance function plot is given in Figure 6.2 showing the reduction of energy group importance as the group structure was increased. The target criteria of 10 pcm relative deviation of ∆k / k and the 1 percent relative deviations of the objective function were met with the 333 energy group structure. The absorption reaction rates and k-effective comparisons results for energy groups are presented in Table 6.6. The additional reaction rates data for all regions for the energy group structure of interest are given in Table 6.7 and 6.8 for pebble FE and Prismatic hexagonal block respectively. 0.08 281-groups Importance 0.06 333-groups 0.04 0.02 0 1.00E-06 1.00E-04 1.00E-02 1.00E+00 Energy (MeV) Figure 6.2: Importance function for epithermal energy region for 281 and 333 groups 91 Table 6.7: Pebble FE results PEBBLE Energy Range Group Structure Reaction Rates Thermal SHEM-281 Absorption (collisions/cm3-s) 7.35093E-01 2.58643E-01 6.26975E-03 Nu-Fission (fissions/cm3-s) 1.40377E+00 1.04519E-01 8.63650E-03 Average Flux (particles/cm2-s) 1.07132E+00 1.32069E+00 5.97364E-01 K-effective 333 Epithermal Fast 1.51692 (convergence = 2.79E-09) Absorption (collisions/cm3-s) 7.35160E-01 2.58696E-01 6.14524E-03 Nu-Fission (fissions/cm3-s) 1.40380E+00 1.04659E-01 8.52606E-03 Average Flux (particles/cm2-s) 1.07430E+00 1.33637E+00 5.82209E-01 K-effective 1.51699 (convergence = 1.76E-08) 92 Table 6.8: Prismatic block results PRISMATIC Energy Range Group Structure Reaction Rates Thermal Epithermal Fast SHEM-281 Absorption (collisions/cm3-s) 6.86963E-01 3.05376E-01 7.65777E-03 Nu-Fission (fissions/cm3-s) 1.31823E+00 1.31597E-01 1.11035E-02 Average Flux (particles/cm2-s) 1.46823E+00 2.25204E+00 1.03317E+00 K-effective 333 1.46094 (convergence = 1.53E-07) Absorption (collisions/cm3-s) 6.87040E-01 3.05454E-01 7.50768E-03 Nu-Fission (fissions/cm3-s) 1.31829E+00 1.31793E-01 1.09601E-02 Average Flux (particles/cm2-s) 1.47153E+00 2.27932E+00 1.00693E+00 K-effective 1.46105 (convergence = 1.67E-07) 6.3.3 Thermal Energy Region Improvement The thermal region energy range is between 1.10 ×10−10 − 3.14 ×10−6 MeV . The epithermal (163 groups) and fast (37 groups) region were kept constant as the starting energy group structure (SHEM-281) was improved for the thermal region. The number of energy groups in each energy range is presented in Table 6.9 and the related importance function plot in Figure 6.3. Table 6.10 presents the comparisons for the selected reaction rates (absorption, neutron production) and the k-effective. The selected energy group structure for use in the final group structure for all regions is 313. 93 Table 6.9: Thermal groups selected in the thermal region SHEM 281-group structure improvement Group structure number Number of Groups in Different energy ranges Fast Epithermal Thermal Total 1 37 163 81 281 2 37 163 97 297 3 37 163 113 313 Table 6.10: Eigen-values resulted for thermal energy group structure improvement Eigen-values results of fine energy group structure Relative Deviation in pcm of ∆k / k with Group structure K-effective SHEM-281 1.516920E+00 (ν ∑ ) previous group Absorption % Relative Deviation with previous group - 7.35093E-01 - 1.40377E+00 - ( ∑a ) Nu-Fission % Relative Deviation with previous group f 297 1.516752E+00 16.8 7.35875E-01 0.106381097 1.40488E+00 0.079072783 313 1.51675E+00 0.6 7.35578E-01 0.040360116 1.40438E+00 0.035590228 94 0.3 0.25 281-groups 297-groups Importance 0.2 313-groups 0.15 0.1 0.05 0 1.00E-09 1.00E-08 1.00E-07 Energy (MeV) 1.00E-06 1.00E-05 Figure 6.3: Importance function for thermal energy region for 281, 297 and 313 groups 95 Table 6.11: Pebble FE results PEBBLE Energy Range Group Structure Reaction Rates Thermal Epithermal Fast SHEM-281 Absorption (collisions/cm3-s) 7.35093E-01 2.58643E-01 6.26975E-03 Nu-Fission (fissions/cm3-s) 1.40377E+00 1.04519E-01 8.63650E-03 Average Flux (particles/cm2-s) 1.07132E+00 1.32069E+00 5.97364E-01 K-effective 297 1.51692 (convergence = 2.79E-09) Absorption (collisions/cm3-s) 7.35875E-01 2.58078E-01 6.04495E-03 1.40488E+00 1.03443E-01 8.42752E-03 Average Flux (particles/cm2-s) 1.08391E+00 1.34062E+00 5.68356E-01 Nu-Fission (fissions/cm3-s) K-effective 313 1.516752 (convergence = 4.48E-08) Absorption (collisions/cm3-s) 7.35578E-01 2.58160E-01 6.26099E-03 1.40438E+00 1.03727E-01 8.63651E-03 Average Flux (particles/cm2-s) 1.08155E+00 1.31388E+00 5.97365E-01 Nu-Fission (fissions/cm3-s) K-effective 1.51675 (convergence = 3.97E-08) 96 Table 6.12: Prismatic block results PRISMATIC Energy Range Group Structure Reaction Rates Thermal Epithermal Fast SHEM-281 Absorption (collisions/cm3-s) 6.86963E-01 3.05376E-01 7.65777E-03 Nu-Fission (fissions/cm3-s) 1.31823E+00 1.31597E-01 1.11035E-02 Average Flux (particles/cm2-s) 1.46823E+00 2.25204E+00 1.03317E+00 K-effective 297 1.46094 (convergence = 1.53E-07) Absorption (collisions/cm3-s) 6.87903E-01 3.04718E-01 7.37759E-03 Nu-Fission (fissions/cm3-s) 1.31962E+00 1.30306E-01 1.08321E-02 Average Flux (particles/cm2-s) 1.48700E+00 2.28755E+00 9.82949E-01 K-effective 313 1.46075 (convergence = 8.05E-08) Absorption (collisions/cm3-s) 6.87543E-01 3.04796E-01 7.65777E-03 Nu-Fission (fissions/cm3-s) 1.31901E+00 1.30634E-01 1.11035E-02 Average Flux (particles/cm2-s) 1.48323E+00 2.24100E+00 1.03317E+00 K-effective 1.46075 (convergence = 1.40E-08) 97 6.3.4 Improved SHEM-281 Energy Group Structure for all Regions This section combines all the individually improved fast, epithermal and thermal energy regions to 407 energy group structure as shown in Table 6.13 and the new group structure is referred to as SHEM_TPN-407. The neutron cross sections were generated for this energy group structure and Pebble fuel element and Prismatic hexagonal block analysis were conducted as the same as previous sections. Then, the objective functions were compared to the SHEM-281 as the starting group structure, see Table 6.14 and Table 6.15. Table 6.13: Energy group structure improved from SHEM-281 to 407 SHEM 281-group structure improvement Group structure number Number of Groups in Different energy ranges Fast Epithermal Thermal Total 1 37 163 81 281 2 79 215 113 407 98 Table 6.14: Results for SHEM-281 and 407 energy group structures PEBBLE Energy Range Group Structure Reaction Rates Thermal Epithermal Fast SHEM-281 Absorption (collisions/cm3-s) 7.35093E-01 2.58643E-01 6.26975E-03 Nu-Fission (fissions/cm3-s) 1.40377E+00 1.04519E-01 8.63650E-03 Average Flux (particles/cm2-s) 1.07132E+00 1.32069E+00 5.97364E-01 K-effective 1.51692 (convergence = 2.79E-09) SHEM_TPN-407 Absorption (collisions/cm3-s) 7.35662E-01 2.58207E-01 6.13159E-03 Nu-Fission (fissions/cm3-s) 1.40454E+00 1.03868E-01 8.48825E-03 Average Flux (particles/cm2-s) 1.08167E+00 1.32958E+00 5.81286E-01 K-effective 1.516901 (convergence = 9.15E-09) 99 Table 6.15: Results for SHEM-281 and 407 energy group structures PRISMATIC Energy Range Group Structure Reaction Rates Thermal Epithermal Fast SHEM-281 Absorption (collisions/cm3-s) 6.86963E-01 3.05376E-01 7.65777E-03 Nu-Fission (fissions/cm3-s) 1.31823E+00 1.31597E-01 1.11035E-02 Average Flux (particles/cm2-s) 1.46823E+00 2.25204E+00 1.03317E+00 K-effective 1.46094 (convergence = 1.53E-07) SHEM_TPN-407 Absorption (collisions/cm3-s) 6.87645E-01 3.04868E-01 7.48962E-03 1.31920E+00 1.30833E-01 1.09108E-02 Average Flux (particles/cm2-s) 1.48344E+00 2.25833E+00 1.00532E+00 Nu-Fission (fissions/cm3-s) K-effective 1.46095 (convergence = 1.65E-07) The Pebble fuel element results are compared in Table 6.16 below. The comparisons are based on the relative deviation of ∆k / k in pcm for k-effective and percent relative deviation for reaction rates. Similarly, Table 6.17 shows the comparisons for the prismatic hexagonal block. It was observed that the fast region has higher reaction relative deviation in the fast region which is believed to be the effect from other changes related to the improvement in epithermal and thermal energy regions since during its improvement the relative deviations were very low. Epithermal and thermal energy regions relative deviation are below the selected target criteria of 1 percent. The relative deviation of ∆k / k also met the 10 pcm target criteria. 100 Table 6.16: Comparisons for SHEM_TPN-407 with SHEM-281 energy group structure for the pebble FE % relative deviation for three regions Relative Deviation in pcm of ∆k / k Reaction rates Thermal Epithermal with previous group Fast Absorption 0.077345303 -0.16885677 -2.253249157 Nu-Fission 0.054822219 -0.626757038 -1.746531971 k-effective Average Flux 0.956853754 0.6686322 -1.9 -2.765936217 Table 6.17: Comparisons for SHEM_TPN-407 with SHEM-281 energy group structure for the prismatic block % relative deviation Relative Deviation in pcm of ∆k / k Reaction rates Thermal Epithermal Fast Absorption 0.099179082 -0.166629492 -2.24511 Nu-Fission 0.073529412 -0.583950532 -1.76614 Average Flux 1.025319528 0.278524396 101 with previous group -2.77026 k-effective 1 Table 6.18 and 6.20 are the MCNP5 reference solution recalled from chapter 4 and are compared with the results for a new energy group structure (407 groups) in table 6.19 and 6.21 for both fuel types. The improvement is observed in the reaction rates relative deviations with no significant trend. Table 6.18: MCNP5 results for the pebble Revise to use MCNP5 values given in Chapter 4 Energy Range Reaction Rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 7.24977E-01 2.51396E-01 5.33901E-03 Nu-Fission (fissions/cm3-s) 1.40447E+00 1.01377E-01 8.65859E-03 Average Flux (particles/cm2-s) 1.09878E+00 1.32725E+00 5.97252E-01 1.52881 ± 0.00046 K-effective and deviation 102 Table 6.19: Comparisons of SHEM_TPN-407 energy group structure to MCNP5 results for the pebble FE % relative deviation criticality Relative Deviation in pcm of ∆k / k Reaction Rates Thermal Epithermal Fast Absorption 1.452496263 2.637657019 12.9260987 Nu-Fission 0.00468709 2.398653219 -2.006787014 K-effective Average Flux -1.582165109 with previous group -1190.9 0.175106886 -2.746718853 Table 6.20: MCNP5 results for the prismatic block Revise to use MCNP5 values given in Chapter 4 Energy Range Reaction Rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 6.97577E-01 2.97869E-01 7.38072E-03 Nu-Fission (fissions/cm3-s) 1.37041E+00 1.30683E-01 1.08548E-02 Average Flux (particles/cm2-s) 1.45410E+00 2.19054E+00 9.41143E-01 1.46946 ± 0.00156 K-effective and deviation 103 Table 6.21: Comparisons of SHEM_TPN-407 energy group structure to MCNP5 results for the prismatic block % relative deviation Relative Deviation in pcm of ∆k / k Reaction Rates Thermal Epithermal Fast Absorption -1.44432 2.29573 1.45406 Nu-Fission -3.88186 0.11465 0.51288 Average Flux 1.97817 3.00192 6.38377 with previous group K-effective -851.4 6.4 SHEM-361 Energy Group Structure Results Similarly, the SHEM-361 energy group structure was improved for fast, epithermal and thermal regions separately. After each region improvements, the energy group structures selected for different regions are combined to make a complete improved energy group structure. Thus the effect of each region is not underestimated. 104 6.4.1 Fast Energy Region Improvement The fast energy region as previously selected is 1.156 ×10−6 → 1.964 ×10+1 MeV . The starting energy group structure is SHEM-361. The same target criteria of 10 pcm relative deviation of ∆k / k and 1 percent relative deviation of the objective function are used. The reaction rate used for the fast energy region was the total neutron production (Nu-Fission) and the k-effective. As the fast region was being improved, the epithermal (243 groups) and thermal (81 groups) regions remained constant. The number of energy groups obtained during fast energy region improvement is shown in Table 6.22. The importance function for all energy groups is presented in figure 6.4 showing a significant reduction of the importance function as the energy groups are being improved. Table 6.22: Fast group selected in the fast range SHEM 361-group structure improvement Group structure number Number of Groups in Different energy ranges Fast Epithermal Thermal Total 1 37 243 81 361 2 65 243 81 389 3 79 243 81 403 105 0.1 361 groups 389 groups 0.08 Importance 403 groups 0.06 0.04 0.02 0 1.00E-01 1.00E+00 1.00E+01 Energy (MeV) Figure 6.4: Importance function for fast energy region for 361,389 and 403 groups The relative deviation differences for ∆k / k and percent relative deviation for the selected reaction rates are given in Table 6.23. Both target criteria’s were met by improving the SHEM361 to 389 groups, however 9.9 was relatively too close to the 10 pcm , so the decision was made to continue with another improvement that led to 403 energy group structures. Therefore 403 energy group structure was selected for further use. Table 6.24 and 6.25 present additional information of the three regions reaction rates obtained during the energy group structure improvement for the pebble fuel element and prismatic hexagonal block respectively. 106 Table 6.23: Eigen-value results for fast energy group structure improvement Eigen-values results of fine energy group structure Relative Deviation in pcm of ∆k / k Nu-fission rate for Fast region (ν ∑ ) % Relative Deviation with previous group Group structure K-effective with previous group 361 1.51705E+00 - 8.63635E-03 389 1.516947E+00 9.9 8.60508E-03 0.36207 403 1.516928E+00 1.9 8.598720E-03 0.07391 107 f Table 6.24: Pebble FE results PEBBLE Energy Range Group Structure Reaction Rates 361 Absorption (collisions/cm3-s) 7.350480E-01 2.586860E-01 6.261710E-03 Nu-Fission (fissions/cm3-s) 1.403680E+00 1.047250E-01 8.636350E-03 Thermal Epithermal Fast Average Flux (particles/cm2-s) 1.071270E+00 1.320840E+00 5.973630E-01 389 K-effective 1.517046 (convergence = 3.44E-09) Absorption (collisions/cm3-s) 7.350610E-01 2.586860E-01 6.249900E-03 Nu-Fission (fissions/cm3-s) 1.403610E+00 1.047300E-01 8.605080E-03 Average Flux (particles/cm2-s) 1.074170E+00 1.320870E+00 5.966070E-01 403 K-effective 1.516947 (convergence = 3.45E-08) Absorption (collisions/cm3-s) 7.350540E-01 2.586940E-01 6.247040E-03 Nu-Fission (fissions/cm3-s) 1.403600E+00 1.047290E-01 8.598720E-03 Average Flux (particles/cm2-s) 1.074140E+00 1.320870E+00 5.964460E-01 K-effective 1.516928 (convergence = 3.08E-08) 108 Table 6.25: Prismatic block results PRISMATIC Energy Range Group Structure Reaction Rates Thermal Epithermal Fast 361 Absorption (collisions/cm3-s) 6.86881E-01 3.05456E-01 7.65884E-03 Nu-Fission (fissions/cm3-s) 1.31808E+00 1.31889E-01 1.11035E-02 Average Flux (particles/cm2-s) 1.46805E+00 2.25232E+00 1.03317E+00 K-effective 389 1.46107 (convergence = 3.44E-07) Absorption (collisions/cm3-s) 6.86902E-01 3.05450E-01 7.64322E-03 Nu-Fission (fissions/cm3-s) 1.31803E+00 1.31894E-01 1.10625E-02 Average Flux (particles/cm2-s) 1.47126E+00 2.25239E+00 1.03184E+00 K-effective 403 1.46099 (convergence = 2.99E-08) Absorption (collisions/cm3-s) 6.86893E-01 3.05462E-01 7.63965E-03 Nu-Fission (fissions/cm3-s) 1.31801E+00 1.31892E-01 1.10542E-02 Average Flux (particles/cm2-s) 1.47122E+00 2.25237E+00 1.03156E+00 K-effective 1.46096 (convergence = 1.84E-07) 109 6.4.2 Epithermal Energy Region Improvement ( ) During the improvement of epithermal energy region 3.142 ×10−6 → 1.156 ×10−1 MeV for SHEM-361 energy group structure the target criteria’s were met at 455 energy group structure (Table 6.26). The fast (37 groups) and thermal (81 groups) regions were kept constant during the epithermal region improvement. Significant improvement in the importance function is shown in Figure 6.5. The relative deviation in pcm of ∆k / k and percent relative deviation of the selected reaction rates (absorption rate) are given in Table 6.27. Pebble fuel element and prismatic hexagonal block results also given in Table 6.28 and Table 6.29 respectively. Table 6.26: Epithermal energy groups selected in the epithermal range SHEM 361-group structure improvement Group structure number Number of Groups in Different Energy Ranges Fast Epithermal Thermal Total 1 37 243 81 361 2 37 337 81 455 110 0.1 361 groups 0.08 Importance 455-groups 0.06 0.04 0.02 0 1.00E-06 1.00E-04 1.00E-02 1.00E+00 Energy (MeV) Figure 6.5: Importance function for epithermal energy region for 361 and 455 groups Table 6.27: Eigen-value resulted for epithermal energy group structure improvement Eigen-values results of fine energy group structure Group structure K-effective Relative Deviation in pcm of ∆k / k with previous group 361 1.51705E+00 - 2.58686E-01 - 455 1.516965E+00 8.1 2.58849E-01 -0.06301 111 Absorption ( ∑a ) % Relative Deviation with previous group Table 6.28: Pebble FE results PEBBLE Energy Range Group Structure Reaction Rates Thermal 361 Absorption (collisions/cm3-s) 7.35048E-01 2.58686E-01 6.26171E-03 Nu-Fission (fissions/cm3-s) 1.40368E+00 1.04725E-01 8.63635E-03 Epithermal Fast Average Flux (particles/cm2-s) 1.07127E+00 1.32084E+00 5.97363E-01 K-effective 455 1.51705 (convergence = 3.44E-09) Absorption (collisions/cm3-s) 7.35051E-01 2.58849E-01 6.09478E-03 Nu-Fission (fissions/cm3-s) 1.40359E+00 1.04896E-01 8.47538E-03 Average Flux (particles/cm2-s) 1.07414E+00 1.34333E+00 5.75134E-01 K-effective and precision 1.51697 (convergence = 5.78E-08) 112 Table 6.29: Prismatic block results PRISMATIC Energy Range Group Structure Reaction Rates Thermal Epithermal Fast 361 Absorption (collisions/cm3-s) 6.86881E-01 3.05456E-01 7.65884E-03 Nu-Fission (fissions/cm3-s) 1.31808E+00 1.31889E-01 1.11035E-02 Average Flux (particles/cm2-s) 1.46805E+00 2.25232E+00 1.03317E+00 K-effective 455 1.46107 (convergence = 3.44E-08) Absorption (collisions/cm3-s) 6.86888E-01 3.05664E-01 7.44161E-03 Nu-Fission (fissions/cm3-s) 1.31800E+00 1.32109E-01 1.08942E-02 Average Flux (particles/cm2-s) 1.47120E+00 2.29130E+00 9.94678E-01 K-effective 1.46101 (convergence = 1.59E-07) 113 6.4.3 Thermal Energy Region Improvement ( ) In thermal region 0 → 3.14 ×10−6 MeV , the selected reaction rates for improving the energy group structure were absorption and nu-fission and then k-effective. The fast and epithermal energy regions were kept constant as well. The number of energy group structures obtained during the improvement is given in Table 6.38. Improving the SHEM-361 to 393 did not meet the 10 pcm target criteria of ∆k / k , while both absorption rate and nu-fission rate were met. Then the energy group structure was further improved to 395 groups, it is also importance to note that the difference between 393 and 395 groups is not just two groups, but some energy group structures with less importance were taken out while some energy group structure were subdivided into two or more energy groups leading to 395 energy groups. Then all the target criteria’s were met and 395 energy group structures were selected for further use. The importance function is shown in Figure 6.6. Table 6.30: Thermal groups selected in the thermal region SHEM 281-group structure improvement Group structure number Number of Groups in Different Energy Ranges Fast Epithermal Thermal Total 1 37 243 81 361 2 37 243 113 393 3 37 243 115 395 114 0.3 361 groups 393-groups 0.25 Importance 395 groups 0.2 0.15 0.1 0.05 0 1.00E-09 1.00E-08 1.00E-07 1.00E-06 1.00E-05 Energy (MeV) Figure 6.6: Importance function for thermal energy region for 361, 393 and 395 groups The relative deviation in pcm of ∆k / k and percent relative deviation of selected reaction rates is given in Table 6.31. The results for all regions of both pebble fuel element and prismatic hexagonal block are given in Table 6.32 and Table 6.33. 115 Table 6.31: Eigen-values resulted for thermal energy group structure improvement Eigen-values results of fine energy group structure Relative Deviation in pcm of ∆k / k ( ∑a ) % Relative Deviation with previous group 7.35048E-01 - Nu-Fission Group structure K-effective with previous group 361 1.517046E+00 - 393 1.516874E+00 17.2 7.35535E-01 -0.066254177 1.40430E+00 395 1.516877E+00 -0.3 7.355350E-01 Absorption 116 0 (ν ∑ ) % Relative Deviation with previous group 1.40368E+00 - f 1.404300E+00 -0.04417 0 Table 6.32: Pebble FE results PEBBLE Energy Range Group Structure 361 Reaction Rates Thermal Absorption (collisions/cm3-s) 7.350480E-01 Nu-Fission (fissions/cm3-s) Epithermal Fast 2.586860E-01 6.261710E-03 1.403680E+00 1.047250E-01 8.636350E-03 Average Flux (particles/cm2-s) 1.071270E+00 1.320840E+00 5.973630E-01 K-effective 393 1.517046 (convergence = 3.44E-09) Absorption (collisions/cm3-s) 7.355350E-01 Nu-Fission (fissions/cm3-s) 2.581980E-01 6.261940E-03 1.404300E+00 1.039360E-01 8.636490E-03 Average Flux (particles/cm2-s) 1.081480E+00 1.314040E+00 5.973640E-01 K-effective 395 1.516874 (convergence = 2.93E-08) Absorption (collisions/cm3-s) 7.355350E-01 Nu-Fission (fissions/cm3-s) 2.581980E-01 6.262060E-03 1.404300E+00 1.039360E-01 8.636500E-03 Average Flux (particles/cm2-s) 1.081550E+00 1.314040E+00 5.973640E+00 K-effective 1.516877 (convergence = 7.45E-08) 117 Table 6.33: Prismatic block results PRISMATIC Energy Range Group Structure Reaction Rates Thermal Epithermal Fast 361 Absorption (collisions/cm3-s) 6.86881E-01 3.05456E-01 7.65884E-03 Nu-Fission (fissions/cm3-s) 1.31808E+00 1.31889E-01 1.11035E-02 393 395 Average Flux (particles/cm2-s) 1.46805E+00 2.25232E+00 1.03317E+00 K-effective 1.46107 (convergence = 3.44E-07) Absorption (collisions/cm3-s) 6.87471E-01 3.04865E-01 7.65908E-03 Nu-Fission (fissions/cm3-s) 1.31887E+00 1.30926E-01 1.11035E-02 Average Flux (particles/cm2-s) 1.48307E+00 2.24130E+00 1.03317E+00 K-effective 1.46090 (convergence = 1.06E-07) Absorption (collisions/cm3-s) 6.87471E-01 3.04865E-01 7.65896E-03 Nu-Fission (fissions/cm3-s) 1.31887E+00 1.30926E-01 1.11035E-02 Average Flux (particles/cm2-s) 1.48317E+00 2.24130E+00 1.03317E+00 K-effective 1.46090 (convergence = 9.01E-08) 118 6.4.4 Improved Energy Group Structure for all Regions (SHEM-361) The energy group structure selected during the specific regions improvement are combined leading to 531 energy groups referred to as SHEM_TPN-531. The library was generated for this group structure and used for the analysis of the pebble FE and prismatic hexagonal block benchmark problems. Reaction rates and k-effetive were compared with the ones from the original SHEM-361 energy group structure as shown in Table 6.37 and 6.38. The MCNP5 results were again recalled (Table 6.39 and 6.41) and they were compared with the results obtained from the new energy group structure analysis (see Table 6.40 and 6.42). Table 6.34: Energy group structure improved from SHEM-361 to SHEM_TPN-531 SHEM 361-group structure improvement Group structure number Number of Groups in Different energy ranges Fast Epithermal Thermal Total 1 37 243 81 361 2 79 337 115 531 119 Table 6.35: Reaction rates for SHEM-361 and SHEM_TPN-531 energy group structures PEBBLE Energy Range Group Structure SHEM-361 Reaction Rates Thermal Epithermal Fast 2.58686E-01 6.26171E-03 1.40368E+00 1.04725E-01 8.63635E-03 Absorption (collisions/cm3-s) 7.35048E-01 Nu-Fission (fissions/cm3-s) Average Flux (particles/cm2-s) 1.07127E+00 1.32084E+00 5.97363E-01 K-effective 1.51705 (convergence = 3.44E-08) SHEM_TPN-531 Absorption (collisions/cm3-s) 7.35554E-01 Nu-Fission (fissions/cm3-s) 2.58361E-01 6.08033E-03 1.40434E+00 1.04105E-01 8.43757E-03 Average Flux (particles/cm2-s) 1.08158E+00 1.33654E+00 5.74212E-01 K-effective 1.51688 (convergence = 2.45E-08) 120 Table 6.36: Reaction rates for SHEM-361 and SHEM_TPN-531 energy group structures PRISMATIC Energy Range Group Structure Reaction Rates Thermal Epithermal Fast SHEM-361 Absorption (collisions/cm3-s) 6.86881E-01 3.05456E-01 7.65884E-03 Nu-Fission (fissions/cm3-s) 1.31808E+00 1.31889E-01 1.11035E-02 Average Flux (particles/cm2-s) 1.46805E+00 K-effective 2.25232E+00 1.03317E+00 1.46107 (convergence = 3.44E-07) SHEM_TPN-531 Absorption (collisions/cm3-s) 6.87493E-01 3.05078E-01 7.42278E-03 1.31892E+00 1.31148E-01 1.08449E-02 Average Flux (particles/cm2-s) 1.48322E+00 2.28032E+00 9.93066E-01 Nu-Fission (fissions/cm3-s) K-effective 1.46091 (convergence = 9.21E-09) 121 Table 6.37: Comparisons for SHEM_TPN-531 with SHEM-361 energy group structure for the pebble FE % relative deviation Relative Deviation in pcm Reaction rates Thermal Epithermal Fast Absorption -0.06884 0.12563 2.89665 Nu-Fission -0.04701 0.59203 2.30167 Average Flux -0.96241 -1.18864 3.87553 of ∆k / k with previous group k-effective 16.3 Table 6.38: Comparisons for SHEM_TPN-531 with SHEM-361 energy group structure for the prismatic block % relative deviation Reaction rates Thermal Epithermal Fast Absorption -0.08910 0.12375 3.08219 Nu-Fission -0.06373 0.56184 2.32899 Average Flux -1.03334 -1.24316 3.88165 122 Relative Deviation in pcm of ∆k / k with previous group k-effective 15.8 Table 6.39: MCNP5 results for the pebble FE Revise to use MCNP5 values given in Chapter 4 Energy Range Reaction Rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 7.24977E-01 2.51396E-01 5.33901E-03 Nu-Fission (fissions/cm3-s) 1.40447E+00 1.01377E-01 8.65859E-03 Average Flux (particles/cm2-s) 1.09878E+00 1.32725E+00 5.97252E-01 1.52881 ± 0.00046 K-effective and deviation Table 6.40: Comparisons of SHEM_TPN-531 energy group structures to MCNP5 results for the pebble FE % relative deviation Criticality Relative Deviation in pcm of ∆k / k Reaction rates Thermal Epithermal Fast Absorption 1.43803 2.69569 12.19203 Nu-Fission -0.00955 2.62085 -2.61949 Average Flux -1.59062 0.69494 -4.01251 with previous group k-effective -1192.7 It is important to compare the deviation in Table 6.37 with the corresponding deviation for the Pebble fuel element in Table 6.40. Only the thermal nu-fission reaction rate deviation was 123 decreased by increasing the number of energy groups to 531. However, the fast absorption reaction rate remained high at 12 %. The increase in energy groups to 531 showed no improvement in the k-effective. Table 6.41: MCNP5 results for the prismatic block Revise to use MCNP5 values given in Chapter 4 Energy Range Reaction rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 6.97577E-01 2.97869E-01 7.38072E-03 Nu-Fission (fissions/cm3-s) 1.37041E+00 1.30683E-01 1.08548E-02 Average Flux (particles/cm2-s) 1.45410E+00 2.19054E+00 9.41143E-01 1.46946 ± 0.00156 K-effective and deviation Table 6.42: Comparisons of SHEM_TPN-531 energy group structures to MCNP5 results for the pebble FE % relative deviation Criticality Relative Deviation in pcm of ∆k / k Reaction rates Thermal Epithermal Fast Absorption -1.46675 2.36299 0.56668 Nu-Fission -3.90392 0.35456 -0.09166 Average Flux 1.96363 3.93731 5.22859 124 with previous group k-effective -855.1 Similar comparison can be made for the Prismatic hexagonal block by comparing Table 6.38 to Table 6.42. Again the k-effective was not improved using the 531 energy group structure whereas the nu-fission reaction rate remained relatively high at 3.9 %. In fact, the 531 energy group structure increases the deviation. 6.5 General Atomics-193 Energy Group Structure General Atomics energy group structure was divided into three energy regions (fast, epithermal and thermal) and each region was improved separately. Similar target criteria’s are used for the improvement of GA-193 energy group structure, which are 10 pcm relative deviation of ∆k / k and 1 percent deviation of reaction rates. 6.5.1 Fast Energy Region Improvement The fast energy region of GA-193 which is between 1.111×10−1 → 1.492 ×10+1 MeV has 49 groups as shown in Table 6.43. This was increased to 83 groups while keeping the epithermal and thermal regions constant. The relative deviations for k-effective and percent relative deviation for nu-fission rate are presented in Table 6.44. These were met with the group structure improvement to 227 energy groups. 125 Table 6.43: Fast group selected in the fast range GA 193-group structure improvement Group structure number Number of Groups in Different energy ranges Fast Epithermal Thermal Total 1 49 42 102 193 2 83 42 102 227 Table 6.44: Eigen-values resulted for fast energy group structure improvement Eigen-values results of fine energy group structure Relative Deviation Nu-fission rate for Fast region in pcm of ∆k / k Group structure K-effective with previous group (ν ∑ ) 193 1.30713E+00 - 8.71626E-03 227 1.30712E+00 0.5 8.70836E-03 f % Relative Deviation with previous group 0.090635 The importance function plotted in Figure 6.13. The data for the pebble fuel element and prismatic hexagonal block results for this region are given in Table 6.45 and 6.46, where a slight decrease in both k-effective and nu-fission rate was observed. 126 0.016 0.014 GA-193 0.012 Importance GA-227 0.01 0.008 0.006 0.004 0.002 0 1.00E-01 1.00E+00 1.00E+01 Energy (MeV) 1.00E+02 Figure 6.7: Importance function for fast energy region for 193 and 227 groups 127 Table 6.45: Reaction rates for GA-193 and 227 energy group structures PEBBLE Energy Range Group Structure Reaction Rates Thermal Epithermal Fast GA-193 Absorption (collisions/cm3-s) 6.25219E-01 3.68398E-01 6.36363E-03 Nu-Fission (fissions/cm3-s) 1.11943E+00 1.04135E-01 8.71626E-03 Average Flux (particles/cm2-s) 8.98270E-01 1.30071E+00 6.10101E-01 K-effective 227 1.30713 (convergence = 4.22E-08) Absorption (collisions/cm3-s) 6.25221E-01 3.68399E-01 6.36101E-03 Nu-Fission (fissions/cm3-s) 1.19428E+00 1.04135E-01 8.70836E-03 Average Flux (particles/cm2-s) 8.98254E-01 1.30708E+00 6.09821E-01 K-effective 1.30712 (convergence = 8.42E-08) 128 Table 6.46: Reaction rates for GA-193 and 227 energy group structures PRISMATIC Energy Range Group Structure Reaction Rates Thermal Epithermal Fast 193 Absorption (collisions/cm3-s) 5.609600E-01 4.312260E-01 7.790330E-03 Nu-Fission (fissions/cm3-s) 1.076820E+00 1.307680E-01 1.120650E-02 Average Flux (particles/cm2-s) 1.177660E+00 K-effective 227 2.220720E+00 1.055180E+00 1.218799 (convergence = 5.02E-07) Absorption (collisions/cm3-s) 5.60962E-01 4.31226E-01 7.78699E-03 Nu-Fission (fissions/cm3-s) 1.07683E+00 1.30769E-01 1.11963E-02 Average Flux (particles/cm2-s) 1.17764E+00 2.22072E+00 1.05469E+00 K-effective 1.21879 (convergence = 7.80E-08) 129 6.5.2 Epithermal Energy Region Improvement The epithermal energy region of 3.059 ×10−6 → 1.111×10−1 MeV was improved from 42 groups to 334 groups. The energy group structures selected in this region is given in Table 6.47, while the relative deviation for the k-effective and the percent relative deviation for the absorption reaction rate are given in Table 6.56. The epithermal region improvement of GA-193 was challenging due to the instability of the reaction rates behavior. The reaction rates vary with no trend as the energy group structures are increased. The k-effective showed a high sensitivity on the energy group structure changes. This is attributed to the fact that GA-193 was developed for fast energy reactors, which use thorium fuel cycle therefore it is obvious that the resonances and other consideration made were based on the thorium fuel cycle physics and also there are breeding properties involved in such reactors. The target criteria of 1 percent deviation for reaction rates was met at 235 groups, however the k-effective was higher than the targeted value. Therefore the improvement continued with intention to reach the target 10 pcm . But, the keffective high sensitivity observed as the work progresses leading into accepting the closest possible value to 10 pcm target criteria, which is 17.9 pcm . Therefore 485 energy groups were selected for this region. 130 Table 6.47: Epithermal group selected in the epithermal range GA-193 group structure improvement Group structure number Number of Groups in Different energy ranges Fast Epithermal Thermal Total 1 49 42 102 193 2 49 84 102 235 3 49 168 102 319 4 49 204 102 355 5 49 334 102 485 Table 6.48: Eigen-values resulted for epithermal energy group structure improvement Eigen-values results of fine energy group structure Relative Deviation in pcm Absorption ∆k / k with previous group ( ∑a ) % Relative Deviation with previous group Group structure K-effective 193 1.30713E+00 235 1.30675E+00 37.8 3.68842E-01 0.120376747 319 1.32884E+00 2208.9 3.56242E-01 3.416096865 355 1.32166E+00 717.4 3.59880E-01 1.01089252 399 1.36102E+00 3935.4 3.39782E-01 5.584639324 485 1.36120E+00 17.9 3.39685E-01 0.028547716 3.68398E-01 131 0.03 0.025 Importance 0.02 GA-193 GA-235 GA-319 GA-355 GA-399 GA-485 0.015 0.01 0.005 0 1.00E-06 1.00E-04 1.00E-02 Energy (MeV) 1.00E+00 Figure 6.8: Importance function for epithermal energy region for 193, 235, 319, 355, 399 and 485 groups 132 Table 6.49: Reaction rates for GA-193, 235, 319, 355, 399, and 485 energy group structures PEBBLE Energy Range Group Structure 193 Reaction Rates 3 Absorption (collisions/cm -s) 3 Nu-Fission (fissions/cm -s) 2 Average Flux (particles/cm -s) Thermal Epithermal Fast 6.25219E-01 3.68398E-01 6.36363E-03 1.11943E+00 1.04135E-01 8.71626E-03 8.98270E-01 1.30071E+00 6.10101E-01 K-effective and precision 235 Absorption (collisions/cm3 -s) 3 Nu-Fission (fissions/cm -s) 2 Average Flux (particles/cm -s) 1.30713E+00 (precision = 4.22E-08) 6.24948E-01 3.68842E-01 6.20890E-03 1.19375E+00 1.04416E-01 8.57722E-03 8.97862E-01 1.32643E+00 5.91044E-01 K-effective and precision 319 Absorption (collisions/cm3 -s) 3 1.30675+1.36E-07 6.37583E-01 Nu-Fission (fissions/cm -s) 1.21789E+00 1.02432E-01 8.51358E-03 9.16016E-01 1.32989E+00 5.82311E-01 Absorption (collisions/cm3 -s) 3 Nu-Fission (fissions/cm -s) 2 Average Flux (particles/cm -s) 1.32884+6.56E-08 6.33980E-01 3.59880E-01 6.14268E-03 1.21101E+00 1.02142E-01 8.51358E-03 9.10839E-01 1.32941E+00 5.82311E-01 K-effective and precision 399 Absorption (collisions/cm3 -s) 3 Nu-Fission (fissions/cm -s) 2 Average Flux (particles/cm -s) 1.32166+8.73E-08 6.54072E-01 3.39782E-01 6.14288E-03 1.24939E+00 1.03116E-01 8.51360E-03 9.39705E-01 1.33678E+00 5.82312E-01 K-effective and precision 485 6.14309E-03 Average Flux (particles/cm2-s) K-effective and precision 355 3.56242E-01 Absorption (collisions/cm3 -s) 3 Nu-Fission (fissions/cm -s) 2 Average Flux (particles/cm -s) 1.36102+4.11E-08 5.64199E-01 3.39685E-01 6.11164E-03 1.24963E+00 1.03082E-01 8.48345E-03 1.34103E+00 5.78120E-01 9.39888E-01 K-effective and precision 1.36120+4.81E-08 133 Table 6.50: Reaction rates for GA-193, 235, 319, 355, 399, 485 energy group structures PRISMATIC Energy Range Group Structure 193 Reaction Rates Thermal 3 5.609600E-01 4.312260E-01 7.790330E-03 Nu-Fission (fissions/cm3-s) 1.076820E+00 1.307680E-01 1.120650E-02 Average Flux (particles/cm2-s) 1.177660E+00 2.220720E+00 1.055180E+00 1.218799+5.02E-07 Absorption (collisions/cm3 -s) 3 Nu-Fission (fissions/cm -s) 2 Average Flux (particles/cm -s) 5.60578E-01 4.31830E-01 7.59023E-03 1.07609E+00 1.31155E-01 1.10260E-02 1.17684E+00 2.25431E+00 1.02219E+00 K-effective and precision 319 1.21827+3.86E-07 Absorption (collisions/cm3 -s) 5.76707E-01 Nu-Fission (fissions/cm3-s) 1.10705E+00 1.28131E-01 1.09433E-02 Average Flux (particles/cm2-s) 1.21070E+00 2.25899E+00 1.00706E+00 K-effective and precision 355 7.50419E-03 5.75205E-01 4.17293E-01 7.50414E-03 Nu-Fission (fissions/cm -s) 1.10417E+00 1.27779E-01 1.09433E-02 Average Flux (particles/cm2-s) 1.20755E+00 2.25882E+00 1.00707E+00 K-effective and precision 1.24892+1.19E-07 Absorption (collisions/cm3 -s) 3 Nu-Fission (fissions/cm -s) 2 Average Flux (particles/cm -s) 5.99303E-01 3.93188E-01 7.50431E-03 1.15043E+00 1.29395E-01 1.09434E-02 1.25814E+00 2.27443E+00 1.00707E+00 K-effective and precision 485 4.15752E-01 1.24612+1.15E-07 Absorption (collisions/cm3 -s) 3 399 Fast Absorption (collisions/cm -s) K-effective and precision 235 Epithermal 1.29077+3.67E-07 Absorption (collisions/cm3 -s) 5.99483E-01 3.93048E-01 7.46356E-03 Nu-Fission (fissions/cm3-s) 1.15077E+00 1.29341E-01 1.09042E-02 Average Flux (particles/cm2-s) 1.25851E+00 2.28181E+00 9.99809E-01 K-effective and precision 1.29102+1.23E-07 134 6.5.3 Thermal Energy Region Improvement ( ) Thermal energy region 5.000 ×10−10 → 3.059 ×10−6 MeV has 102 energy groups. The fast (49 groups) and epithermal (42 groups) are kept constant during thermal region improvement. During the improvement of the GA-193 to 205 groups, the selected reaction rates (absorption) and the k-effective met the target criteria of 1 percent deviation and the 10 pcm relative deviation of ∆k / k . However, the nu-fission did not meet the target criteria. Therefore the 205 energy group structure was further improved to 211 where all reaction rates and the k-effective target criteria’s were met. A slight increase in the absorption rate and nu-fission rate was observed from GA-193 energy group to 205 energy group, which is a positive improvement when compared to the reference solution from the MCNP5. The k-effective is decreasing, which is different from what was expected (Table 6.52). Table 6.51: Thermal groups selected in the thermal region GA193-group structure improvement Group structure number Number of Groups in Different energy ranges Fast Epithermal Thermal Total 1 49 42 102 193 2 49 42 114 205 3 49 42 120 211 135 Table 6.52: Eigen-values resulted for thermal energy group improvement Eigen-values results of fine energy group structure Relative Deviation in pcm of % Relative % Relative ∆k / k with Deviation Deviation ν ∑f ( ∑ a ) with previous previous with previous group Absorption group Nu-Fission group ( ) Group structure K-effective 193 1.307125E+00 - 205 1.307042E+00 8.3 6.25886E-01 -0.1066826 1.19502E+00 -6.7528298 211 1.30703E+00 0.9 6.25885E-01 0.0001598 1.19501E+00 0.0008368 6.25219E-01 - 1.11943E+00 - The importance function plotted in Figure 6.9 shows a high importance in the energy ranges of 5.50 ×10−8 → 2.18 ×10−7 MeV and that of 2.38 ×10−6 → 3.06 ×10−6 MeV . This was reduced as the energy group structure was divided into two or more groups thus improving the reaction rates results. Table 6.53 and 6.54 presents the reaction rates of all regions for the Pebble fuel element and prismatic hexagonal block respectively. The changing of one region results in the changes in the reaction rates for all regions showing that all regions energy group structure has effect from any changes that are happening in the neighboring regions. 136 0.08 GA-193 importance 0.06 GA-205 GA-211 0.04 0.02 0 1.00E-09 1.00E-08 1.00E-07 1.00E-06 1.00E-05 Energy (MeV) Figure 6.9: Importance function for thermal energy region for 193, 205 and 211 groups 137 Table 6.53: Pebble FE results PEBBLE Energy Range Group Structure Reaction Rates Thermal Epithermal Fast 193 Absorption (collisions/cm3-s) 6.25219E-01 3.68398E-01 6.36363E-03 Nu-Fission (fissions/cm3-s) 1.11943E+00 1.04135E-01 8.71626E-03 Average Flux (particles/cm2-s) 8.98270E-01 1.30071E+00 6.10101E-01 K-effective 205 1.30713 (convergence = 4.22E-08) Absorption (collisions/cm3-s) 6.258860E-01 3.677320E-01 6.363510E-03 Nu-Fission (fissions/cm3-s) 1.195020E+00 1.033030E-01 8.716260E-03 Average Flux (particles/cm2-s) 9.159530E-01 1.290220E+00 6.101010E-01 K-effective 211 1.307042 (convergence = 1.38E-07) Absorption (collisions/cm3-s) 6.25885E-01 3.67732E-01 6.36363E-03 Nu-Fission (fissions/cm3-s) 1.19501E+00 1.03303E-01 8.71629E-03 Average Flux (particles/cm2-s) 9.16074E-01 1.29022E+00 6.10103E-01 K-effective 1.30703 (convergence = 2.13E-07) 138 Table 6.54: Prismatic block results PRISMATIC Energy Range Group Structure 193 Reaction Rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 5.609600E-01 4.312260E-01 7.790330E-03 Nu-Fission (fissions/cm3-s) 1.076820E+00 1.307680E-01 1.120650E-02 Average Flux (particles/cm2-s) 1.177660E+00 2.220720E+00 1.055180E+00 K-effective 205 1.218799 (convergence = 5.02E-07) Absorption (collisions/cm3-s) 5.617200E-01 4.304660E-01 7.790330E-03 Nu-Fission (fissions/cm3-s) 1.077700E+00 1.297970E-01 1.120660E-02 Average Flux (particles/cm2-s) 1.205090E+00 2.194490E+00 1.055180E+00 K-effective 211 1.218705 (convergence = 5.83E-08) Absorption (collisions/cm3-s) 5.61720E-01 4.30465E-01 7.78985E-03 Nu-Fission (fissions/cm3-s) 1.07769E+00 1.29796E-01 1.12065E-02 Average Flux (particles/cm2-s) 1.20526E+00 2.19448E+00 1.05518E+00 K-effective 1.21870 (convergence = 3.86E-07) 139 6.5.4 Improved GA-193 Energy Group Structure for all Regions Three energy group structures selected during each region’s improvement are combined and totaling to 537 and is referred to as GA_TPN-537. The library was generated for this final energy group structure and used for the analysis of the pebble FE and prismatic hexagonal block. Table 6.55 gives the number of the starting and final energy groups. The reaction rates for the initial GA-193 and 537 are given in Table 6.56 and 6.57 for the pebble FE and prismatic hexagonal block. The reaction rates were compared with the ones from the original GA-193 energy group structure as shown in Table 6.58 and 6.59. Table 6.55: Energy group structure improved from GA-193 to GA_TPN-537 GA 193-group structure improvement Group structure number Number of Groups in different energy ranges Fast Epithermal Thermal Total 1 49 42 102 193 2 83 334 120 537 140 Table 6.56: Reaction rates for GA-193 and GA_TPN-537 energy group structures PEBBLE Energy Range Group Structure 193 Reaction Rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 6.25219E-01 3.68398E-01 6.36363E-03 Nu-Fission (fissions/cm3-s) 1.11943E+00 1.04135E-01 8.71626E-03 Average Flux (particles/cm2-s) 8.98270E-01 1.30071E+00 6.10101E-01 K-effective 537 1.30713 (convergence = 4.22E-08) Absorption (collisions/cm3-s) 6.549040E-01 3.389820E-01 6.109270E-03 Nu-Fission (fissions/cm3-s) 1.250420E+00 1.022130E-01 8.475520E-03 Average Flux (particles/cm2-s) 9.585390E-01 1.323410E+005.778350E-01 K-effective 1.361109 (convergence = 2.06E-08) 141 Table 6.57: Reaction rates for GA-193 and GA_TPN-537 energy group structures PRISMATIC Group Structure 193 Energy Range Reaction Rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 5.609600E-01 4.312260E-01 7.790330E-03 Nu-Fission (fissions/cm3-s) 1.076820E+00 1.307680E-01 1.120650E-02 Average Flux (particles/cm2-s) 1.177660E+00 2.220720E+00 1.055180E+00 K-effective 537 1.218799 (convergence = 5.02E-07) Absorption (collisions/cm3-s) 6.003060E-01 3.922280E-01 7.460500E+00 Nu-Fission (fissions/cm3-s) 1.151720E+00 1.283040E-01 1.089400E-02 Average Flux (particles/cm2-s) 1.288040E+00 2.253810E+00 9.993210E-01 K-effective 1.290921 (convergence = 7.71E-08) 142 Table 6.58: Comparisons for 537 with GA-193 energy group structure for the pebble FE. % relative deviation Relative Deviation in pcm of ∆k / k with previous group Reaction rates Thermal Epithermal Fast Absorption 4.53273 -8.67775 -4.16351 Nu-Fission 10.47592 -1.88039 -2.84042 Average Flux 6.28759 1.71542 -5.58395 k-effective 5398.4 Table 6.59: Comparisons for GA_TPN-537 with GA-193 energy group structure for the prismatic block. % relative deviation Relative Deviation in pcm of ∆k / k Reaction rates Thermal Epithermal Fast Absorption 6.55432 -9.94269 99.89558 Nu-Fission 6.50332 -1.92044 -2.86855 Average Flux 8.56961 1.46818 -5.58969 143 with previous group k-effective 7212.2 The MCNP5 results for both pebble fuel element and prismatic hexagonal block are given in Table 6.60 and 6.62. They are then compared with the improved energy group structure results in Table 6.61 and 6.63. A significant change in the reaction rates deviations is observed. However, it is believed that there are some underlying issues about the energy group structure. The keffective was improved significantly about 5000 pcm from initial deviations. Table 6.60: MCNP5 results for the pebble FE Revise to use MCNP5 values given in Chapter 4 Energy Range Reaction Rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 7.24977E-01 2.51396E-01 5.33901E-03 Nu-Fission (fissions/cm3-s) 1.40447E+00 1.01377E-01 8.65859E-03 Average Flux (particles/cm2-s) 1.09878E+00 1.32725E+00 5.97252E-01 1.52881 ± 0.00046 K-effective and deviation 144 Table 6.61: Comparisons of GA_TPN-537 energy group structures to MCNP5 results for the pebble FE % relative deviation Relative Deviation in pcm of Reaction rates Thermal Epithermal Fast Absorption 9.66549 -34.83965 -14.42692 Nu-Fission 10.96881 -0.82508 2.11433 Average Flux 12.76364 0.28946 3.25110 ∆k / k with previous group k-effective -16770.1 Table 6.62: MCNP5 results for the prismatic block. Revise to use MCNP5 values given in Chapter 4 Energy Range Reaction Rates Thermal Epithermal Fast Absorption (collisions/cm3-s) 6.97577E-01 2.97869E-01 7.38072E-03 Nu-Fission (fissions/cm3-s) 1.37041E+00 1.30683E-01 1.08548E-02 Average Flux (particles/cm2-s) 1.45410E+00 2.19054E+00 9.41143E-01 1.47467 ± 0.00156 K-effective and deviation 145 Table 6.63: Comparisons of GA_TPN-537 energy group structures to MCNP5 results for the prismatic block. % relative deviation Relative Deviation in pcm of ∆k / k Reaction rates Thermal Epithermal Fast Absorption 13.94410 -31.67800 -100980.973 Nu-Fission 15.95797 1.82043 -0.36076 Average Flux 11.41982 -2.88848 -6.18167 146 with previous group k-effective 17853.9 Chapter 7 Comparative Analysis of ENDF Data Files 7.1 Introduction The purpose of this section was to analyze the latest released ENDF/B-VII.1. Two multi-group energy structures (SHEM-361 and SHEM_TPN-531) were selected for the analysis. Section 7.2 compares the Pebble fuel element and Prismatic hexagonal block analysis based on the ENDF/BVII.0 and ENDF/B-VII.1. The discussion on the differences of the evaluation data files is given in section 7.3. 7.2 Comparison Results Table 7.1 presents the Pebble fuel element results for ENDF/B-VII.0 and ENDF/B-VII.1. This was computed for SHEM-361 and the improved energy group structure SHEM_TPN-531. Their percent relative deviations are shown in Table 7.2. The fission reaction rate percent relative deviation is below 1 percent. The absorption reaction rate for the thermal and epithermal energy regions for both energy groups are also below 1 percent, however it is observed that the absorption reaction rate at fast energy region is higher. The relative percent deviation of ∆k / k is higher than the accepted 500 pcm for the pebble FE. Similar behavior is observed for the prismatic hexagonal block results with the higher percent relative deviation at the fast energy region (Table 7.3 and 7.4). As seen that the reaction rate percent relative deviations between the 147 ENDF/B-VII.1 and ENDF/B-VII.0 data files is insignificant (Table 7.2 and 7.4), this may be due to the fact important nuclides like U-235, U-238 were not changed during data advancements, noting their importance (fuel kernel). The relative deviation for ∆k / k is below 500 pcm for the prismatic hexagonal block. It is noticeable that the k-effective sensitivity for the pebble fuel element is higher compared to that of the prismatic hexagonal block, which can be attributed to the geometry. This is in agreement with the MCNP5 results (Chapter 4) when comparing ENDF/B-VI.8 and ENDF/B-VII.0. It is pointed out in the Nuclear Data Sheets by Chadwick et al, 2011[4] that the validation testing for ENDF/B-VII.1 maintained a good performance compared to that of ENDF/B-VII.0 for nuclear criticality of which the improved performance is attributed to the new structural materials evaluations. Figure 7.1 shows the neutron cross section for natural carbon as an example. Concerns were raised on the shortfall of major actinides (U-235, U-238 and Pu-239) for the previous ENDF/B-VII.0 data files, for example poor performance of Pu-239 in thermal ranges and the cross section capture for U-235 that is reported to be 25% higher in the 1 keV region. Therefore, U-235, U-238, Pu-239 were changed back to the ENDF/B-VI.8 data neutron parameters since there are no new advancements on these nuclides as yet. 148 Figure 7.1: Neutron capture on natural carbon for ENDF/B-VII.1 and ENDF/B-VII.0 (Chadwick et al, 2011) 149 Table 7.1: Pebble FE results using ENDF/B-VII.0 and ENDF.B-VII.1 comparisons PEBBLE ENDF/B-VII.0 Energy Range Group Structure Reaction Rates Thermal Epithermal Fast SHEM-361 Absorption (collisions/cm3-s) 7.35048E-01 2.58686E-01 6.26171E-03 Nu-Fission (fissions/cm3-s) 1.40368E+00 1.04725E-01 8.63635E-03 Average Flux (particles/cm2-s) 1.07127E+00 1.32084E+00 5.97363E-01 1.51705 (convergence = 3.44E-08) K-effective SHEM_TPN-531 Absorption (collisions/cm3-s) 7.35554E-01 2.58361E-01 6.08033E-03 1.40434E+00 1.04105E-01 8.43757E-03 Average Flux (particles/cm2-s) 1.08158E+00 1.33654E+00 5.74212E-01 Nu-Fission (fissions/cm3-s) 1.51688 (convergence = 2.45E-08) K-effective ENDF/B-VII.1 SHEM-361 Absorption (collisions/cm3-s) 7.34864E-01 2.58774E-01 6.35707E-03 Nu-Fission (fissions/cm3-s) 1.39795E+00 1.04702E-01 8.63426E-03 Average Flux (particles/cm2-s) 1.07119E+00 1.32065E+00 5.97300E-01 1.51129 (convergence = 7.49E-08) K-effective SHEM_TPN-531 Absorption (collisions/cm3-s) 7.35374E-01 2.58449E-01 6.17179E-03 1.39987E+00 1.04081E-01 8.43539E-03 Average Flux (particles/cm2-s) 1.07863E+00 1.33634E+00 5.74150E-01 Nu-Fission (fissions/cm3-s) 1.51123 (convergence = 2.40E-08) K-effective 150 Table 7.2: END/B-VII.0 and ENDF/B-VII.1 % deviations for the pebble reaction rates and keffective in pcm % Deviation SHEM-361 Reaction Rates Thermal Epithermal Fast Absorption 0.025032 -0.034018 -1.522907 Nu-Fission 0.408213 0.021962 0.024200 Average Flux 0.007468 0.014385 0.010546 K-effective ( pcm ) SHEM_TPN-531 575.6 Absorption 0.024471 -0.034061 -1.504195 Nu-Fission 0.318228 0.023054 0.025837 Average Flux 0.272749 0.014964 0.010797 K-effective ( pcm ) 565.6 151 Table 7.3: Prismatic block results using ENDF/B-VII.0 and ENDF.B-VII.1 comparisons PRISMATIC ENDF/B-VII.0 Energy Range Group Structure SHEM-361 Reaction Rates Thermal Epithermal Fast 3.05456E-01 7.65884E-03 1.31808E+00 1.31889E-01 1.11035E-02 Average Flux (particles/cm2-s) 1.46805E+00 2.25232E+00 1.03317E+00 Absorption (collisions/cm3-s) 6.86881E-01 Nu-Fission (fissions/cm3-s) 1.46107 (convergence = 3.44E-07) K-effective 3 SHEM_TPN-531 Absorption (collisions/cm -s) 6.87493E-01 3.05078E-01 7.42278E-03 1.31892E+00 1.31148E-01 1.08449E-02 Average Flux (particles/cm2-s) 1.48322E+00 2.28032E+00 9.93066E-01 Nu-Fission (fissions/cm3-s) 1.46091 (convergence = 9.21E-09) K-effective ENDF/B-VII.1 SHEM-361 Absorption (collisions/cm3-s) 6.86708E-01 3.05532E-01 7.75397E-03 1.31376E+00 1.31859E-01 1.11008E-02 Average Flux (particles/cm2-s) 1.46806E+00 2.25199E+00 1.03306E+00 Nu-Fission (fissions/cm3-s) 1.45672 (convergence = 1.94E-07) K-effective 3 SHEM_TPN-531 Absorption (collisions/cm -s) 6.87323E-01 3.05155E-01 7.51480E-03 1.31469E+00 1.31118E-01 1.08421E-02 Average Flux (particles/cm2-s) 1.48009E+00 2.27997E+00 9.92958E-01 Nu-Fission (fissions/cm3-s) 1.45665 (convergence = 5.16E-08) K-effective 152 Table 7.4: END/B-VII.0 and ENDF/B-VII.1 % deviation for the prismatic block reaction rates and k-effective in pcm % Deviation SHEM-361 Reaction Rates Thermal Epithermal Fast Absorption 0.025186 -0.024881 -1.242094 Nu-Fission 0.327749 0.022746 0.024317 Average Flux -0.000681 0.014652 0.010647 K-effective (pcm) SHEM_TPN-531 Reaction Rates 434.5 Thermal Epithermal Fast Absorption 0.024728 -0.025239 -1.239697 Nu-Fission 0.320717 0.022875 0.025819 Average Flux 0.211027 0.015349 0.010875 K-effective (pcm) 425.8 7.3 Nuclear Data Advancements The most important advances of the new evaluated data files (ENDF/B-VII.1) include an increase in neutron reaction cross section coverage from 393 to 423 nuclides, and the covariance uncertainty data for 190 of the most important nuclides. New R-matrix evaluations on light nuclides (He, Li, and Be) are give as well as resonance parameter analysis at lower energies and statistical high energy reactions for isotopes (Cl, K, Ti, V, Mn, Cr, Ni, Zr and W). Also, changes 153 on thermal neutron reactions on fission products (Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorbers (Cd, Gd). Minor actinides evaluations for isotopes (U, Np, Pu, and Am) were improved, but there were no improvements on the major actinides (U-235, U-238, and Pu-239) as discussed above. They then adopted JENDL-4.0 evaluations for Cm, Bk, Cf, Es, Fm, isotopes and other minor actinides. New data for fission energy release evaluations and a new decay data sub-library was created. Fission product yield advances for fission spectrum neutrons and 14 MeV neutrons incident on Pu-239. Table 7.5 presents the comparisons for the ENDF/B-VII.0, ENDF/B-VII.1 libraries and ENDF/B-VI.8. NSUB is the sub-library number in ENDF/B-VI format. The last two columns give the materials (or isotopes) for the libraries. 154 Table 7.5: ENDF/B-VII.1, ENDF/B-VII.0 and ENDF/B-VI.8 data file advancements No. NSUB Sub-library name Short name ENDF/B- ENDF/B- ENDF/B- VII.1 VII.0 VI.8 1 0 Photonuclear g 163 163 - 2 3 Photo-atomic photo 100 100 100 3 4 Radioactive decay decay 3817 3838 979 4 5 Spontaneous s/fpy 9 9 9 fission yields 5 6 Atomic relaxation ard 100 100 100 6 10 Neutron n 423 393 328 7 11 Neutron fission n/fpy 31 31 31 yields 8 12 Thermal scattering tsl 20 20 15 9 19 Standards std 8 8 8 10 113 Electro-atomic e 100 100 100 11 10010 Proton p 48 48 35 12 10020 Deuteron d 5 5 2 13 10030 Triton t 3 3 1 14 20030 he3 2 2 1 3 He 155 Chapter 8 Depletion Analysis 8.1 Introduction Depletion is an important aspect of reactor analysis for the reactor safety and for the prediction of the economic performance of the reactor. It includes various nuclear reactions, and is described by the isotopic depletion rate equations where isotopic concentrations are solved as a function of time and position. Secondly, the multi-group transport/diffusion equations are solved for the neutron flux. The depletion calculations in this study were performed using DRAGON code. It uses an EVO module wherein depletion equations for different isotopes in the library are solved using burnup chains as available in the generated library. Depletion can be performed at constant flux or constant power in MW/tonne of initial uranium using burnup time steps (in Days), assuming linear flux/power changes. The burnup mixtures of the unit cell are solved using the rate equations describing the isotopic changes in the core composition during the reactor operation. The rate equations are expressed as shown below, Marleau, et al, 2010 [22]. dN k + Nk (t ) Λk (t ) = Sk ( t ) , k = 1, K dt 8.1 Λ k ( t ) =λk + σ a ,k ( t ) φ ( t ) , 8.2 Sk ( t ) L ∑Y σ (t )φ (t ) K N ( t ) + ∑ mkl ( t ) N l ( t ) , kl f ,l l l 1 =l 1 156 8.3 ∞ σ x ,l ( t ) φ ( t ) = ∫ σ x ,l ( u )φ ( t , u ) du 8.4 0 σ x , k ( t f , u ) φ ( t f , u ) − σ x , k ( t0 , u ) φ ( t0 , u ) σ x ,k ( t , u ) φ ( t , u ) = σ x , k ( t0 , u ) φ ( t0 , u ) + ( t − t0 ) t f − t0 8.5 Where K = number of depleting isotopes L = number of fissile isotopes N k ( t ) = time dependent number density for k th isotope λk = radioactive decay constant for k th isotope σ x ,k ( t , u ) = time and lethargy dependent microscopic cross section for nuclear reaction x on k th isotope, x can be absorption fission and radiative capture cross sections φ ( t , u ) = time and lethargy dependent neutron flux Ykl = fission yield for production of fission product k by fissile l mkl = radioactive decay constant or σ x ,l ( t ) φ ( t ) term for the production of isotope k by isotope l The advantage of the DRAGON code in depletion analysis is that it allows the calculations of rate equations for as many isotopes as required per type of the nuclear reactor of interest. Thus, 157 there is sufficient capability for monitoring the nuclides concentrations, fission products buildup, and burnable poison concentrations. Similar HTGR models as in previous chapters are used (Pebble fuel element and Prismatic hexagonal blocks) for depletion analysis. The depletion analysis were performed using input multi-group cross section library based on selected SHEM_TPN-531 multi-group structure at a constant power of 62 MW/tonne and for burnup steps of 0.5, 5, 10, 20, 30, 40, 50, 60, 70, 80, 100 and 120 GWD/tonne of initial uranium. 8.2 Pebble Fuel Element Figure 8.1 presents the criticality behavior of the Pebble fuel element during the depletion process per burnup steps in GWD/tonne. The effect of the xenon fission product buildup and keffective is observed at the beginning of the depletion process. The xenon causes a sharp drop in the k-effective during the first few days of core depletion. The overall criticality curve presentation produce good results as expected for assumed constant power. The k-effective results are in agreement with the work reported by Dehart and Goluoglu [7], where depletion calculations were conducted using Serpent and TRITON/NEWT and TRITON/KENO codes. The neutron flux spectrum for the beginning of life and end of life are given in Figures 8.2 and 8.3 respectively, showing an increase in neutron flux peak for thermal regions for the end of life. The neutron flux spectrum increase observed in the end of life (Figure 8.3) as compared to the beginning of life (Figure 8.2) is due to the number of nuclides and fission products with thermal energy that are produced during burnup process. These nuclides and fission products then 158 compete with the control rods resulting in a need to remove control rods from the system in order to keep the reactor at constant power. The nuclide concentration changes, for example of U-235 as it fissions has been reduced by 98 percent from the beginning of life to the end of life. More nuclides and fission products were produced (Table 8.1) and their concentration increased with an increase in burnup time step. Pu-239 increased by 98 percent from its initial production (beginning of life) to the end of life. The summary of the nuclides concentrations in atom/barncm are given in Table 8.1 and Figure 8.4 for selected burnup steps. Fission products are shown in Table 8.2 and Figure 8.5. The xenon-135 buildup is about 66 percent and that of Sm149 is 10 percent from beginning of life to the end of life. 1.6 1.5 1.4 K-effective K-effective 1.3 1.2 1.1 1 0.9 0.8 0.7 0 20 40 60 80 Burnup (GWD/t) 100 Figure 8.1: K-effective versus burnup 159 120 140 0.5 Flux/lethargy width 0.4 Pebble_BOL 0.3 0.2 0.1 0 1.00E-09 1.00E-07 1.00E-05 1.00E-03 1.00E-01 1.00E+01 Energy (MeV) Figure 8.2: Neutron flux spectrum at the beginning of life 0.8 Flux/lethargy width 0.6 Pebble_EOL 0.4 0.2 0 1.00E-09 1.00E-07 1.00E-05 1.00E-03 Energy (MeV) 1.00E-01 1.00E+01 Figure 8.3: Neutron flux spectrum at the end of life 160 Table 8.1: Nuclides concentration in atom/barm.cm Burnup (GWD/t) Nuclides 10 20 40 80 120 U-235 1.64E-03 1.38E-03 9.27E-04 2.98E-04 4.27E-05 U-236 4.84E-05 9.15E-05 1.63E-04 2.48E-04 2.58E-04 U-238 2.12E-02 2.11E-02 2.09E-02 2.03E-02 1.96E-02 Np-237 3.69E-07 1.47E-06 5.53E-06 1.81E-05 2.95E-05 Pu-238 8.61E-09 7.39E-08 6.21E-07 4.87E-06 1.19E-05 Pu-239 7.61E-05 1.30E-04 1.88E-04 1.98E-04 1.70E-04 Pu-240 5.02E-06 1.61E-05 4.15E-05 7.46E-05 7.90E-05 Pu-241 7.40E-07 4.68E-06 2.14E-05 5.10E-05 5.06E-05 Pu-242 2.12E-08 2.95E-07 3.40E-06 2.78E-05 6.95E-05 Am-241 3.89E-09 4.90E-08 4.41E-07 1.75E-06 1.58E-06 Am-242m 1.71E-11 3.51E-10 4.42E-09 1.98E-08 1.74E-08 Am-243 2.61E-10 7.80E-09 2.02E-07 4.02E-06 1.77E-05 Cm-242 1.43E-10 3.58E-09 6.57E-08 6.41E-07 1.20E-06 Cm-244 4.47E-12 2.86E-10 1.69E-08 8.86E-07 8.07E-06 Cm-245 2.11E-14 2.72E-12 3.13E-10 2.73E-08 2.74E-07 161 1.0E+00 1.0E-02 Concentration (atom/barm.cm) 1.0E-04 1.0E-06 1.0E-08 1.0E-10 1.0E-12 1.0E-14 1.0E-16 1.0E-18 1.0E-20 U235 U236 U238 Np237 Pu238 Pu239 Pu240 Pu241 Pu242 Am241 Am242m Am243 Cm242 Cm244 Cm245 1.0E-22 1.0E-24 0 20 40 60 80 Burnup (GWD/t) 100 120 140 Figure 8.4: Nuclides concentration in atom/barm.cm Table 8.2: Fission products in atom/barn.cm Burnup (GWD/t) Fission Products 10 20 40 80 120 Kr-85 6.22E-07 1.19E-06 2.18E-06 3.62E-06 4.37E-06 Sr-90 1.40E-05 2.70E-05 5.03E-05 8.66E-05 1.09E-04 Ag-110m 2.71E-10 1.46E-09 8.30E-09 5.15E-08 1.58E-07 Cs-137 1.55E-05 3.08E-05 6.09E-05 1.19E-04 1.73E-04 Xe-135 1.62E-08 1.54E-08 1.34E-08 8.74E-09 5.57E-09 Sm-149 1.43E-07 1.41E-07 1.32E-07 9.65E-08 6.76E-08 Sm-151 4.12E-07 4.72E-07 5.04E-07 4.98E-07 4.77E-07 162 1.0E-03 Concentration (atom/barm.cm) 1.0E-04 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 1.0E-10 Kr85 Sr90 Ag110m 1.0E-11 Cs137 Xe135 Sm149 1.0E-12 Sm151 1.0E-13 0 20 40 100 60 80 Burnup (GWD/t) 120 140 Figure 8.5: Fission products buildup in a Pebble fuel element 8.3 Prismatic Hexagonal Block Similar depletion analysis were conducted for the prismatic hexagonal block and the criticality behavior is presented in Figure 8.6. The neutron flux spectrum at the beginning and end of life are shown in Figure 8.7 and 8.8 with significant neutron flux spectrum peak in thermal region as a result more nuclides and fission products are produced and the U-235 is reduced. A significant decrease in U-235 concentration of about 95 percent is observed. Pu-239 concentration had increased by 98 percent during the burnup process. The xenon-135 buildup change is about 51 percent. This is in agreement with prismatic hexagonal blocks depletion analysis results reported by Rohde et al, 2011[32], where BGCore and Helios codes were used. The nuclides 163 concentration per selected burnup steps is given in Table 8.3 and Figure 8.9. The fission products are given in Table 8.4 and Figure 8.10. 1.5 1.4 K-effective 1.3 K-effective 1.2 1.1 1 0.9 0.8 0.7 0 20 40 60 80 Burnup (GWD/t) 100 120 140 Figure 8.6: Prismatic block K-effective versus burnup 0.6 Flux/lethargy width 0.5 Prismatic_BOL 0.4 0.3 0.2 0.1 0 1.00E-09 1.00E-07 1.00E-05 1.00E-03 Energy (MeV) 1.00E-01 1.00E+01 Figure 8.7 Neutron flux spectrum at the beginning of life 164 0.7 0.6 Flux/lethargy width Prismatic_EOL 0.5 0.4 0.3 0.2 0.1 0 1.00E-09 1.00E-07 1.00E-05 1.00E-03 Energy (MeV) 1.00E-01 1.00E+01 Figure 8.8: Neutron flux spectrum at the end of life 165 Table 8.3: Nuclides concentration in atom/barn.cm Burnup (GWD/t) Nuclides 10 20 40 80 120 U-235 1.64E-03 1.39E-03 9.55E-04 3.67E-04 9.32E-05 U-236 5.02E-05 9.39E-05 1.64E-04 2.45E-04 2.58E-04 U-238 2.12E-02 2.11E-02 2.08E-02 2.02E-02 1.94E-02 Np-237 4.78E-07 1.88E-06 6.93E-06 2.19E-05 3.56E-05 Pu-238 1.26E-08 1.07E-07 8.74E-07 6.51E-06 1.64E-05 Pu-239 8.74E-05 1.48E-04 2.16E-04 2.45E-04 2.27E-04 Pu-240 6.09E-06 1.87E-05 4.52E-05 7.77E-05 8.48E-05 Pu-241 1.09E-06 6.60E-06 2.83E-05 6.65E-05 7.24E-05 Pu-242 3.21E-08 4.24E-07 4.40E-06 3.05E-05 6.99E-05 Am-241 5.77E-09 6.98E-08 5.91E-07 2.38E-06 2.71E-06 Am-242m 2.81E-11 5.52E-10 6.60E-09 3.06E-08 3.45E-08 Am-243 4.92E-10 1.39E-08 3.28E-07 5.34E-06 2.00E-05 Cm-242 2.32E-10 5.55E-09 9.28E-08 7.91E-07 1.53E-06 Cm-244 1.03E-11 6.22E-10 3.35E-08 1.40E-06 9.88E-06 Cm-245 6.13E-14 7.51E-12 8.14E-10 6.11E-08 5.23E-07 166 3.0E-01 3.0E-03 3.0E-05 Concentration (atom/barm.cm) 3.0E-07 3.0E-09 3.0E-11 3.0E-13 3.0E-15 3.0E-17 3.0E-19 3.0E-21 U235 U236 U238 Np237 Pu238 Pu239 Pu240 Pu241 Pu242 Am241 Am243 Cm242 Cm244 Cm245 3.0E-23 0 20 40 60 80 Burnup (GWD/t) 100 120 Figure 8.9: Nuclides concentration in atom/barn.cm 167 140 Table 8.4: Fission products in atom/barn.cm Burnup (GWD/t) Fission Products 10 20 40 80 120 Kr-85 6.17E-07 1.17E-06 2.13E-06 3.51E-06 4.30E-06 Sr-90 1.39E-05 2.66E-05 4.91E-05 8.38E-05 1.07E-04 Ag-110m 3.56E-10 1.95E-09 1.10E-08 6.25E-08 1.68E-07 Cs-137 1.54E-05 3.07E-05 6.07E-05 1.19E-04 1.74E-04 Xe-135 1.69E-08 1.64E-08 1.50E-08 1.13E-08 8.37E-09 Sm-149 1.48E-07 1.51E-07 1.49E-07 1.25E-07 9.83E-08 Sm-151 4.40E-07 5.28E-07 6.00E-07 6.60E-07 6.74E-07 1.0E-04 Concentration (atom/barm.cm) 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 1.0E-10 1.0E-11 Kr85 Sr90 Ag110m Cs137 Xe135 Sm149 Sm151 1.0E-12 1.0E-13 0 20 40 60 80 Burnup (GWD/t) 100 120 140 Figure 8.10: Fission products buildup in a Prismatic hexagonal block 168 Chapter 9 Conclusions and Recommendations 9.1 Conclusions The objective of this study was to investigate the applicability of the SHEM energy group structures (281 and 361) and GA-193 for HTR applications and improve them utilizing the more systematic, consistent, and sophisticated energy group selection method referred to as contributon and point-wise cross-section driven (CPXSD). The DRAGON code was used for the energy group structure improvement and the MCNP5 as reference for comparing the results to determine the magnitude of the improvement. MCNP5 code was selected to provide a reference solution to the study. Therefore both the pebble fuel element and prismatic hexagonal block are the basic components of the PBR and VHTR analyzed by DRAGON and MCNP5 for comparing results. Then, energy boundaries were selected to divide the energy spectrum into three regions (fast, epithermal and thermal) that correspond to the SHEM-281, SHEM-361 and GA-193 energy group structures. These analysis were based on ENDF/B-VII.0 and ENDF/B-VI.8 data files. Additionally, the sensitivity caused by the data files was studied. When comparing reaction rates from the three regions, the thermal region had higher percent deviations and the epithermal and fast regions had their percent deviations below 1 percent. The major changes were observed to be due to helium advancement 169 from ENDF/B -VI.8 to ENDF/B -VII.0 data files. Also neutron sub-library was increased from 328 to 393 as well as radioactive decay (from 979 to 3838), and a new 163 photonuclear sublibrary was added. Similar Pebble fuel element and Prismatic hexagonal block models were created for the DRAGON code analysis. The neutron cross sections were generated using SHEM-361, SHEM-281 and GA-193 energy group structures. Then, the pebble fuel element and prismatic hexagonal block fuel analysis were subjected to these libraries and the results were compared to the MCNP5 (reference solution) as shown in Table 9.1 and 9.2. Table 9.1: Pebble fuel element deviations Group Structure SHEM-281 SHEM-361 GA-193 K-effective 1.528750 1.516920 1.517046 1.307130 deviation in pcm % deviation SHEM-281 Reaction rates Absorption Nu-Fission Average Flux Thermal -1.389212277 0.05013748 2.499473073 Epithermal -2.882545451 -3.099762817 0.494391026 Fast -17.43271822 0.255135027 -0.018703628 % deviation SHEM-361 Reaction rates Absorption Nu-Fission Average Flux Thermal -1.389212277 0.056545572 2.504023558 Epithermal -2.899649913 -3.302965595 0.483089478 Fast -17.28212864 0.25686741 -0.018536195 K-effective deviation MCNP5 DRAGON 170 1189 1176.4 22168.5 Table 9.2: Prismatic hexagonal block deviations K-effective deviation MCNP5 DRAGON % deviation SHEM-281 Absorption Nu-Fission Average Flux % deviation SHEM-361 Absorption Nu-Fission Average Flux Group Structure K-effective 1.46946 SHEM-281 1.46094E+00 SHEM-361 1.461067E+00 GA-193 1.21880E+00 Reaction rates Thermal Epithermal 1.521522941 -2.520222601 3.807588733 -0.699405992 -0.972081048 -2.807681093 Thermal 1.53327792 3.818534366 -0.959702214 Epithermal -2.547080042 -0.922847458 -2.820463348 deviation in pcm 852.4 839.3 25066.1 Fast -3.753748785 -2.290771967 -9.778257997 Fast -3.768246022 -2.290771967 -9.778257997 The k-effective difference between the MCNP5 calculation and DRAGON are approximately 1.19 % for the pebble fuel element and 0.85 % for the prismatic hexagonal fuel block. For the DRAGON code to become reliable for analyzing Pebble bed and Prismatic reactors, the keffective deviation should be less than 500 pcm . Further examination of Table 9.1 and 9.2 show that for the Pebble fuel element the major reaction rates deviation is -17 % for the fast absorption rate and for the Prismatic block is 3.8 % for the thermal nu-fission reaction rates. This could explain the major errors that occur in the DRAGON calculation. A small error of 3.83 in the thermal nu-fission reaction rate for the Pebble fuel element could propagate into an error greater than 1 % in k-effective whereas a -17 % error in fast absorption rate for the Prismatic hexagonal block would propagate also into an error greater than 1 % for k-effective because k-effective is less sensitive to errors in the fast absorption rate. Note that an increase in the MCNP5 thermal 171 nu-fission and a decrease in MCNP5 fast absorption rate both cause the MCNP5 k-effective to be greater than the corresponding DRAGON k-effective. It is interesting to note that the errors are different for reaction rates for the Pebble fuel and Prismatic block. This might indicate that geometry plays some part in the way DRAGON calculates reaction rates (see Table 5.7, 5.8 and 5.9 and 5.10). Optimizing the SHEM-281 and SHEM-361multi-group structures to 407 and 531 groups caused relatively small changes in the k-effective and reaction rates. The small changes in the keffective and reaction rates due to the increase in the multi-groups (from 281 to 407 and from 361 to 531) groups were insignificant compared to the significant deviation in k-effective caused by the 17 % deviation in the fast absorption reaction rate in the Pebble fuel element and the 3.8 % deviation in the nu-fission reaction rate for the Prismatic hexagonal block. Thus, using SHEM_TPN-407 and SHEM_TPN-531 group structures in the DRAGON calculation does not correct for the relatively large deviation in the k-effective for either Pebble fuel element or Prismatic hexagonal block. Nor, will it correct the deviation in the fast absorption reaction rate in the Pebble fuel element or the nu-fission reaction rate in the Prismatic hexagonal block. The DRAGON code calculation method of the Pebble cell fast absorption reaction rate and the Prismatic block nu-fission reaction rate should be corrected so that the DRAGON code calculates these reaction rates more accurately. 172 It is also observed that SHEM-281 energy group structure development had solved sufficient nuclear physics problems that were introduced by the assumptions considered for XMAS-172 energy group structure. This was done by eliminating the self-shielding calculation of thermal resonances, removing self-shielding models for U-238 resonances, Er = 6.7 and 20.9 eV . Sufficient nuclides and fission products were taken in to account. Then, SHEM-281 was improved to SHEM-361 using a subgroup model in the regions of 22.5 eV and 11.14 keV (epithermal region). However, there is little effect on the reaction rates and k-effective results as shown in chapter 5 when comparing the two energy group structures. This is in agreement with the results obtained in this study, the improvement of SHEM energy group structures had little effect on the reaction rates and k-effective as the pebble fuel element and prismatic hexagonal block models were analyzed. GA-193 was improved to GA_TPN-537 energy group structure. The fast energy region was improved from 49 to 83 groups, epithermal region from 42 to 334 and thermal region from 102 to 120. When comparing the results obtained using GA-193 and GA_TPN-537 energy group structures, the relative percent deviation for k-effective was 5398.4 pcm for the pebble fuel element and 7212.2 pcm for the prismatic hexagonal block. By improving GA-193 to GA_TPN537, the relative percent deviation is reduced from 22168.5 pcm to 16770.1 pcm to the MCNP5 results for the pebble fuel element. For the prismatic hexagonal block, the relative percent deviation is reduced from 25066.1 pcm to 17853.9 pcm to the MCNP5 results. There was a significant improvement in reaction rates as well but the deviations remain very large. 173 There was also recently published ENDF/B-VII.1 that was decided to be tested in this study and be compared to ENDF/B-VII.0. The neutron cross sections were generated for both data files and then pebble fuel element and prismatic hexagonal block models were analyzed using these libraries. There were no significant changes in the reaction rates, the reason being that there were no significant changes in the important nuclides (U-235, U-238). The observed changes were in k-effective, which were about 500 pcm in difference. This is attributed to the advancement of structural materials, for example natural carbon cross sections (Figure 7.1), which is important for HTR since graphite is the moderator. Lastly, the SHEM_TPN-531 energy group structure was used for the depletion analysis. The objective was to test its ability for the HTR deep burn analysis. It is interesting to note that the change in k-effective with increase in burnup, Figure 8.1 is a straight line once the sharp drop in k-effective due to xenon buildup is passed. No such straight line occurs for the change in keffective as a function of burnup in light water reactors. Then, the conclusion is that the energy group structure is applicable for HTR deep burn analysis as the results are showing a good agreement with other researchers [7] [32]. 9.2 Recommendation The main recommendation based on the results of this study is to determine why there are large deviations, -17 % in the fast absorption reaction rate for the Pebble fuel element and 3.8 % in the thermal nu-fission reaction rate, when DRAGON calculates the reaction rates. Once these 174 problems are fixed DRAGON should be an excellent code to generate multi-group cross section for graphite moderated reactors. In addition, although DRAGON does create broad group cross sections, these cross sections cannot be reprocessed within DRAGON for further cross section improvement. This should be corrected. Next step will be to utilize the SHEM_TPN-531 multi-group structure with DRAGON and develop an optimized broad group cross-section structure for core analysis using again the contributon method. Such study would require coupling DRAGON with core analysis code, which has also forward and adjoint flux calculation capability. 175 References 1. Alpan, F. A., 2003. An advanced methodology for generating multi-group cross sections for shielding calculations, PhD Thesis, Nuclear Engineering, The Pennsylvania State University. 2. Alpan, F. A., and Haghighat, A., 2005. Development of the CPXSD methodology for generation of fine-group libraries for shielding applications. Nuclear Science and Engineering, 149, 51-64. 3. Bell, G. I., and Glasstone, S., 1970. Nuclear reactor Theory. Van Nostrand Reinhold Company, New York, USA. 4. Chadwick, M. B., Oblozinsky, P., Herman, M., Greene, N. M., McKnight, R. D., Smith, D. L., Young, P. G., MacFarlane, R. E., Hale, G. M., Frankle, S. C., Kahler, A. C., Kawano, T., Little, R. C., Madland, D. G., Moller, P., Mosteller, R. D., Page, P. R., Talou, P., Trellue, H., White, M. C., Wilson, W. B., Arcilla, R., Dunford, C. L., Mughabghab, S. F., Pritychenko, B., Rochman, D., Sonzogni, A. A., Lubitz, C. R., Trumbull. T. H., Weinman, J. P., Brown, D. A., Cullen, D. E., Heinrichs, D. P., McNabb, D. P., Derrien, H., Dunn, M. E., Larson, N. M., Leal, L. C., Carlson, A. D., Block, R. C., Briggs, J. B., Cheng, E. T., Hurai, H. C., Zerkle, M. L., Kozier, K. S., Courcelle, A., Pronyaev, V., van der Marck, S. C., 2006. ENDF/B-VII.0: Next generation Evaluated Nuclear Data Library for Nuclear Science and Technology. Nuclear data Sheets, 107, 2931-3060., [and ENDF/B-VII.1: Nuclear data sheets, 112, 2887-2996]. 5. Carlson, A. D., Pronyaev, V. G., Smith, D. L., Larson, N. M., Zhenpeng, C., Hale, G. M., Hambsch, F. J., Gai, E. V., Oh, S., Badikov, S. A., Kawano, T., Hofmann, H. M., Vonach, H., Tagesen, S., 2009. International Evaluation of Neutron Cross Section Standards. Nuclear data Sheets, 107, 3215-3324. 176 6. DeHart, M. D. and Ulses, A. P., 2009. Benchmark specification for HTGR Fuel element depletion. Nuclear Science and Technology Division, Oak Ridge National Laboratory, 7. DeHart, M. D., Goluoglu, S. and Leppanen J. A comparison of Deterministic and Monte Carlo Depletion Methods for HTGR Fuel elements. Oak Ridge National Laboratory, TN 37831-6170, USA in collaboration with VTT Technical Research Centre of Finland, FI02044 VTT, Finland. 8. Duderstadt, J. J. and Hamilton L. J., 1975. Nuclear reactor analysis. John Wiley and Sons. Department of Nuclear Engineering, University of Michigan, USA. 9. Fujimoto, N., Fujikawa, S., Hayashi H., Nakazawa, T., Iyoku, t. and Kawasaki, K., 2004. Present status of HTTR Project – Achievement of 950°C of reactor outlet coolant temperature, 2nd International Topical Meeting on High Temperature Reactor Technology, Beljing, China, September, 22-24. 10. Han, J. S., 2008. Sensitivity study on the energy group structure for HTR analysis, PhD. Thesis, The Pennsylvania State University. 11. Hebert, A., 2009. Applied Reactor Physics. Presses Internationals Polytechnique. Canada. 12. Hebert, A. and Karthikeyan, R., Interfacing NJOY with Advanced Lattice Codes. Ecole Polytechnique de Montreal, C.P. 6079 succ. Centre Ville, Montreal Qc, Canada H3C 3A7. 13. Hebert, A., and Santamarina, A., 2008. Refinement of the Santamarina-Hfaiedh energy mesh between 22.5 eV and 11.4 keV. International conference on the Reactor Physics 177 Nuclear Power: a Sustainable Resource Casino-Kursaal Conference Center, Interlaken, Switzerland, September 14-19. 14. Hebert, A., 2008. A PyNjoy tutorial. Technical report IGE 305, Institut de genie nucleaire Departement de genie mecanique, Ecole Polytechnique de Montreal, November 9. 15. Herbert, S., 1963. Introductory nuclear reactor theory. Reinhold Publishing Corporation, USA. 16. Henry, A., 1975. Nuclear reactor Analysis, The MIT Press, Cambridge Massachettes. 17. Hfaiedh, N. and Santamarina, A., 2005. Determination of the optimized SHEM mesh for neutron transport calculations. Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear Biological applications, France, September 12-15. 18. Huria, H. and Ouisloumen, M., 2008. An optimized ultra energy group structure for the neutron transport calculations. International Conference on the Physics of Reactors “Nuclear Power: A Sustainable Resource” Casino-Kursaal Conference center, Interlaken, Switzerland, September 14-19. 19. Kriangchaiporn, N. 2006. Transport Model based on 3D Cross section Generation for TRIGA Core analysis, PhD. Thesis, The Pennsylvania State University. 20. Larmash, J. R. and Baratta, A. J., 2001. Introduction to Nuclear Engineering. Pennsylvania State University and New York Polytechnic Institute. Prentice Hall. 21. Lewis, E. E., and Miller, W. F. (Jr), 1984. Computational methods of Neutron Transport. John Wiley and Sons, New York, USA. 178 22. Marleau, G., Hebert, A. and Roy, R., 2010. A user guide for DRAGON verison-4. Technical Report IGE-294, Institut de genie nucleaire Departement de genie mecanique, Ecole Polytechnique de Montreal, October 17. 23. MCNP5 Manual, 2003. A General Monte Carlo N-Particle Transport Code, Version 5, Los Alamos national Laboratory, April 24. 24. Mkhabela, P. T., 2010. Optimization of coupled multi-physics methodology for safety analysis of Pebble Bed Modular Reactor, PhD. Thesis, The Pennsylvania State University. 25. Mphahlele, R., 2008. Automated spectral zones selection methodology for diffusion theory data preparation for pebble bed reactor, PhD. Thesis, The Pennsylvania State University. 26. Mosca, P., Mounier, C. and Sachez, R., 2011. An adaptive energy mesh constructor for multi-group library generation for transport codes. Nuclear science and Engineering, 167, 40-60. 27. Nasr, M. and Roushdy, H. 1992. Generalization of the Livolant-Jeanpiere method of resonance self-shielding. Annals of Nuclear Energy, 19, 59 - 63. 28. NJOY 99, RISCC Peripheral Shielding Routine Collection, Oak Ridge National Laboratory. 29. Pelloni, S., Kadi, Y., and Wenger, H. U., Present Methods for physics calculations of hybrid fast systems at PSI, Paul Schreyer Institute, CH-5232 Villigen PSI, Switzerland. 179 30. Ponomarev-Stepnoi, N. N., Kurkharkin, N. E., Bobrov, A. A., Chuniaev, E. I., Garin, V. P., Glushkov, E. S., Kompaniets, G. V., Kruutov, A. M., Lobyntsev, V. A., Polyakov, D. N., Smirnov, O. N. and Zimin, A. A., 2003. Experiments on HTR criticality parameters at the ASTRA facility of the Kurchatov Institute, Nuclear Engineering and Design, 222, 215-229. 31. Reuss, P., 2008. Neutron Physics. EDP Sciences, Institut national des sciences et techniques nucleaires, Parc d activites des Courtaboeuf, BP 112 91944 Les Ulis Cedex A, France. 32. Rohde, U., Baier, S., Duerigen, E., Kliem, S., and Merk, B., 2011. Development and verification of the coupled 3D neutron kinetics/thermal-hydraulics code DYN3D-HTR for the simulation of transients in block type HTGR, Nuclear Engineering and Design, doi:10,1016/j.nucengdes2011,09.051. 33. Seker, V. and Colak U. 2003. HTR-10 fuel core first criticality analysis with MCNP. Nuclear Engineering and design, 222, 263-270. 34. Shultis, J. K. and Faw, R. E., 2008. Fundamentals of Nuclear Science and engineering. CRC Press, Taylor and Francis Group, Boca Raton FL 33487-2742. 35. Williams, M. L., 1991. Generalized contributon response theory. Nuclear Science and Engineering 108, 355 – 383. 180 Appendices A1 MCNP5 Input Decks A1.1 Pebble Fuel Element Pebble 1 1 -10.4 -13 u=5 imp:n=1 $ kernel UO2 2 2 -1.05 13 -14 u=5 imp:n=1 $ inner low density carbon 3 3 -1.9 14 -15 u=5 imp:n=1 $ inner pyro carbon layer 4 4 -3.18 15 -16 u=5 imp:n=1 $ Silicon carbide layer 5 3 -1.90 16 -17 u=5 imp:n=1 $ Outer pyro carbon layer 6 5 -1.75 17 u=5 imp:n=1 $ graphite matrix 7 5 -1.75 -18 19 -20 21 -22 23 lat=1 u=8 imp:n=1 $ cube fill=-14:14 -14:14 -14:14 c (121) 8 260r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 260r c (169) 8 231r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 231r c (285) 8 173r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 173r c (401) 8 115r 8 7r 5 12r 8 7r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 4r 5 18r 8 4r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 4r 5 18r 8 4r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 7r 5 12r 8 7r 8 115r c (469) 8 86r 8 7r 5 12r 8 7r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 4r 5 18r 8 4r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 4r 5 18r 8 4r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 7r 5 12r 8 7r 8 86r c (469) 8 86r 8 7r 5 12r 8 7r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 4r 5 18r 8 4r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 4r 5 18r 8 4r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 7r 5 12r 8 7r 8 86r c (549) 8 57r 8 7r 5 12r 8 7r 8 5r 5 16r 8 5r 8 4r 5 18r 8 4r 8 4r 5 18r 8 4r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 8 5 24r 8 8 181 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 4r 5 18r 8 4r 8 4r 5 18r 8 4r 8 5r 5 16r 8 5r 8 7r 5 12r 8 7r 8 57r c (625) 8 28r 8 7r 5 12r 8 7r 8 6r 5 14r 8 6r 8 4r 5 18r 8 4r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 4r 5 18r 8 4r 8 6r 5 14r 8 6r 8 7r 5 12r 8 7r 8 28r c (625) 8 28r 8 7r 5 12r 8 7r 8 6r 5 14r 8 6r 8 4r 5 18r 8 4r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 4r 5 18r 8 4r 8 6r 5 14r 8 6r 8 7r 5 12r 8 7r 8 28r c (697) 8 8r 5 10r 8 8r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 5 26r 8 8 5 26r 8 5 318r 8 5 26r 8 8 5 26r 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 8r 5 10r 8 8r c (697) 8 8r 5 10r 8 8r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 5 26r 8 8 5 26r 8 5 318r 8 5 26r 8 8 5 26r 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 8r 5 10r 8 8r c (697) 8 8r 5 10r 8 8r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 5 26r 8 8 5 26r 8 5 318r 8 5 26r 8 8 5 26r 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 8r 5 10r 8 8r c (697) 8 8r 5 10r 8 8r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 5 26r 8 8 5 26r 8 5 318r 8 5 26r 8 8 5 26r 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 8r 5 10r 8 8r c (697) 8 8r 5 10r 8 8r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 5 26r 8 8 5 26r 8 5 318r 8 5 26r 8 8 5 26r 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 8r 5 10r 8 8r c (697) 8 8r 5 10r 8 8r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 5 26r 8 8 5 26r 8 5 318r 8 5 26r 8 8 5 26r 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 8r 5 10r 8 8r c (697) 8 8r 5 10r 8 8r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 5 26r 8 8 5 26r 8 5 318r 8 5 26r 8 8 5 26r 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 2r 182 5 22r 8 2r 8 3r 5 20r 8 3r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 8r 5 10r 8 8r c (697) 8 8r 5 10r 8 8r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 5 26r 8 8 5 26r 8 5 318r 8 5 26r 8 8 5 26r 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 8r 5 10r 8 8r c (697) 8 8r 5 10r 8 8r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 5 26r 8 8 5 26r 8 5 318r 8 5 26r 8 8 5 26r 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 8r 5 10r 8 8r c (697) 8 8r 5 10r 8 8r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 5 26r 8 8 5 26r 8 5 318r 8 5 26r 8 8 5 26r 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 8r 5 10r 8 8r c (697) 8 8r 5 10r 8 8r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 5 26r 8 8 5 26r 8 5 318r 8 5 26r 8 8 5 26r 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 8r 5 10r 8 8r c (625) 8 28r 8 7r 5 12r 8 7r 8 6r 5 14r 8 6r 8 4r 5 18r 8 4r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 4r 5 18r 8 4r 8 6r 5 14r 8 6r 8 7r 5 12r 8 7r 8 28r c (625) 8 28r 8 7r 5 12r 8 7r 8 6r 5 14r 8 6r 8 4r 5 18r 8 4r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 5 26r 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 4r 5 18r 8 4r 8 6r 5 14r 8 6r 8 7r 5 12r 8 7r 8 28r c (549) 8 57r 8 7r 5 12r 8 7r 8 5r 5 16r 8 5r 8 4r 5 18r 8 4r 8 4r 5 18r 8 4r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 8 5 24r 8 8 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 4r 5 18r 8 4r 8 4r 5 18r 8 4r 8 5r 5 16r 8 5r 8 7r 5 12r 8 7r 8 57r c (469) 8 86r 8 7r 5 12r 8 7r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 4r 5 18r 8 4r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 4r 5 18r 8 4r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 7r 5 12r 8 7r 8 86r c (469) 8 86r 8 7r 5 12r 8 7r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 4r 5 18r 8 4r 8 3r 5 20r 8 3r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 183 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 2r 5 22r 8 2r 8 3r 5 20r 8 3r 8 4r 5 18r 8 4r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 7r 5 12r 8 7r 8 86r c (401) 8 115r 8 7r 5 12r 8 7r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 4r 5 18r 8 4r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 3r 5 20r 8 3r 8 4r 5 18r 8 4r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 7r 5 12r 8 7r 8 115r c (285) 8 173r 8 6r 5 14r 8 6r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 5r 5 16r 8 5r 8 6r 5 14r 8 6r 8 173r c (169) 8 231r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 7r 5 12r 8 7r 8 231r c (121) 8 260r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 8r 5 10r 8 8r 8 260r 8 0 -40 41 -42 43 -44 45 u=52 fill=8 imp:n=1 9 5 -1.75 40:-41:42:-43:44:-45 u=52 imp:n=1 10 0 -24 u=53 fill=52 imp:n=1 11 5 -1.75 24 u=53 imp:n=1 12 0 -25 u=54 fill=53 imp:n=1 13 13 -0.000176 25 u=54 imp:n=1 14 0 -26 fill=54 imp:n=1 15 0 26 imp:n=0 c Surfaces 13 so 0.025 14 so 0.034 15 so 0.038 16 so 0.0415 17 so 0.0455 18 px 0.081705 19 px -0.081705 20 py 0.081705 21 py -0.081705 22 pz 0.081705 23 pz -0.081705 24 so 2.5 25 so 3.0 *26 so 3.53735 40 px 2.369445 41 px -2.369445 42 py 2.369445 43 py -2.369445 44 pz 2.369445 45 pz -2.369445 c imp:n 1 13r 0 c 184 c Material data mode n m1 92238.66c 2.12877E-02 $ U-238 293.6 1993 92235.66c 1.92585E-03 $ U-235 293.6K 1997 8016.62c 4.64272E-02 $ Oxygen 293.6K 2000 5010.66c 1.14694E-07 $ Boron-10 5011.66c 4.64570E-07 $ Boron-11 m2 6000.24c 5.26449E-02 $ Natural Carbon (buffer) mt2 grph.60t m3 6000.24c 9.52621E-02 $ Natural Carbon mt3 grph.60t m4 6000.24c 4.77240E-02 $ Natural Carbon 14000.60c 4.77240E-02 $ Silicon 293.6K 1976 mt4 grph.60t m5 6000.24c 8.77414E-02 $ Natural Carbon 5010.66c 9.64977E-09 $ Boron-10 5011.66c 3.90864E-08 $ Boron-11Fuel mt5 grph.60t m13 2003.66c 3.71220E-11 $ Helium gas outside the FE 293.6K 1990 2004.60c 2.65156E-05 $ Helium gas outside the FE 293.6K 1973 ksrc 0 0 0 kcode 2000 1.0 200 1200 prdmp j 20 0 2 c c Tallies: Fluxes and Reaction rates c Energy bins c E0 3.14200E-06 1.15600E-01 1.96400E+01 $ 3 broad groups E0 3.05902E-06 1.11090E-01 1.49182E+01 c c Thermal, epithermal and fast fluxes F4:N 9 $ graphite cube 11 $ graphite layer 13 $ heliumlayer SD4 65.44984695 47.64748858 72.30820487 c c Coated Particle flux F14:N (1 < (7 [-14:14 -14:14 -14:14])<10) $ fuel kernel (2 < (7 [-14:14 -14:14 -14:14])<10) $ buffer (3 < (7 [-14:14 -14:14 -14:14])<10) $ IPyC (4 < (7 [-14:14 -14:14 -14:14])<10) $ SiC (5 < (7 [-14:14 -14:14 -14:14])<10) $ OPyC SD14 0.987835 1.49702 0.984231 1.049562 1.43658 c c reaction rates c F24:N 9 FM24 -1.0 5 (-1) (-2) (-6) (-7) (-6 -7) SD24 0.044085965 c F44:N 11 FM44 -1.0 5 (-1) (-2) (-6) (-7) (-6 -7) SD44 47.64748858 185 c F54:N 13 FM54 -1.0 13 (-1) (-2) (-6) (-7) (-6 -7) SD54 72.30820487 c F64:N (1 < (7 [-14:14 -14:14 -14:14])<10) FM64 -1.0 1 (-1) (-2) (-6) (-7) (-6 -7) SD64 0.987835 c F74:N (2 < (7 [-14:14 -14:14 -14:14])<10) FM74 -1.0 2 (-1) (-2) (-6) (-7) (-6 -7) SD74 1.49702 c F84:N (3 < (7 [-14:14 -14:14 -14:14])<10) FM84 -1.0 3 (-1) (-2) (-6) (-7) (-6 -7) SD84 0.984231 c F94:N (4 < (7 [-14:14 -14:14 -14:14])<10) FM94 -1.0 4 (-1) (-2) (-6) (-7) (-6 -7) SD94 1.049562 c F104:N (5 < (7 [-14:14 -14:14 -14:14])<10) FM104 -1.0 5 (-1) (-2) (-6) (-7) (-6 -7) SD104 1.43658 c 186 A1.2 Prismatic Hexagonal Block Prismatic Assembly lattice pattern c Hexagonal Lattice c -------------------------------- note --------------------------------------c Preserve the coated particle packing fraction c Removed the particles sitting at the boundary of the fuel compact c ----------------------------------------------------------------------------c ----------------------------------------------------------------------------c Cells 10 10 -0.000176 -10 u=10 imp:n=1 $ coolant channel 20 0 -20 fill=1(1) u=10 imp:n=1 $ fuel channel 30 0 -30 fill=1(2) u=10 imp:n=1 40 0 -40 fill=1(3) u=10 imp:n=1 50 0 -50 fill=1(4) u=10 imp:n=1 60 0 -60 fill=1(5) u=10 imp:n=1 70 0 -70 fill=1(6) u=10 imp:n=1 80 80 -1.75 10 20 30 40 50 60 70 u=10 imp:n=1 c lattice 90 21 -10.4 -12 u=20 imp:n=1 $ kernel 91 22 -1.05 12 -13 u=20 imp:n=1 $ Inner low density kernel coating layer 92 23 -1.90 13 -14 u=20 imp:n=1 $ Inner Pyro Carbon kernel coating layer 93 24 -3.18 14 -15 u=20 imp:n=1 $ Silicon carbide layer 94 25 -1.90 15 -16 u=20 imp:n=1 $ Outer pyro Carbon coating layer 95 26 -1.75 16 u=20 imp:n=1 $ outside of the coating layer 85 26 -1.75 -16 u=50 imp:n=1 $ graphite medium interior 86 26 -1.75 16 u=50 imp:n=1 $ graphite medium exterior 96 0 -90 91 -92 93 -94 95 lat=1 u=21 imp:n=1 $ cube fill=-6:6 -6:6 -20:20 50 50 50 50 50 50 50 50 50 50 50 50 50 $row *** 50 50 50 50 50 50 20 50 50 50 50 50 50 $row 50 50 50 50 20 20 20 20 20 50 50 50 50 $row 50 50 50 20 20 20 20 20 20 20 50 50 50 $row 50 50 20 20 20 20 20 20 20 20 20 50 50 $row 50 50 20 20 20 20 20 20 20 20 20 50 50 $row 50 20 20 20 20 20 20 20 20 20 20 20 50 $row 50 50 20 20 20 20 20 20 20 20 20 50 50 $row 50 50 20 20 20 20 20 20 20 20 20 50 50 $row 50 50 50 20 20 20 20 20 20 20 50 50 50 $row 50 50 50 50 20 20 20 20 20 50 50 50 50 $row 50 50 50 50 50 50 20 50 50 50 50 50 50 $row 50 50 50 50 50 50 50 50 50 50 50 50 50 $row 50 50 50 50 50 50 50 50 50 50 50 50 50 $row *** 50 50 50 50 50 50 20 50 50 50 50 50 50 $row 50 50 50 50 20 20 20 20 20 50 50 50 50 $row 50 50 50 20 20 20 20 20 20 20 50 50 50 $row 50 50 20 20 20 20 20 20 20 20 20 50 50 $row 50 50 20 20 20 20 20 20 20 20 20 50 50 $row 50 20 20 20 20 20 20 20 20 20 20 20 50 $row 50 50 20 20 20 20 20 20 20 20 20 50 50 $row 50 50 20 20 20 20 20 20 20 20 20 50 50 $row 50 50 50 20 20 20 20 20 20 20 50 50 50 $row 50 50 50 50 20 20 20 20 20 50 50 50 50 $row 50 50 50 50 50 50 20 50 50 50 50 50 50 $row 50 50 50 50 50 50 50 50 50 50 50 50 50 $row 50 50 50 50 50 50 50 50 50 50 50 50 50 $row *** 50 50 50 50 50 50 20 50 50 50 50 50 50 $row 50 50 50 50 20 20 20 20 20 50 50 50 50 $row 187 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row 188 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row 189 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row 190 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** 191 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row 192 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row 193 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row 194 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row 195 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 20 20 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 50 50 50 50 50 20 20 20 20 20 20 20 50 50 50 50 50 50 50 20 20 20 20 20 50 50 50 50 50 50 50 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row $row *** $row $row $row $row $row $row $row $row $row $row $row $row c 87 0 90 -91 92 -93 94 -95 u=21 imp:n=1 $ fuel cube exterior 97 0 -17 fill=21 u=1 imp:n=1 $ inside He gap 98 27 -0.000176 17 u=1 imp:n=1 $ outside c Hexagonal cell 100 0 -100 200 -300 400 -500 600 u=30 fill=10 lat=2 imp:n=1 $ Hexagon c c Sample cell 200 0 -700 710 -720 730 -740 750 fill=30 imp:n=1 250 0 (700:-710:720:-730:740:-750) imp:n=0 c c 300 0 -700 710 -720 730 -740 750 20 30 40 50 60 70 imp:n=1 c ----------------------------------------------------------------------------c ----------------------------------------------------------------------------c SURFACE CARDS c Cylinder surfaces 10 cz 0.79400 20 c/z 1.628127759 0.94 0.63500 196 30 c/z 0 1.88 0.63500 40 c/z -1.628127759 0.94 0.63500 50 c/z -1.628127759 -0.94 0.63500 60 c/z 0 -1.88 0.63500 70 c/z 1.628127759 -0.94 0.63500 c c Hex cell surfaces 100 px 1.628127759 200 px -1.628127759 300 p 0.577350269 1 0 1.88 400 p 0.577350269 1 0 -1.88 500 p -0.577350269 1 0 1.88 600 p -0.577350269 1 0 -1.88 c c Boundary Cell (Assembly) *700 px 3.256 *710 px -3.256 *720 pz 2.465 *730 pz -2.465 *740 py 2.820 *750 py -2.820 c surface 17 cz 0.6225 12 so 0.025 13 so 0.034 14 so 0.038 15 so 0.0415 16 so 0.0455 90 px 0.0560 91 px -0.0560 92 py 0.0560 93 py -0.0560 94 pz 0.0601220 95 pz -0.0601220 c ----------------------------------------------------------------------------c ----------------------------------------------------------------------------c DATA CARDS tr1 1.628127759 0.94 0 tr2 0 1.88 0 tr3 -1.628127759 0.94 0 tr4 -1.628127759 -0.94 0 tr5 0 -1.88 0 tr6 1.628127759 -0.94 0 mode n c MATERIAL m10 2003.66c 1.40000e-06 $ Helium gas outside the FE 293.6K 1990 2004.60c 9.99999e-01 $ Helium gas outside the FE 293.6K 1973 m21 92238.66c 3.05676e-01 $ U-238 293.6 1993 92235.66c 2.76538e-02 $ U-235 293.6K 1997 8016.62c 6.66662e-01 $ Oxygen 293.6K 2000 5010.66c 1.64692e-06 $ Boron-10 5011.66c 6.67090e-06 $ Boron-11 m22 6000.24c 1.00000e+00 $ Natural Carbon (buffer) mt22 grph.60t m23 6000.24c 1.00000e+00 $ Natural Carbon mt23 grph.60t m24 6000.24c 5.00000e-01 $ Natural Carbon 14000.60c 5.00000e-01 $ Silicon 293.6K 1976 197 mt24 grph.60t m25 6000.24c 1.00000e+00 $ Natural Carbon mt25 grph.60t m26 6000.24c 9.99999e-01 $ Natural Carbon 5010.66c 1.09980e-07 $ Boron-10 5011.66c 4.45472e-07 $ Boron-11 mt26 grph.60t m27 2003.66c 1.40000e-06 $ Helium gas outside the FE 293.6K 1990 2004.60c 9.99999e-01 $ Helium gas outside the FE 293.6K 1973 m80 6000.24c 9.99999e-01 $ Natural Carbon 5010.66c 1.09980e-07 $ Boron-10 5011.66c 4.45472e-07 $ Boron-11 mt80 grph.60t c c CRITICALITY CONTROL CARDS kcode 200 1.0 200 1200 ksrc 0.000 0.000 0.000 c c TALLY CARDS c E0 3.14200E-06 1.15600E-01 1.96400E+01 E0 3.05902E-06 1.11090E-01 1.49182E+01 c -------------------- FLUX IN SYSTEM ------------------------FC4 Broad-group FLUX in CELLS (6-group) F4:n 10 $ Coolant channel 98 $ Helium gap 80 $ Moderator SD4 9.7642 2.4345e-01 23.0159 c FC14 Broad-group FLUX in FUEL (6-group) F14:N (90 < (96 [-6:6 -6:6 -20:20]) < 97) $ Fuel kernel (91 < (96 [-6:6 -6:6 -20:20]) < 97) $ 1 layer coating (92 < (96 [-6:6 -6:6 -20:20]) < 97) $ 2 layer coating (93 < (96 [-6:6 -6:6 -20:20]) < 97) $ 3 layer coating (94 < (96 [-6:6 -6:6 -20:20]) < 97) $ 4 layer coating SD14 0.1963 0.2976 0.1956 0.2086 0.2855 FC24 Broad-group FLUX outside FUEL (6-group) F24:N ( (95 85 86) < (96 [-6:6 -6:6 -20:20]) < 97) $ graphite matrix SD24 4.8180 c -------------------------------------------------------------c c ---------------- REACTION RATE IN SYSTEM --------------------F34:N 10 $ Coolant channel FM34 -1.0 10 (-1) (-2) (-6) (-7) SD34 9.7642 c F44:N 98 $ Helium gap FM44 -1.0 27 (-1) (-2) (-6) (-6 -7) SD44 2.4345e-01 c F54:N 80 $ Moderator FM54 -1.0 80 (-1) (-2) (-6) (-6 -7) SD54 23.0159 198 c F64:N (90 < (96 [-6:6 -6:6 -20:20]) < 97) $ Fuel kernel FM64 -1.0 21 (-1) (-2) (-6) (-6 -7) SD64 0.1963 c F74:N (91 < (96 [-6:6 -6:6 -20:20]) < 97) $ 1 layer coating FM74 -1.0 22 (-1) (-2) (-6) (-6 -7) SD74 0.2976 c F84:N (92 < (96 [-6:6 -6:6 -20:20]) < 97) $ 2 layer coating FM84 -1.0 23 (-1) (-2) (-6) (-6 -7) SD84 0.1956 c F94:N (93 < (96 [-6:6 -6:6 -20:20]) < 97) $ 3 layer coating FM94 -1.0 24 (-1) (-2) (-6) (-6 -7) SD94 0.2086 c F104:N (94 < (96 [-6:6 -6:6 -20:20]) < 97) $ 4 layer coating FM104 -1.0 25 (-1) (-2) (-6) (-6 -7) SD104 0.2855 c F114:N ( (95 85 86) < (96 [-6:6 -6:6 -20:20]) < 97) $ graphite matrix FM114 -1.0 26 (-1) (-2) (-6) (-6 -7) SD114 4.8180 c -------------------------------------------------------------- 199 A2 DRAGON Input Decks A2.1 Pebble Fuel Element *----* HTR FUEL MODELING * Pebble1 * Surrounded by Helium * ENDF7_361 * Author: Tholakele Prisca Ngeleka *----* Define STRUCTURES and MODULES *-----LINKED_LIST PEBBLE DISCR DISCR1 LIBRARY LIBRARY1 LIBRARY2 MACRO1 MACRO2 CP CPAM CALC CALCB OUT OUTA OUTB OUTC OUTD OUTE OUTF OUTG OUTH OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 OUT8 COMPO FLUX DATABASE DATABASE1 ; SEQ_ASCII calcFl1 calcFl2 calcFl3 calcFl4 calcFl5 calcFl6 calcFl7 calcFl8 calcFlA calcFlB calcFlC calcFlD calcFlE calcFlF calcFlG calcFlH multicompo ; MODULE LIB: GEO: SYBILT: USS: SHI: ASM: FLU: EDI: T: COMPO: END: ; * *-----* Microscopic cross section *-----* LIBRARY := LIB: :: NMIX 8 CTRA NONE SUBG MACR MIXS LIB: DRAGON FIL: ENDF7_361 * * Mixtures * 1 = fuel kernel * 2 = Inner low density carbon kernel coating (Buffer) * 3 = Inner Pyro carbon kernel coating * 4 = Silicon Carbide kernel coating * 5 = Outer Pyro carbon kernel coating * 6 = Compact carbon matrix * 7 = Helium coolant * 8 = Pebble outer coating * * Fuel kernel MIX 1 293.6 U238 = 'U238' 2.12877E-02 1 U235 = 'U235' 1.92585E-03 1 O16 = 'O16' 4.64272E-02 B10 = 'B10' 1.14694E-07 B11 = 'B11' 4.64570E-07 * Inner low density carbon kernel (buffer) MIX 2 293.6 200 Cnat = 'C12_GRA' 5.26449E-02 * Inner Pyro carbon kernel coating MIX 3 293.6 Cnat = 'C12_GRA' 9.52621E-02 * Silicon carbide kernel coating MIX 4 293.6 Si28 = 'Si28' 4.402E-02 Si29 = 'Si29' 2.235E-03 Si30 = 'Si30' 1.473E-03 C0 = 'C12' 4.772E-02 * Outer Pyro carbon kernel coating MIX 5 293.6 Cnat = 'C12_GRA' 9.52621E-02 * Compact carbon matrix MIX 6 293.6 Cnat = 'C12_GRA' 8.77414E-02 B10 = 'B10' 9.64977E-09 B11 = 'B11' 3.90864E-08 * Helium coolant MIX 7 293.6 He3 = 'He3' 3.71220E-11 He4 = 'He4' 2.65156E-05 * Pebble outer coating MIX 8 293.6 Cnat = 'C12_GRA' 8.77414E-02 B10 = 'B10' 9.64977E-09 B11 = 'B11' 3.90864E-08 ; *------* GEOMETRY PEBBLE : PEBBLE := GEO: :: SPHERE 3 EDIT 10000 R+ REFL RADIUS 0.0 2.5 3.0 3.53735 MIX 9 8 7 * Coated Particles * NMISTR = Number of microstructures/coated particles types in region * NMILG = Number of microstructure/coated particles regions * NS = ARRAY OF SUB REGIONS IN THPebble1.x2mE COATED PATICLE/MICROSTRUCTURES; LEN=NMILG * RS = RADIUS OF COATED PARTICLES/MICROSTRUCTURES, LEN=NS(I); I=1; NMISTR; * milie = COMPOSITION OF EACH COATED PARTICLE/MICROSTRUCTURE, LEN=NMISTR; * "NOTE: MILIE NO'S ARE GREATER THAN MIX NO'S" * mixdil = Base composition of each region, LEN=NMILG * fract = Microstructure type volume fraction in region LEN=NMILG * mixgr = LIBRARY MIXTURES FOR EACH COATED PARTICLE/MICROSTRUCTURE LAYER; LEN=NS(I) *NMISTR, NMILG BIHET SPHE 1 1 (* NS *) 5 (* RS *) 0.0 0.025 0.034 0.038 0.0415 0.0455 (* milie *) 9 (* mixdil *) 6 (* fract *) 0.09042852 (* mixgr *) 1 2 3 4 5 ; *----* * TRACKING MODULES * SYBILT -used for 1D geometries (plane, cyl or spherical) * EXCELT-perform full cell collision probability tracking with isotropic/specular surface current 201 * NXT -extension of excelt for more complex geometries * MCCGT-implementation of open characteristics method * SNT -implementation of the discrete ordinates method (1D/2D/3D geom) * BIVACT-perform a finite element (Diff/SPn) 1D/2D tracking * TRIVACT-perform a finite element (Diff/SPn) 1D/2D/3D trackikng * *SYBILT (CASE 1) DISCR := SYBILT: PEBBLE :: TITLE 'Pebble1: HTR FUEL MODELING (SYBIL /SYBIL)' MAXR 1000 ; LIBRARY1 := USS: LIBRARY DISCR :: EDIT 1 ; CP := ASM: LIBRARY1 DISCR :: EDIT 0 ; CALC := FLU: CP LIBRARY1 DISCR :: EDIT 1 TYPE K ; OUTA := EDI: CALC LIBRARY1 DISCR :: EDIT 2 MERG COMP COND 38 281 361 MICR ALL SAVE ; *SYBILT (CASE 1) DISCR1 := SYBILT: PEBBLE :: TITLE 'Pebble1: HTR FUEL MODELING (SYBIL /SYBIL)' MAXR 1000 ; LIBRARY2 := USS: LIBRARY DISCR1 :: EDIT 1 ; MACRO1 := LIBRARY2 :: STEP UP MACROLIB ; MACRO2 := T: MACRO1 ; CPAM := ASM: MACRO2 DISCR1 :: EDIT 0 ; CALCB := FLU: CPAM MACRO2 DISCR1 :: EDIT 4 TYPE K ; OUTB := EDI: CALCB MACRO2 DISCR1 :: EDIT 2 MERGE COMP MICR ALL SAVE ; END: ; 202 A2.2 Prismatic Hexagonal Block *----* HTR FUEL MODELING * Prismatic block * Surrounded by Helium * ENDF7 SHEM 361 * Author:Tholakele Prisca Ngeleka *----* Define STRUCTURES and MODULES *-----LINKED_LIST PRISM DISCR DISCR1 LIBRARY LIBRARY1 LIBRARY2 CPAM OUTK OUTL OUTM OUTN OUTP OUTQ OUTR OUTS COMPO CALC FLUX DATABASE3 ; * SEQ_BINARY TRACK_F1 TRACK_F2 ; SEQ_ASCII calcFl1 calcFl2 calcFl3 calcFl4 calcFl5 calcFl6 calcFl7 calcFl8 multicompo ; MODULE LIB: GEO: SYBILT: USS: ASM: SHI: FLU: EDI: COMPO: END: ; * * Microscopic cross section *-----LIBRARY := LIB: :: NMIX 8 CTRA NONE SUBG MIXS LIB: DRAGON FIL: ENDF7_361 * * Mixtures * 1 = fuel kernel * 2 = Inner low density carbon kernel coating (Buffer) * 3 = Inner Pyro carbon kernel coating * 4 = Silicon Carbide kernel coating * 5 = Outer Pyro carbon kernel coating * 6 = Compact carbon matrix * 7 = Helium coolant * 8 = Compact carbon matrix * * Fuel kernel MIX 1 293.6 U238 = 'U238' 2.12877E-02 1 U235 = 'U235' 1.92585E-03 1 O16 = 'O16' 4.64272E-02 B10 = 'B10' 1.14694E-07 B11 = 'B11' 4.64570E-07 * * Inner low density carbon kernel (buffer) MIX 2 293.6 Cnat = 'C12_GRA' 5.26449E-02 * * Inner Pyro carbon kernel coating MIX 3 293.6 Cnat = 'C12_GRA' 9.52621E-02 203 * * Silicon carbide kernel coating MIX 4 293.6 Si28 = 'Si28' 4.402E-02 Si29 = 'Si29' 2.235E-03 Si30 = 'Si30' 1.473E-03 C0 = 'C12' 4.772E-02 * * Outer Pyro carbon kernel coating MIX 5 293.6 Cnat = 'C12_GRA' 9.52621E-02 * * Compact carbon matrix MIX 6 293.6 Cnat = 'C12_GRA' 8.77414E-02 B10 = 'B10' 9.64977E-09 B11 = 'B11' 3.90864E-08 * * Helium coolant MIX 7 293.6 He3 = 'He3' 3.71220E-11 He4 = 'He4' 2.65156E-05 * * Pebble outer coating MIX 8 293.6 Cnat = 'C12_GRA' 8.77414E-02 B10 = 'B10' 9.64977E-09 B11 = 'B11' 3.90864E-08 ; *------* * GEOMETRY PRISMATIC : * PRISM := GEO: :: HEX 36 HBC S30 REFL CELL * Ring 0 (center cell) C * Ring 1 F * Ring 2 CF * Ring 3 FC * Ring 4 CFF * Ring 5 FCF * Ring 6 CFFC * Ring 7 FCFF * Ring 8 CFFCF * Ring 9 FCFFC * Ring 10 CFFCFF * 204 * Coated Particles * NMISTR = Number of microstructures/coated particles types in region * NMILG = Number of microstructure/coated particles regions * NS = ARRAY OF SUB REGIONS IN THE COATED PATICLE/MICROSTRUCTURES; LEN=NMILG * RS = RADIUS OF COATED PARTICLES/MICROSTRUCTURES, LEN=NS(I); I=1; NMISTR; * milie = COMPOSITION OF EACH COATED PARTICLE/MICROSTRUCTURE, LEN=NMISTR; * "NOTE: MILIE NO'S ARE GREATER THAN MIX NO'S" * misdil = Base composition of each region, LEN=NMILG * fract = Microstructure type volume fraction in region LEN=NMILG * mixgr = LIBRARY MIXTURES FOR EACH COATED PARTICLE/MICROSTRUCTURE LAYER; LEN=NS(I) * *NMISTR, NMILG BIHET SPHE 1 1 (* NS *) 5 (* RS *) 0.0 0.025 0.034 0.038 0.0415 0.0455 (* milie *) 9 (* mixdil *) 6 (* fract *) 0.19723 (* mixgr *) 1 2 3 4 5 ::: C := GEO: HEXCEL 1 EDIT 1000 SIDE 1.085 RADIUS 0.0 0.794 MIX 7 8 ; ::: F := GEO: HEXCEL 2 EDIT 1000 SIDE 1.085 RADIUS 0.0 0.6225 0.635 MIX 9 7 8 ; ; * *PSPPLOT (Graphical presentation) *----* TRACKING MODULES * SYBILT -used for 1D geometries (plane, cyl or spherical) * EXCELT-perform full cell collision probability tracking with isotropic/specular surface * current * NXT -extension of excelt for more complex geometries * MCCGT-implementation of open characteristics method * SNT -implementation of the discrete ordinates method (1D/2D/3D geom) * BIVACT-perform a finite element (Diff/SPn) 1D/2D trackikng * TRIVACT-perform a finite element (Diff/SPn) 1D/2D/3D tracking * *SYBILT (CASE 1) * TRACKING MODULES * SYBILT -used for 1D geometries (plane, cyl or spherical) * EXCELT-perform full cell collision probability tracking with isotropic/specular surface current * NXT -extension of excelt for more complex geometries * MCCGT-implementation of open characteristics method * SNT -implementation of the discrete ordinates method (1D/2D/3D geom) * BIVACT-perform a finite element (Diff/SPn) 1D/2D tracking * TRIVACT-perform a finite element (Diff/SPn) 1D/2D/3D trackikng * * SYBILT *---------------------------------------------* Tracking calculation for self-shielding *---------------------------------------------- 205 * TITLE 'Prismatic: HTR FUEL MODELING (SYBILT)' DISCR := SYBILT: PRISM :: EDIT 1 MAXR 1000 ; LIBRARY1 := USS: LIBRARY DISCR :: EDIT 1 ; CPAM := ASM: LIBRARY1 DISCR :: EDIT 1 ; CALC := FLU: CPAM LIBRARY1 DISCR :: EDIT 2 TYPE K ; * 1 = fuel kernel OUTK := EDI: CALC LIBRARY1 DISCR :: EDIT 2 MERGE MIX 1 0 0 0 0 0 0 0 MICR ALL SAVE ; calcFl1 := OUTK ; * 2 = Inner low density carbon kernel coating (Buffer) OUTL := EDI: CALC LIBRARY1 DISCR :: EDIT 2 MERGE MIX 0 1 0 0 0 0 0 0 MICR ALL SAVE ; calcFl2 := OUTL ; * 3 = Inner Pyro carbon kernel coating OUTM := EDI: CALC LIBRARY1 DISCR :: EDIT 2 MERGE MIX 0 0 1 0 0 0 0 0 MICR ALL SAVE ; calcFl3 := OUTM ; * 4 = Silicon Carbide kernel coating OUTN := EDI: CALC LIBRARY1 DISCR :: EDIT 2 MERGE MIX 0 0 0 1 0 0 0 0 MICR ALL SAVE ; calcFl4 := OUTN ; * 5 = Outer Pyro carbon kernel coating OUTP := EDI: CALC LIBRARY1 DISCR :: EDIT 2 MERGE MIX 0 0 0 0 1 0 0 0 MICR ALL SAVE ; 206 calcFl5 := OUTP ; * 6 = Compact carbon matrix OUTQ := EDI: CALC LIBRARY1 DISCR :: EDIT 2 MERGE MIX 0 0 0 0 0 1 0 0 MICR ALL SAVE ; calcFl6 := OUTQ ; * 7 = Helium coolant OUTR := EDI: CALC LIBRARY1 DISCR :: EDIT 2 MERGE MIX 0 0 0 0 0 0 1 0 MICR ALL SAVE ; calcFl7 := OUTR ; * 8 = Pebble outer coating OUTS := EDI: CALC LIBRARY1 DISCR :: EDIT 2 MERGE MIX 0 0 0 0 0 0 0 1 MICR ALL SAVE ; calcFl8 := OUTS ; * COMPO (FLUX SAMPLING) DATABASE3 := COMPO: :: EDIT 5 COMM 'Multi-parameter reactor database' ENDC INIT ; DATABASE3 := COMPO: DATABASE3 OUTK OUTL OUTM OUTN OUTP OUTQ OUTR OUTS :: EDIT 3 STEP UP 'default' ; multicompo := DATABASE3 ; END: ; 207 A3 Energy Group Structures A3.1 SHEM-361 Group number Energy (eV) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1.96403E+07 1.49182E+07 1.38403E+07 1.16183E+07 9.99999E+06 9.04836E+06 8.18730E+06 7.40817E+06 6.70319E+06 6.06530E+06 4.96585E+06 4.06569E+06 3.32871E+06 2.72531E+06 2.23130E+06 1.90139E+06 1.63654E+06 1.40577E+06 1.33694E+06 1.28696E+06 1.16205E+06 1.05115E+06 9.51119E+05 8.60006E+05 7.06511E+05 5.78443E+05 4.94002E+05 4.56021E+05 4.12501E+05 3.83884E+05 3.20646E+05 2.67826E+05 2.30014E+05 1.95008E+05 1.64999E+05 1.40000E+05 1.22773E+05 1.15624E+05 9.46645E+04 8.22974E+04 6.73794E+04 5.51656E+04 4.99159E+04 4.08677E+04 3.69786E+04 3.34596E+04 2.92810E+04 2.73944E+04 2.61001E+04 2.49991E+04 Group number Energy (eV) 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 208 2.26994E+04 1.85847E+04 1.62005E+04 1.48997E+04 1.36037E+04 1.11377E+04 9.11881E+03 7.46585E+03 6.11252E+03 5.00451E+03 4.09735E+03 3.48107E+03 2.99618E+03 2.70024E+03 2.39729E+03 2.08410E+03 1.81183E+03 1.58620E+03 1.34358E+03 1.13467E+03 1.06432E+03 9.82494E+02 9.09681E+02 8.32218E+02 7.48517E+02 6.77287E+02 6.46837E+02 6.12834E+02 6.00099E+02 5.92941E+02 5.77146E+02 5.39204E+02 5.01746E+02 4.53999E+02 4.19094E+02 3.90760E+02 3.71703E+02 3.53575E+02 3.35323E+02 3.19928E+02 2.95922E+02 2.88327E+02 2.84888E+02 2.76468E+02 2.68297E+02 2.56748E+02 2.41796E+02 2.35590E+02 2.24325E+02 2.12108E+02 Group number Energy (eV) 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 2.00958E+02 1.95996E+02 1.93078E+02 1.90204E+02 1.88877E+02 1.87559E+02 1.86251E+02 1.84952E+02 1.83295E+02 1.75229E+02 1.67519E+02 1.63056E+02 1.54176E+02 1.46657E+02 1.39504E+02 1.32701E+02 1.26229E+02 1.20554E+02 1.17577E+02 1.16524E+02 1.15480E+02 1.12854E+02 1.10288E+02 1.05646E+02 1.03038E+02 1.02115E+02 1.01605E+02 1.01098E+02 1.00594E+02 9.73287E+01 9.33256E+01 8.87741E+01 8.39393E+01 7.93679E+01 7.63322E+01 7.35595E+01 7.18869E+01 6.90682E+01 6.68261E+01 6.64929E+01 6.61612E+01 6.58312E+01 6.55029E+01 6.50460E+01 6.45923E+01 6.36306E+01 6.23083E+01 5.99250E+01 5.70595E+01 5.40600E+01 Group number Energy (eV) 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 5.29895E+01 5.17847E+01 4.92591E+01 4.75173E+01 4.62053E+01 4.52904E+01 4.41721E+01 4.31246E+01 4.21441E+01 4.12270E+01 3.97295E+01 3.87874E+01 3.77919E+01 3.73038E+01 3.68588E+01 3.64191E+01 3.60568E+01 3.56980E+01 3.45392E+01 3.30855E+01 3.16930E+01 2.78852E+01 2.46578E+01 2.25356E+01 2.23788E+01 2.21557E+01 2.20011E+01 2.17018E+01 2.14859E+01 2.13360E+01 2.12296E+01 2.11448E+01 2.10604E+01 2.09763E+01 2.07676E+01 2.06847E+01 2.06021E+01 2.05199E+01 2.04175E+01 2.02751E+01 2.00734E+01 1.95974E+01 1.93927E+01 1.91997E+01 1.90848E+01 1.79591E+01 1.77590E+01 1.75648E+01 1.74457E+01 1.68305E+01 Group number Energy (eV) 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 209 1.65501E+01 1.60498E+01 1.57792E+01 1.48662E+01 1.47301E+01 1.45952E+01 1.44702E+01 1.42505E+01 1.40496E+01 1.35460E+01 1.33297E+01 1.26000E+01 1.24721E+01 1.23086E+01 1.21302E+01 1.19795E+01 1.18153E+01 1.17094E+01 1.15894E+01 1.12694E+01 1.10529E+01 1.08038E+01 1.05793E+01 9.50002E+00 9.14031E+00 8.97995E+00 8.80038E+00 8.67369E+00 8.52407E+00 8.30032E+00 8.13027E+00 7.97008E+00 7.83965E+00 7.73994E+00 7.60035E+00 7.38015E+00 7.13987E+00 6.99429E+00 6.91778E+00 6.87021E+00 6.83526E+00 6.81070E+00 6.79165E+00 6.77605E+00 6.75981E+00 6.74225E+00 6.71668E+00 6.63126E+00 6.60611E+00 6.58829E+00 Group number Energy (eV) 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 6.57184E+00 6.55609E+00 6.53907E+00 6.51492E+00 6.48178E+00 6.43206E+00 6.35978E+00 6.28016E+00 6.16011E+00 6.05991E+00 5.96014E+00 5.80021E+00 5.72015E+00 5.61979E+00 5.53004E+00 5.48817E+00 5.41025E+00 5.38003E+00 5.32011E+00 5.21008E+00 5.10997E+00 4.93323E+00 4.76785E+00 4.41980E+00 4.30981E+00 4.21983E+00 4.00000E+00 3.88217E+00 3.71209E+00 3.54307E+00 3.14211E+00 2.88405E+00 2.77512E+00 2.74092E+00 2.71990E+00 2.70012E+00 2.64004E+00 2.62005E+00 2.59009E+00 2.55000E+00 2.46994E+00 2.33006E+00 2.27299E+00 2.21709E+00 2.15695E+00 2.07010E+00 1.98992E+00 1.90008E+00 1.77997E+00 1.66895E+00 Group number Energy (eV) 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 1.58803E+00 1.51998E+00 1.44397E+00 1.41001E+00 1.38098E+00 1.33095E+00 1.29304E+00 1.25094E+00 1.21397E+00 1.16999E+00 1.14797E+00 1.12997E+00 1.11605E+00 1.10395E+00 1.09198E+00 1.07799E+00 1.03499E+00 1.02101E+00 1.00904E+00 9.96501E-01 9.81959E-01 9.63960E-01 9.44022E-01 9.19978E-01 8.80024E-01 8.00371E-01 7.19999E-01 6.24999E-01 5.94993E-01 5.54990E-01 5.20011E-01 4.75017E-01 4.31579E-01 3.90001E-01 3.52994E-01 3.25008E-01 3.05012E-01 2.79989E-01 2.54997E-01 2.31192E-01 2.09610E-01 1.90005E-01 1.61895E-01 1.37999E-01 1.19995E-01 1.04298E-01 8.97968E-02 7.64969E-02 6.51999E-02 5.54982E-02 Group number Energy (eV) 351 352 353 354 355 356 357 358 359 360 361 210 4.73019E-02 4.02999E-02 3.43998E-02 2.92989E-02 2.49394E-02 2.00104E-02 1.48300E-02 1.04505E-02 7.14526E-03 4.55602E-03 2.49990E-03 A3.2 SHEM-281 Group number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Energy (eV) 1.96403E+07 1.49182E+07 1.38403E+07 1.16183E+07 9.99999E+06 9.04836E+06 8.18730E+06 7.40817E+06 6.70319E+06 6.06530E+06 4.96585E+06 4.06569E+06 3.32871E+06 2.72531E+06 2.23130E+06 1.90139E+06 1.63654E+06 1.40577E+06 1.33694E+06 1.28696E+06 1.16205E+06 1.05115E+06 9.51119E+05 8.60006E+05 7.06511E+05 5.78443E+05 4.94002E+05 4.56021E+05 4.12501E+05 3.83884E+05 3.20646E+05 2.67826E+05 2.30014E+05 1.95008E+05 1.64999E+05 1.40000E+05 1.22773E+05 1.15624E+05 9.46645E+04 8.22974E+04 6.73794E+04 5.51656E+04 4.99159E+04 4.08677E+04 3.69786E+04 3.34596E+04 2.92810E+04 2.73944E+04 2.61001E+04 2.49991E+04 Group number Energy (eV) 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 2.26994E+04 1.85847E+04 1.62005E+04 1.48997E+04 1.36037E+04 1.11377E+04 9.11881E+03 7.46585E+03 6.11252E+03 5.00451E+03 4.09735E+03 3.48107E+03 2.99618E+03 2.57884E+03 2.21963E+03 1.91045E+03 1.61404E+03 1.34506E+03 1.13501E+03 1.06496E+03 9.07501E+02 7.48517E+02 6.12834E+02 5.01746E+02 4.10795E+02 3.53575E+02 3.19928E+02 2.83750E+02 2.41796E+02 1.97966E+02 1.62081E+02 1.32701E+02 1.08646E+02 8.89518E+01 7.50455E+01 6.14420E+01 5.26726E+01 4.57913E+01 4.39958E+01 4.01690E+01 3.37201E+01 2.76077E+01 2.46086E+01 2.25356E+01 2.23784E+01 2.21557E+01 2.20011E+01 2.17018E+01 2.14859E+01 2.13360E+01 211 Group number 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 Energy (eV) 2.12296E+01 2.11448E+01 2.10604E+01 2.09763E+01 2.07676E+01 2.06847E+01 2.06021E+01 2.05199E+01 2.04175E+01 2.02751E+01 2.00734E+01 1.95974E+01 1.93927E+01 1.91997E+01 1.90848E+01 1.79591E+01 1.77590E+01 1.75648E+01 1.74457E+01 1.68305E+01 1.65501E+01 1.60498E+01 1.57792E+01 1.48663E+01 1.47301E+01 1.45952E+01 1.44702E+01 1.42505E+01 1.40496E+01 1.35460E+01 1.33297E+01 1.26000E+01 1.24721E+01 1.23086E+01 1.21302E+01 1.19795E+01 1.18153E+01 1.17094E+01 1.15894E+01 1.12694E+01 1.10529E+01 1.08038E+01 1.05793E+01 9.50002E+00 9.14031E+00 8.97995E+00 8.80038E+00 8.67369E+00 8.52407E+00 8.30032E+00 Group number 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 Energy (eV) 8.13027E+00 7.97008E+00 7.83965E+00 7.73994E+00 7.60035E+00 7.38015E+00 7.13987E+00 6.99429E+00 6.91778E+00 6.87021E+00 6.83526E+00 6.81070E+00 6.79165E+00 6.77605E+00 6.75981E+00 6.74225E+00 6.71668E+00 6.63126E+00 6.60611E+00 6.58829E+00 6.57184E+00 6.55609E+00 6.53907E+00 6.51492E+00 6.48178E+00 6.43206E+00 6.35978E+00 6.28015E+00 6.16011E+00 6.05991E+00 5.96014E+00 5.80021E+00 5.72015E+00 5.61979E+00 5.53004E+00 5.48817E+00 5.41025E+00 5.38003E+00 5.32011E+00 5.21008E+00 5.10997E+00 4.93323E+00 4.76785E+00 4.41980E+00 4.30981E+00 4.21983E+00 4.00000E+00 3.88217E+00 3.71209E+00 3.54307E+00 Group number Energy (eV) 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 3.14211E+00 2.88405E+00 2.77512E+00 2.74092E+00 2.71990E+00 2.70012E+00 2.64004E+00 2.62005E+00 2.59009E+00 2.55000E+00 2.46994E+00 2.33006E+00 2.27299E+00 2.21709E+00 2.15695E+00 2.07010E+00 1.98992E+00 1.90008E+00 1.77997E+00 1.66895E+00 1.58803E+00 1.51998E+00 1.44397E+00 1.41001E+00 1.38098E+00 1.33095E+00 1.29304E+00 1.25094E+00 1.21397E+00 1.16999E+00 1.14797E+00 1.12997E+00 1.11605E+00 1.10395E+00 1.09198E+00 1.07799E+00 1.03499E+00 1.02101E+00 1.00904E+00 9.96501E-01 9.81959E-01 9.63960E-01 9.44022E-01 9.19978E-01 8.80024E-01 8.00371E-01 7.19999E-01 6.24999E-01 5.94993E-01 5.54990E-01 212 Group number 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 Energy (eV) 5.20011E-01 4.75017E-01 4.31579E-01 3.90001E-01 3.52994E-01 3.25008E-01 3.05012E-01 2.79989E-01 2.54997E-01 2.31192E-01 2.09610E-01 1.90005E-01 1.61895E-01 1.37999E-01 1.19995E-01 1.04298E-01 8.97968E-02 7.64969E-02 6.51999E-02 5.54982E-02 4.73019E-02 4.02999E-02 3.43998E-02 2.92989E-02 2.49394E-02 2.00104E-02 1.48300E-02 1.04505E-02 7.14526E-03 4.55602E-03 2.49990E-03 A3.3 GA-193 Group number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Energy (eV) 1.491820E+07 1.349860E+07 1.221400E+07 1.105170E+07 1.000000E+07 9.048370E+06 8.187310E+06 7.408180E+06 6.703200E+06 6.065310E+06 5.488120E+06 4.965850E+06 4.493300E+06 4.065700E+06 3.678800E+06 3.328700E+06 3.011900E+06 2.725300E+06 2.466000E+06 2.231300E+06 2.019000E+06 1.826800E+06 1.653000E+06 1.495700E+06 1.353400E+06 1.224600E+06 1.108000E+06 1.002600E+06 9.071800E+05 8.208500E+05 7.427400E+05 6.720600E+05 6.081000E+05 5.502300E+05 4.978700E+05 4.504900E+05 4.076200E+05 3.688300E+05 3.337300E+05 3.019700E+05 2.732400E+05 2.472400E+05 2.237100E+05 2.024200E+05 1.831600E+05 1.657300E+05 1.499600E+05 1.356900E+05 1.227700E+05 1.110900E+05 Group number Energy (eV) 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 8.651700E+04 6.738000E+04 5.247500E+04 4.086800E+04 3.182800E+04 2.478800E+04 1.930500E+04 1.503400E+04 1.170900E+04 9.118800E+03 7.101700E+03 5.530800E+03 4.307400E+03 3.354600E+03 2.612600E+03 2.034700E+03 1.584600E+03 1.234100E+03 9.611200E+02 7.485200E+02 5.829500E+02 4.540000E+02 3.535800E+02 2.753600E+02 2.144500E+02 1.670200E+02 1.300700E+02 1.013000E+02 7.889300E+01 6.144200E+01 4.785100E+01 3.726600E+01 2.902300E+01 2.260300E+01 1.760400E+01 1.371000E+01 1.067700E+01 8.315300E+00 6.475900E+00 5.043500E+00 3.927900E+00 3.059000E+00 2.382400E+00 2.355000E+00 2.310000E+00 2.245000E+00 2.150000E+00 2.050000E+00 1.950000E+00 1.880000E+00 213 Group number 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 Energy (eV) 1.820000E+00 1.740000E+00 1.650000E+00 1.550000E+00 1.470000E+00 1.395000E+00 1.325000E+00 1.275000E+00 1.225000E+00 1.175000E+00 1.140000E+00 1.127500E+00 1.117500E+00 1.100000E+00 1.085000E+00 1.075000E+00 1.065000E+00 1.055000E+00 1.037500E+00 1.012500E+00 9.950000E-01 9.850000E-01 9.750000E-01 9.600000E-01 9.400000E-01 9.200000E-01 9.000000E-01 8.830000E-01 8.630000E-01 8.250000E-01 7.750000E-01 7.250000E-01 6.915000E-01 6.665000E-01 6.375000E-01 6.125000E-01 5.950000E-01 5.825000E-01 5.625000E-01 5.410000E-01 5.160000E-01 4.950000E-01 4.850000E-01 4.775000E-01 4.725000E-01 4.650000E-01 4.550000E-01 4.400000E-01 4.250000E-01 4.170000E-01 Group number Energy (eV) 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 3.970000E-01 3.700000E-01 3.550000E-01 3.450000E-01 3.350000E-01 3.250000E-01 3.150000E-01 3.050000E-01 2.950000E-01 2.850000E-01 2.750000E-01 2.650000E-01 2.550000E-01 2.450000E-01 2.350000E-01 2.250000E-01 2.100000E-01 1.900000E-01 1.700000E-01 1.500000E-01 1.300000E-01 1.100000E-01 9.750000E-02 9.250000E-02 8.750000E-02 8.250000E-02 7.750000E-02 7.250000E-02 6.750000E-02 6.250000E-02 5.500000E-02 4.500000E-02 3.500000E-02 2.765000E-02 2.265000E-02 1.750000E-02 1.250000E-02 9.000000E-03 7.500000E-03 6.000000E-03 4.500000E-03 3.000000E-03 1.500000E-03 214 A3.4 SHEM_TPN-407 Group number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Energy (eV) 1.96403E+07 1.49182E+07 1.38403E+07 1.27293E+07 1.16183E+07 9.99999E+06 9.04836E+06 8.18730E+06 7.40817E+06 6.70319E+06 6.06530E+06 5.51557E+06 4.96585E+06 4.51577E+06 4.29073E+06 4.06569E+06 3.69720E+06 3.32871E+06 3.02701E+06 2.72531E+06 2.66356E+06 2.60181E+06 2.47831E+06 2.35480E+06 2.23130E+06 2.06634E+06 1.98387E+06 1.90139E+06 1.83518E+06 1.76896E+06 1.70275E+06 1.63654E+06 1.57885E+06 1.52115E+06 1.46346E+06 1.40577E+06 1.34008E+06 1.28696E+06 1.22450E+06 1.16205E+06 1.10660E+06 1.05115E+06 1.00113E+06 9.51119E+05 9.05562E+05 8.60006E+05 8.21632E+05 7.83259E+05 7.44885E+05 7.06511E+05 Group number Energy (eV) 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 6.74494E+05 6.42477E+05 6.10460E+05 5.78443E+05 5.57332E+05 5.36222E+05 5.15112E+05 4.84507E+05 4.56021E+05 4.34261E+05 4.05347E+05 3.83884E+05 3.52265E+05 3.20646E+05 2.94236E+05 2.81031E+05 2.67826E+05 2.48920E+05 2.30014E+05 2.12511E+05 1.95008E+05 1.80003E+05 1.64999E+05 1.52499E+05 1.46249E+05 1.40000E+05 1.31386E+05 1.27080E+05 1.22773E+05 1.15624E+05 1.05144E+05 9.99043E+04 9.46645E+04 8.84809E+04 8.22974E+04 7.48384E+04 6.73794E+04 6.12725E+04 5.51656E+04 5.25407E+04 4.99159E+04 4.53918E+04 4.08677E+04 3.69786E+04 3.34596E+04 3.13703E+04 2.92810E+04 2.73944E+04 2.61001E+04 2.49991E+04 215 Group number 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 Energy (eV) 2.38492E+04 2.26994E+04 2.06421E+04 1.85847E+04 1.73926E+04 1.62005E+04 1.48997E+04 1.36037E+04 1.23707E+04 1.11377E+04 1.01283E+04 9.11881E+03 8.29233E+03 7.46585E+03 6.78918E+03 6.11252E+03 5.55851E+03 5.00451E+03 4.55093E+03 4.09735E+03 3.78921E+03 3.48107E+03 3.23863E+03 2.99618E+03 2.78751E+03 2.57884E+03 2.39923E+03 2.21963E+03 2.06504E+03 1.91045E+03 1.76224E+03 1.61404E+03 1.47955E+03 1.34506E+03 1.24003E+03 1.13501E+03 1.06496E+03 9.86231E+02 9.07501E+02 8.28009E+02 7.48517E+02 6.80676E+02 6.12834E+02 5.57290E+02 5.01746E+02 4.56271E+02 4.10795E+02 3.82185E+02 3.53575E+02 3.19928E+02 Group number 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 Energy (eV) 3.01839E+02 2.83750E+02 2.62773E+02 2.41796E+02 2.19881E+02 1.97966E+02 1.80023E+02 1.62081E+02 1.47391E+02 1.32701E+02 1.20673E+02 1.08646E+02 9.87988E+01 8.89518E+01 8.19986E+01 7.50455E+01 6.82438E+01 6.14420E+01 5.70573E+01 5.26726E+01 4.92319E+01 4.57913E+01 4.39958E+01 4.20824E+01 4.01690E+01 3.69445E+01 3.37201E+01 3.21920E+01 3.06639E+01 2.91358E+01 2.76077E+01 2.61081E+01 2.46086E+01 2.35721E+01 2.25356E+01 2.23784E+01 2.21557E+01 2.20011E+01 2.17018E+01 2.14859E+01 2.13360E+01 2.12296E+01 2.11448E+01 2.10604E+01 2.09763E+01 2.07676E+01 2.06847E+01 2.06021E+01 2.05199E+01 2.04175E+01 Group number Energy (eV) 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 216 2.02751E+01 2.00734E+01 1.95974E+01 1.93927E+01 1.91997E+01 1.90848E+01 1.79591E+01 1.77590E+01 1.75648E+01 1.74457E+01 1.68305E+01 1.65501E+01 1.60498E+01 1.57792E+01 1.48663E+01 1.47301E+01 1.45952E+01 1.44702E+01 1.42505E+01 1.40496E+01 1.35460E+01 1.33297E+01 1.25997E+01 1.24721E+01 1.23086E+01 1.21302E+01 1.19795E+01 1.18153E+01 1.17094E+01 1.15894E+01 1.12694E+01 1.10529E+01 1.08038E+01 1.05793E+01 1.00396E+01 9.50002E+00 9.14031E+00 8.97995E+00 8.80038E+00 8.67369E+00 8.52407E+00 8.30032E+00 8.13027E+00 7.97008E+00 7.83965E+00 7.73994E+00 7.60035E+00 7.38015E+00 7.13987E+00 6.99429E+00 Group number Energy (eV) 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 6.91778E+00 6.87021E+00 6.83526E+00 6.81070E+00 6.79165E+00 6.77605E+00 6.75981E+00 6.74225E+00 6.71668E+00 6.63126E+00 6.60611E+00 6.58829E+00 6.57184E+00 6.55609E+00 6.53907E+00 6.51492E+00 6.48178E+00 6.43206E+00 6.35978E+00 6.28015E+00 6.16011E+00 6.05991E+00 5.96014E+00 5.80021E+00 5.72015E+00 5.61979E+00 5.53004E+00 5.48817E+00 5.41025E+00 5.38003E+00 5.32011E+00 5.21008E+00 5.10997E+00 4.93323E+00 4.76785E+00 4.59382E+00 4.41980E+00 4.30981E+00 4.21983E+00 4.00000E+00 3.88217E+00 3.71209E+00 3.54307E+00 3.34250E+00 3.14211E+00 3.07759E+00 3.01308E+00 2.94856E+00 2.88405E+00 2.82958E+00 Group number Energy (eV) 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 2.77512E+00 2.74092E+00 2.71990E+00 2.70012E+00 2.64004E+00 2.62005E+00 2.59009E+00 2.55000E+00 2.46994E+00 2.40000E+00 2.33006E+00 2.27299E+00 2.21709E+00 2.15695E+00 2.07010E+00 1.98992E+00 1.90008E+00 1.84002E+00 1.77997E+00 1.72446E+00 1.66895E+00 1.62849E+00 1.58803E+00 1.51998E+00 1.44397E+00 1.41001E+00 1.38098E+00 1.33095E+00 1.29304E+00 1.25094E+00 1.21397E+00 1.16999E+00 1.14797E+00 1.12997E+00 1.11605E+00 1.10395E+00 1.09198E+00 1.07799E+00 1.05649E+00 1.03499E+00 1.02101E+00 1.00904E+00 9.96501E-01 9.81959E-01 9.63960E-01 9.44022E-01 9.19978E-01 8.80024E-01 8.50031E-01 8.20037E-01 Group number Energy (eV) 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 217 7.70018E-01 7.45008E-01 7.19999E-01 6.96249E-01 6.72499E-01 6.48749E-01 6.24999E-01 6.09996E-01 5.94993E-01 5.74991E-01 5.54990E-01 5.37500E-01 5.20011E-01 4.97514E-01 4.75017E-01 4.53298E-01 4.31579E-01 4.10790E-01 3.90001E-01 3.71497E-01 3.52994E-01 3.39001E-01 3.32004E-01 3.25008E-01 3.15010E-01 3.05012E-01 2.92500E-01 2.79989E-01 2.67493E-01 2.54997E-01 2.43094E-01 2.31192E-01 2.20401E-01 2.09610E-01 1.99808E-01 1.90005E-01 1.75950E-01 1.61895E-01 1.49947E-01 1.37999E-01 1.19995E-01 1.04298E-01 8.97968E-02 7.64969E-02 6.51994E-02 5.54982E-02 4.73019E-02 4.02999E-02 3.43998E-02 2.95460E-02 Group number Energy (eV) 401 402 403 404 405 406 407 2.49394E-02 2.00104E-02 1.48300E-02 1.04505E-02 7.14526E-03 4.55602E-03 2.49990E-03 A3.5 SHEM_TPN-531 Group number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Energy (eV) 1.96403E+07 1.49182E+07 1.38403E+07 1.27293E+07 1.16183E+07 9.99999E+06 9.04836E+06 8.18730E+06 7.40817E+06 6.70319E+06 6.06530E+06 5.51557E+06 4.96585E+06 4.51577E+06 4.29073E+06 4.06569E+06 3.69720E+06 3.32871E+06 3.02701E+06 2.72531E+06 2.66356E+06 2.60181E+06 2.47831E+06 2.35480E+06 2.23130E+06 2.06634E+06 1.98387E+06 1.90139E+06 1.83518E+06 1.76896E+06 1.70275E+06 1.63654E+06 1.57885E+06 1.52115E+06 1.46346E+06 1.40577E+06 1.34008E+06 1.28696E+06 1.22450E+06 1.16205E+06 1.10660E+06 1.05115E+06 1.00113E+06 9.51119E+05 9.05562E+05 8.60006E+05 8.21632E+05 7.83259E+05 7.44885E+05 7.06511E+05 Group number Energy (eV) 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 6.74494E+05 6.42477E+05 6.10460E+05 5.78443E+05 5.57332E+05 5.36222E+05 5.15112E+05 4.84507E+05 4.56021E+05 4.34261E+05 4.05347E+05 3.83884E+05 3.52265E+05 3.20646E+05 2.94236E+05 2.81031E+05 2.67826E+05 2.48920E+05 2.30014E+05 2.12511E+05 1.95008E+05 1.80003E+05 1.64999E+05 1.52499E+05 1.46249E+05 1.40000E+05 1.31386E+05 1.27080E+05 1.22773E+05 1.15624E+05 1.10384E+05 1.05144E+05 9.99043E+04 9.46645E+04 9.15727E+04 8.84809E+04 8.53891E+04 8.22974E+04 7.85679E+04 7.48384E+04 7.11089E+04 6.73794E+04 6.43259E+04 6.12725E+04 5.82190E+04 5.51656E+04 5.25407E+04 4.99159E+04 4.76538E+04 4.53918E+04 218 Group number 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 Energy (eV) 4.31297E+04 4.08677E+04 3.89231E+04 3.69786E+04 3.52191E+04 3.34596E+04 3.13703E+04 3.03257E+04 2.92810E+04 2.83377E+04 2.73944E+04 2.67473E+04 2.61001E+04 2.55496E+04 2.49991E+04 2.38492E+04 2.26994E+04 2.06421E+04 1.96134E+04 1.85847E+04 1.73926E+04 1.62005E+04 1.55501E+04 1.48997E+04 1.42517E+04 1.36037E+04 1.29872E+04 1.23707E+04 1.17542E+04 1.11377E+04 1.06330E+04 1.01283E+04 9.62354E+03 9.11881E+03 8.70557E+03 8.29233E+03 7.87909E+03 7.46585E+03 7.12752E+03 6.78918E+03 6.45085E+03 6.11252E+03 5.83552E+03 5.55851E+03 5.28151E+03 5.00451E+03 4.55093E+03 4.32414E+03 4.09735E+03 3.78921E+03 Group number 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 Energy (eV) 6.74494E+05 6.42477E+05 6.10460E+05 5.78443E+05 5.57332E+05 5.36222E+05 5.15112E+05 4.84507E+05 4.56021E+05 4.34261E+05 4.05347E+05 3.83884E+05 3.52265E+05 3.20646E+05 2.94236E+05 2.81031E+05 2.67826E+05 2.48920E+05 2.30014E+05 2.12511E+05 1.95008E+05 1.80003E+05 1.64999E+05 1.52499E+05 1.46249E+05 1.40000E+05 1.31386E+05 1.27080E+05 1.22773E+05 1.15624E+05 1.10384E+05 1.05144E+05 9.99043E+04 9.46645E+04 9.15727E+04 8.84809E+04 8.53891E+04 8.22974E+04 7.85679E+04 7.48384E+04 7.11089E+04 6.73794E+04 6.43259E+04 6.12725E+04 5.82190E+04 5.51656E+04 5.25407E+04 4.99159E+04 4.76538E+04 4.53918E+04 Group number Energy (eV) 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 3.53575E+02 3.44449E+02 3.35323E+02 3.27625E+02 3.19928E+02 3.07925E+02 2.95922E+02 2.88327E+02 2.84888E+02 2.76468E+02 2.68297E+02 2.56748E+02 2.49272E+02 2.41796E+02 2.35590E+02 2.29958E+02 2.24325E+02 2.18216E+02 2.12108E+02 2.06533E+02 2.00958E+02 1.95996E+02 1.93078E+02 1.90204E+02 1.88877E+02 1.87559E+02 1.86251E+02 1.84952E+02 1.83295E+02 1.75229E+02 1.67519E+02 1.63056E+02 1.54176E+02 1.46657E+02 1.43080E+02 1.39504E+02 1.32701E+02 1.26229E+02 1.20554E+02 1.17577E+02 1.16524E+02 1.15480E+02 1.12854E+02 1.10288E+02 1.05646E+02 1.03038E+02 1.02115E+02 1.01605E+02 1.01098E+02 1.00594E+02 219 Group number 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 Energy (eV) 9.73287E+01 9.33256E+01 9.10498E+01 8.87741E+01 8.63567E+01 8.39393E+01 8.16536E+01 7.93679E+01 7.63322E+01 7.35595E+01 7.18869E+01 6.90682E+01 6.68261E+01 6.64929E+01 6.61612E+01 6.58312E+01 6.55029E+01 6.50460E+01 6.45923E+01 6.36306E+01 6.23083E+01 5.99250E+01 5.84923E+01 5.70595E+01 5.55597E+01 5.40600E+01 5.29895E+01 5.17847E+01 5.05219E+01 4.92591E+01 4.75173E+01 4.62053E+01 4.52904E+01 4.41721E+01 4.31246E+01 4.21441E+01 4.12270E+01 3.97295E+01 3.87874E+01 3.77919E+01 3.73038E+01 3.68588E+01 3.64191E+01 3.60568E+01 3.56980E+01 3.45392E+01 3.30855E+01 3.16930E+01 2.97891E+01 2.78852E+01 Group number 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 Energy (eV) 2.62715E+01 2.46578E+01 2.35967E+01 2.25356E+01 2.23788E+01 2.21557E+01 2.20011E+01 2.17018E+01 2.14859E+01 2.13360E+01 2.12296E+01 2.11448E+01 2.10604E+01 2.09763E+01 2.07676E+01 2.06847E+01 2.06021E+01 2.05199E+01 2.04175E+01 2.02751E+01 2.00734E+01 1.95974E+01 1.93927E+01 1.91997E+01 1.90848E+01 1.85219E+01 1.79591E+01 1.77590E+01 1.75648E+01 1.74457E+01 1.68305E+01 1.65501E+01 1.60498E+01 1.57792E+01 1.53227E+01 1.48662E+01 1.47301E+01 1.45952E+01 1.44702E+01 1.42505E+01 1.40496E+01 1.35460E+01 1.33297E+01 1.29648E+01 1.26000E+01 1.24721E+01 1.23086E+01 1.21302E+01 1.19795E+01 1.18153E+01 Group number Energy (eV) 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 1.17094E+01 1.15894E+01 1.12694E+01 1.10529E+01 1.08038E+01 1.05793E+01 1.00396E+01 9.50002E+00 9.14031E+00 8.97995E+00 8.80038E+00 8.67369E+00 8.52407E+00 8.30032E+00 8.13027E+00 7.97008E+00 7.83965E+00 7.73994E+00 7.60035E+00 7.38015E+00 7.13987E+00 6.99429E+00 6.91778E+00 6.87021E+00 6.83526E+00 6.81070E+00 6.79165E+00 6.77605E+00 6.75981E+00 6.74225E+00 6.71668E+00 6.63126E+00 6.60611E+00 6.58829E+00 6.57184E+00 6.55609E+00 6.53907E+00 6.51492E+00 6.48178E+00 6.43206E+00 6.35978E+00 6.28016E+00 6.16011E+00 6.05991E+00 5.96014E+00 5.80021E+00 5.72015E+00 5.61979E+00 5.53004E+00 5.48817E+00 220 Group number 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 Energy (eV) 5.41025E+00 5.38003E+00 5.32011E+00 5.21008E+00 5.10997E+00 4.93323E+00 4.76785E+00 4.59382E+00 4.41980E+00 4.30981E+00 4.21983E+00 4.00000E+00 3.88217E+00 3.71209E+00 3.54307E+00 3.34259E+00 3.14211E+00 3.07759E+00 3.01308E+00 2.94856E+00 2.88405E+00 2.82958E+00 2.77512E+00 2.74092E+00 2.71990E+00 2.70012E+00 2.64004E+00 2.62005E+00 2.59009E+00 2.55000E+00 2.46994E+00 2.40000E+00 2.33006E+00 2.27299E+00 2.21709E+00 2.15695E+00 2.07010E+00 1.98992E+00 1.90008E+00 1.84002E+00 1.77997E+00 1.72446E+00 1.66895E+00 1.62849E+00 1.58803E+00 1.51998E+00 1.44397E+00 1.41001E+00 1.38098E+00 1.33095E+00 Group number 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 Energy (eV) 1.29304E+00 1.25094E+00 1.21397E+00 1.16999E+00 1.14797E+00 1.12997E+00 1.11605E+00 1.10395E+00 1.09198E+00 1.07799E+00 1.05649E+00 1.03499E+00 1.02101E+00 1.00904E+00 9.96501E-01 9.81959E-01 9.63960E-01 9.44022E-01 9.19978E-01 9.00001E-01 8.80024E-01 8.50031E-01 8.35034E-01 8.20037E-01 7.95028E-01 7.70018E-01 7.45008E-01 7.19999E-01 6.96249E-01 6.72499E-01 6.48749E-01 6.24999E-01 6.09996E-01 5.94993E-01 5.74991E-01 5.54990E-01 5.37500E-01 5.20011E-01 4.97514E-01 4.75017E-01 4.53298E-01 4.31579E-01 4.10790E-01 3.90001E-01 3.71497E-01 3.52994E-01 3.39001E-01 3.32004E-01 3.20009E-01 3.05012E-01 Group number Energy (eV) 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 2.92500E-01 2.79989E-01 2.67493E-01 2.54997E-01 2.43094E-01 2.31192E-01 2.20401E-01 2.09610E-01 1.99808E-01 1.82978E-01 1.61895E-01 1.49947E-01 1.37999E-01 1.28997E-01 1.19995E-01 1.04298E-01 8.97968E-02 7.64969E-02 6.51994E-02 5.54982E-02 4.73019E-02 4.02999E-02 3.43998E-02 2.95460E-02 2.49394E-02 2.00104E-02 1.48300E-02 1.04505E-02 7.14526E-03 4.55602E-03 2.49990E-03 221 A3.6 GA_TPN-537 Group number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Energy (eV) 1.49182E+07 1.34986E+07 1.22140E+07 1.10517E+07 1.00000E+07 9.04837E+06 8.18731E+06 7.40818E+06 6.70320E+06 6.06531E+06 5.48812E+06 4.96585E+06 4.49330E+06 4.06570E+06 3.67880E+06 3.32870E+06 3.17030E+06 3.01190E+06 2.86860E+06 2.72530E+06 2.59565E+06 2.46600E+06 2.34865E+06 2.23130E+06 2.12515E+06 2.01900E+06 1.92290E+06 1.82680E+06 1.73990E+06 1.65300E+06 1.57435E+06 1.49570E+06 1.42455E+06 1.35340E+06 1.28900E+06 1.22460E+06 1.16630E+06 1.10800E+06 1.05530E+06 1.00260E+06 9.54890E+05 9.07180E+05 8.64015E+05 8.20850E+05 7.81795E+05 7.42740E+05 7.07400E+05 6.72060E+05 6.40080E+05 6.08100E+05 Group number Energy (eV) 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 5.79165E+05 5.50230E+05 5.24050E+05 4.97870E+05 4.74180E+05 4.50490E+05 4.29055E+05 4.07620E+05 3.88225E+05 3.68830E+05 3.51280E+05 3.33730E+05 3.17850E+05 3.01970E+05 2.87605E+05 2.73240E+05 2.60240E+05 2.47240E+05 2.35475E+05 2.23710E+05 2.13065E+05 2.02420E+05 1.92790E+05 1.83160E+05 1.74445E+05 1.65730E+05 1.57845E+05 1.49960E+05 1.42825E+05 1.35690E+05 1.29230E+05 1.22770E+05 1.16930E+05 1.11090E+05 1.08018E+05 1.04947E+05 1.01875E+05 9.88035E+04 9.57319E+04 9.26603E+04 8.95886E+04 8.65170E+04 8.41249E+04 8.17328E+04 7.93406E+04 7.69485E+04 7.45564E+04 7.21643E+04 6.97721E+04 6.73800E+04 222 Group number 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 Energy (eV) 6.55169E+04 6.36538E+04 6.17906E+04 5.99275E+04 5.80644E+04 5.62013E+04 5.43381E+04 5.24750E+04 5.10241E+04 4.95733E+04 4.81224E+04 4.66715E+04 4.52206E+04 4.37698E+04 4.23189E+04 4.08680E+04 3.97380E+04 3.86080E+04 3.74780E+04 3.63480E+04 3.52180E+04 3.40880E+04 3.29580E+04 3.18280E+04 3.09480E+04 3.00680E+04 2.91880E+04 2.83080E+04 2.74280E+04 2.65480E+04 2.56680E+04 2.47880E+04 2.41026E+04 2.34173E+04 2.27319E+04 2.20465E+04 2.13611E+04 2.06758E+04 1.99904E+04 1.93050E+04 1.87711E+04 1.82373E+04 1.77034E+04 1.71695E+04 1.66356E+04 1.61018E+04 1.55679E+04 1.50340E+04 1.46184E+04 1.42028E+04 Group number 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 Energy (eV) 1.37871E+04 1.33715E+04 1.29559E+04 1.25403E+04 1.21246E+04 1.17090E+04 1.13852E+04 1.10615E+04 1.07377E+04 1.04139E+04 1.00901E+04 9.76635E+03 9.44257E+03 9.11880E+03 8.86666E+03 8.61452E+03 8.36239E+03 8.11025E+03 7.85811E+03 7.60597E+03 7.35384E+03 7.10170E+03 6.90534E+03 6.70897E+03 6.51261E+03 6.31625E+03 6.11989E+03 5.92353E+03 5.72716E+03 5.53080E+03 5.37788E+03 5.22495E+03 5.07203E+03 4.91910E+03 4.76617E+03 4.61325E+03 4.46032E+03 4.30740E+03 4.18830E+03 4.06920E+03 3.95010E+03 3.83100E+03 3.71190E+03 3.59280E+03 3.47370E+03 3.35460E+03 3.26185E+03 3.16910E+03 3.07635E+03 2.98360E+03 Group number Energy (eV) 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 2.89085E+03 2.79810E+03 2.70535E+03 2.61260E+03 2.54036E+03 2.46812E+03 2.39589E+03 2.32365E+03 2.25141E+03 2.17918E+03 2.10694E+03 2.03470E+03 1.97844E+03 1.92218E+03 1.86591E+03 1.80965E+03 1.75339E+03 1.69712E+03 1.64086E+03 1.58460E+03 1.54079E+03 1.49697E+03 1.45316E+03 1.40935E+03 1.36554E+03 1.32172E+03 1.27791E+03 1.23410E+03 1.19998E+03 1.16585E+03 1.13173E+03 1.09761E+03 1.06349E+03 1.02937E+03 9.95242E+02 9.61120E+02 9.34545E+02 9.07970E+02 8.81395E+02 8.54820E+02 8.28245E+02 8.01670E+02 7.75095E+02 7.48520E+02 7.27824E+02 7.07127E+02 6.86431E+02 6.65735E+02 6.45039E+02 6.24343E+02 223 Group number 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 Energy (eV) 6.03646E+02 5.82950E+02 5.66831E+02 5.50713E+02 5.34594E+02 5.18475E+02 5.02356E+02 4.86238E+02 4.70119E+02 4.54000E+02 4.41448E+02 4.28895E+02 4.16343E+02 4.03790E+02 3.91237E+02 3.78685E+02 3.66132E+02 3.53580E+02 3.43802E+02 3.34025E+02 3.24247E+02 3.14470E+02 3.04693E+02 2.94915E+02 2.85138E+02 2.75360E+02 2.67746E+02 2.60133E+02 2.52519E+02 2.44905E+02 2.37291E+02 2.29677E+02 2.22064E+02 2.14450E+02 2.08521E+02 2.02592E+02 1.96664E+02 1.90735E+02 1.84806E+02 1.78878E+02 1.72949E+02 1.67020E+02 1.62401E+02 1.57783E+02 1.53164E+02 1.48545E+02 1.43926E+02 1.39307E+02 1.34689E+02 1.30070E+02 Group number 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 Energy (eV) 1.26474E+02 1.22877E+02 1.19281E+02 1.15685E+02 1.12089E+02 1.08492E+02 1.04896E+02 1.01300E+02 9.84991E+01 9.56982E+01 9.28974E+01 9.00965E+01 8.72956E+01 8.44947E+01 8.16939E+01 7.88930E+01 7.67116E+01 7.45303E+01 7.23489E+01 7.01675E+01 6.79861E+01 6.58048E+01 6.36234E+01 6.14420E+01 5.97431E+01 5.80443E+01 5.63454E+01 5.46465E+01 5.29476E+01 5.12487E+01 4.95499E+01 4.78510E+01 4.65279E+01 4.52047E+01 4.38816E+01 4.25585E+01 4.12354E+01 3.99122E+01 3.82996E+01 3.66870E+01 3.49157E+01 3.40301E+01 3.31445E+01 3.21141E+01 3.10838E+01 3.00534E+01 2.90230E+01 2.82205E+01 2.74180E+01 2.66155E+01 Group number Energy (eV) 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 2.58130E+01 2.50105E+01 2.42080E+01 2.33426E+01 2.24771E+01 2.18837E+01 2.12903E+01 2.01035E+01 1.94786E+01 1.88537E+01 1.82289E+01 1.76040E+01 1.71172E+01 1.66305E+01 1.61437E+01 1.56570E+01 1.51703E+01 1.46835E+01 1.41968E+01 1.37100E+01 1.33309E+01 1.29518E+01 1.25726E+01 1.21935E+01 1.18144E+01 1.14353E+01 1.10561E+01 1.06770E+01 1.03818E+01 1.00866E+01 9.79136E+00 9.49615E+00 9.20094E+00 8.90573E+00 8.61051E+00 8.31530E+00 8.08538E+00 7.85545E+00 7.65427E+00 7.45308E+00 7.35249E+00 7.25190E+00 7.05071E+00 6.47590E+00 6.29685E+00 6.11780E+00 5.93875E+00 5.75970E+00 5.58065E+00 5.40160E+00 224 Group number 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 Energy (eV) 5.22255E+00 5.04350E+00 4.90405E+00 4.76460E+00 4.62515E+00 4.48570E+00 4.34625E+00 4.20680E+00 4.06735E+00 3.92790E+00 3.81929E+00 3.71068E+00 3.60206E+00 3.49345E+00 3.38484E+00 3.27623E+00 3.16761E+00 3.05900E+00 2.88985E+00 2.72070E+00 2.55155E+00 2.38240E+00 2.35500E+00 2.31000E+00 2.24500E+00 2.15000E+00 2.05000E+00 1.95000E+00 1.88000E+00 1.82000E+00 1.74000E+00 1.65000E+00 1.55000E+00 1.47000E+00 1.39500E+00 1.32500E+00 1.27500E+00 1.22500E+00 1.17500E+00 1.14000E+00 1.12750E+00 1.11750E+00 1.10000E+00 1.08500E+00 1.07500E+00 1.06500E+00 1.05500E+00 1.03750E+00 1.01250E+00 9.95000E-01 Group number 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 Energy (eV) 9.85000E-01 9.75000E-01 9.60000E-01 9.40000E-01 9.20000E-01 9.00000E-01 8.83000E-01 8.63000E-01 8.25000E-01 7.75000E-01 7.50000E-01 7.25000E-01 6.91500E-01 6.66500E-01 6.37500E-01 6.12500E-01 5.95000E-01 5.82500E-01 5.62500E-01 5.41000E-01 5.16000E-01 4.95000E-01 4.85000E-01 4.77500E-01 4.72500E-01 4.65000E-01 4.55000E-01 4.40000E-01 4.25000E-01 4.17000E-01 3.97000E-01 3.83500E-01 3.70000E-01 3.55000E-01 3.45000E-01 3.35000E-01 3.25000E-01 3.15000E-01 3.05000E-01 2.95000E-01 2.85000E-01 2.75000E-01 2.65000E-01 2.55000E-01 2.45000E-01 2.35000E-01 2.25000E-01 2.17500E-01 2.10000E-01 2.00000E-01 Group number Energy (eV) 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 1.90000E-01 1.80000E-01 1.70000E-01 1.60000E-01 1.55000E-01 1.50000E-01 1.45000E-01 1.40000E-01 1.35000E-01 1.30000E-01 1.25000E-01 1.20000E-01 1.15000E-01 1.10000E-01 1.06094E-01 1.02188E-01 9.50000E-02 9.25000E-02 8.75000E-02 8.25000E-02 7.75000E-02 7.25000E-02 6.75000E-02 6.25000E-02 5.50000E-02 4.50000E-02 3.50000E-02 2.76500E-02 2.26500E-02 1.75000E-02 1.25000E-02 9.00000E-03 7.50000E-03 6.00000E-03 4.50000E-03 3.00000E-03 1.50000E-03 225 A4 Depletion Data Analysis A4.1 Pebble Fuel Element Nuclides Concentrations Burnup steps (GWD/t) Nuclides 0.5 5 10 20 30 40 50 60 70 80 100 120 U-233 4.85E-14 4.72E-13 9.02E-13 1.67E-12 2.40E-12 3.14E-12 3.92E-12 4.74E-12 5.57E-12 6.34E-12 7.55E-12 8.13E-12 U-234 8.23E-11 8.21E-10 1.60E-09 3.08E-09 4.73E-09 7.03E-09 1.06E-08 1.63E-08 2.48E-08 3.69E-08 7.25E-08 1.20E-07 U-235 1.91E-03 1.78E-03 1.64E-03 1.38E-03 1.14E-03 9.27E-04 7.36E-04 5.67E-04 4.21E-04 2.98E-04 1.28E-04 4.27E-05 U-236 2.55E-06 2.49E-05 4.84E-05 9.15E-05 1.30E-04 1.63E-04 1.91E-04 2.15E-04 2.34E-04 2.48E-04 2.61E-04 2.58E-04 U-237 1.51E-09 2.29E-08 4.70E-08 9.57E-08 1.43E-07 1.91E-07 2.38E-07 2.84E-07 3.31E-07 3.76E-07 4.77E-07 5.22E-07 U-238 2.13E-02 2.12E-02 2.12E-02 2.11E-02 2.10E-02 2.09E-02 2.07E-02 2.06E-02 2.05E-02 2.03E-02 2.00E-02 1.96E-02 Np-237 5.79E-10 8.87E-08 3.69E-07 1.47E-06 3.22E-06 5.53E-06 8.29E-06 1.14E-05 1.47E-05 1.81E-05 2.48E-05 2.95E-05 Np-238 4.05E-13 1.18E-10 5.29E-10 2.31E-09 5.46E-09 1.02E-08 1.66E-08 2.51E-08 3.60E-08 4.94E-08 8.44E-08 1.20E-07 Np-239 1.72E-06 2.00E-06 2.06E-06 2.20E-06 2.35E-06 2.51E-06 2.68E-06 2.88E-06 3.11E-06 3.36E-06 4.04E-06 4.50E-06 Pu-238 3.02E-13 9.47E-10 8.61E-09 7.39E-08 2.57E-07 6.21E-07 1.23E-06 2.13E-06 3.35E-06 4.87E-06 8.57E-06 1.19E-05 Pu-239 2.76E-06 4.06E-05 7.61E-05 1.30E-04 1.66E-04 1.88E-04 2.00E-04 2.05E-04 2.03E-04 1.98E-04 1.86E-04 1.70E-04 Pu-240 9.64E-09 1.37E-06 5.02E-06 1.61E-05 2.90E-05 4.15E-05 5.27E-05 6.20E-05 6.93E-05 7.46E-05 7.87E-05 7.90E-05 Pu-241 6.38E-11 1.00E-07 7.40E-07 4.68E-06 1.20E-05 2.14E-05 3.12E-05 4.00E-05 4.67E-05 5.10E-05 5.43E-05 5.06E-05 Pu-242 7.86E-14 1.36E-09 2.12E-08 2.95E-07 1.27E-06 3.40E-06 7.00E-06 1.23E-05 1.93E-05 2.78E-05 4.81E-05 6.95E-05 Pu-243 7.10E-18 1.51E-13 2.43E-12 3.63E-11 1.67E-10 4.75E-10 1.05E-09 1.96E-09 3.29E-09 5.10E-09 1.06E-08 1.67E-08 Am-241 1.58E-14 2.61E-10 3.89E-09 4.90E-08 1.88E-07 4.41E-07 7.84E-07 1.16E-06 1.51E-06 1.75E-06 1.86E-06 1.58E-06 Am-242m 4.13E-18 6.41E-13 1.71E-11 3.51E-10 1.68E-09 4.42E-09 8.39E-09 1.29E-08 1.70E-08 1.98E-08 2.11E-08 1.74E-08 Am-242 1.38E-17 3.53E-13 5.67E-12 7.63E-11 3.14E-10 7.95E-10 1.54E-09 2.52E-09 3.64E-09 4.76E-09 6.36E-09 6.55E-09 Am-243 3.50E-17 8.00E-12 2.61E-10 7.80E-09 5.36E-08 2.02E-07 5.50E-07 1.22E-06 2.33E-06 4.02E-06 9.61E-06 1.77E-05 Cm-242 1.66E-17 4.52E-12 1.43E-10 3.58E-09 2.07E-08 6.57E-08 1.50E-07 2.79E-07 4.47E-07 6.41E-07 1.01E-06 1.20E-06 Cm-243 1.27E-21 3.92E-15 2.59E-13 1.39E-11 1.28E-10 5.72E-10 1.72E-09 4.02E-09 7.84E-09 1.33E-08 2.79E-08 4.00E-08 Cm-244 2.59E-20 6.59E-14 4.47E-12 2.86E-10 3.15E-09 1.69E-08 6.14E-08 1.74E-07 4.18E-07 8.86E-07 3.11E-06 8.07E-06 Cm-245 5.66E-24 1.54E-16 2.11E-14 2.72E-12 4.45E-11 3.13E-10 1.38E-09 4.54E-09 1.20E-08 2.73E-08 1.06E-07 2.74E-07 226 A4.2 Pebble Fuel Element Fission Products Concentrations Burnup (GWD/t) Fission Products 0.5 5 10 20 30 40 50 60 70 80 100 120 Kr-85 3.26E-08 3.19E-07 6.22E-07 1.19E-06 1.71E-06 2.18E-06 2.61E-06 2.99E-06 3.33E-06 3.62E-06 4.07E-06 4.37E-06 Sr-90 7.27E-07 7.13E-06 1.40E-05 2.70E-05 3.91E-05 5.03E-05 6.07E-05 7.02E-05 7.88E-05 8.66E-05 9.93E-05 1.09E-04 Ag-109 4.01E-09 6.33E-08 1.76E-07 5.32E-07 1.05E-06 1.72E-06 2.54E-06 3.49E-06 4.58E-06 5.78E-06 8.36E-06 1.10E-05 Ag-110m 3.99E-13 5.40E-11 2.71E-10 1.46E-09 4.01E-09 8.30E-09 1.47E-08 2.37E-08 3.58E-08 5.15E-08 9.74E-08 1.58E-07 Cs-137 7.79E-07 7.75E-06 1.55E-05 3.08E-05 4.59E-05 6.09E-05 7.57E-05 9.03E-05 1.05E-04 1.19E-04 1.47E-04 1.73E-04 Xe-131 1.02E-07 3.08E-06 6.61E-06 1.34E-05 1.99E-05 2.58E-05 3.13E-05 3.61E-05 4.03E-05 4.38E-05 4.81E-05 4.94E-05 Xe-133 5.18E-07 7.87E-07 7.86E-07 7.84E-07 7.82E-07 7.79E-07 7.76E-07 7.72E-07 7.68E-07 7.64E-07 7.54E-07 7.45E-07 Xe-135 1.67E-08 1.65E-08 1.62E-08 1.54E-08 1.45E-08 1.34E-08 1.23E-08 1.11E-08 9.91E-09 8.74E-09 6.94E-09 5.57E-09 Xe-136 1.34E-06 1.37E-05 2.75E-05 5.55E-05 8.38E-05 1.13E-04 1.42E-04 1.71E-04 2.01E-04 2.32E-04 2.93E-04 3.55E-04 Nd-143 8.60E-08 5.36E-06 1.23E-05 2.50E-05 3.61E-05 4.56E-05 5.34E-05 5.92E-05 6.30E-05 6.46E-05 6.18E-05 5.31E-05 Nd-144 7.12E-09 7.33E-07 2.83E-06 1.03E-05 2.13E-05 3.50E-05 5.10E-05 6.89E-05 8.86E-05 1.10E-04 1.57E-04 2.07E-04 Nd-145 4.95E-07 4.88E-06 9.64E-06 1.88E-05 2.75E-05 3.57E-05 4.35E-05 5.06E-05 5.72E-05 6.32E-05 7.28E-05 7.94E-05 Nd-146 3.78E-07 3.77E-06 7.56E-06 1.52E-05 2.29E-05 3.08E-05 3.89E-05 4.73E-05 5.59E-05 6.48E-05 8.40E-05 1.05E-04 Pm-147 6.09E-08 2.13E-06 4.47E-06 8.28E-06 1.11E-05 1.31E-05 1.44E-05 1.51E-05 1.54E-05 1.53E-05 1.41E-05 1.24E-05 Pm-148 6.77E-11 7.68E-09 1.78E-08 3.61E-08 5.20E-08 6.59E-08 7.82E-08 8.91E-08 9.88E-08 1.07E-07 1.21E-07 1.22E-07 Pm-148m 4.05E-11 7.81E-09 1.98E-08 4.01E-08 5.58E-08 6.72E-08 7.50E-08 7.95E-08 8.12E-08 8.04E-08 7.49E-08 6.45E-08 Pm-149 4.94E-08 5.46E-08 5.65E-08 6.01E-08 6.34E-08 6.67E-08 6.99E-08 7.32E-08 7.64E-08 7.96E-08 8.58E-08 8.91E-08 Pm-151 1.11E-08 1.15E-08 1.18E-08 1.25E-08 1.31E-08 1.37E-08 1.43E-08 1.50E-08 1.57E-08 1.64E-08 1.78E-08 1.88E-08 Sm-147 1.24E-10 5.35E-08 2.44E-07 9.68E-07 2.02E-06 3.27E-06 4.62E-06 5.96E-06 7.23E-06 8.35E-06 9.94E-06 1.06E-05 Sm-148 2.05E-11 3.52E-08 1.90E-07 8.62E-07 1.98E-06 3.52E-06 5.43E-06 7.71E-06 1.03E-05 1.33E-05 2.01E-05 2.76E-05 Sm-149 6.12E-08 1.42E-07 1.43E-07 1.41E-07 1.38E-07 1.32E-07 1.24E-07 1.16E-07 1.06E-07 9.65E-08 8.09E-08 6.76E-08 Sm-151 3.97E-08 3.07E-07 4.12E-07 4.72E-07 4.93E-07 5.04E-07 5.09E-07 5.10E-07 5.05E-07 4.98E-07 4.96E-07 4.77E-07 227 Eu-153 1.35E-08 2.11E-07 4.86E-07 1.23E-06 2.23E-06 3.45E-06 4.83E-06 6.35E-06 7.94E-06 9.54E-06 1.26E-05 1.49E-05 Eu-154 3.36E-11 5.83E-09 2.43E-08 1.03E-07 2.43E-07 4.46E-07 7.08E-07 1.02E-06 1.36E-06 1.72E-06 2.43E-06 2.96E-06 Eu-155 3.93E-09 2.98E-08 4.85E-08 8.20E-08 1.28E-07 1.93E-07 2.80E-07 3.87E-07 5.10E-07 6.44E-07 9.12E-07 1.14E-06 Gd-155 5.57E-12 1.77E-10 3.16E-10 5.16E-10 7.44E-10 1.03E-09 1.36E-09 1.68E-09 1.98E-09 2.22E-09 2.64E-09 2.84E-09 Gd-156 3.31E-10 2.49E-08 8.26E-08 2.68E-07 5.58E-07 9.97E-07 1.66E-06 2.62E-06 4.01E-06 5.94E-06 1.20E-05 2.16E-05 Gd-157 3.46E-10 6.37E-10 8.32E-10 1.16E-09 1.42E-09 1.65E-09 1.86E-09 2.07E-09 2.29E-09 2.51E-09 3.26E-09 3.95E-09 228 A4.3 Prismatic Hexagonal Block Nuclides Concentrations Burnup (GWD/t) Nuclides 0.5 5 10 20 30 40 50 60 70 80 100 120 U-233 6.39E-14 6.19E-13 1.19E-12 2.20E-12 3.18E-12 4.18E-12 5.24E-12 6.37E-12 7.55E-12 8.73E-12 1.09E-11 1.26E-11 U-234 1.09E-10 1.08E-09 2.10E-09 4.07E-09 6.31E-09 9.49E-09 1.45E-08 2.23E-08 3.39E-08 5.02E-08 9.89E-08 1.67E-07 U-235 1.91E-03 1.78E-03 1.64E-03 1.39E-03 1.16E-03 9.55E-04 7.75E-04 6.18E-04 4.83E-04 3.67E-04 1.97E-04 9.32E-05 U-236 2.67E-06 2.60E-05 5.02E-05 9.39E-05 1.32E-04 1.64E-04 1.92E-04 2.14E-04 2.32E-04 2.45E-04 2.58E-04 2.58E-04 U-237 1.99E-09 2.96E-08 6.06E-08 1.21E-07 1.80E-07 2.36E-07 2.89E-07 3.40E-07 3.87E-07 4.30E-07 5.15E-07 5.57E-07 U-238 2.13E-02 2.12E-02 2.12E-02 2.11E-02 2.09E-02 2.08E-02 2.07E-02 2.05E-02 2.04E-02 2.02E-02 1.98E-02 1.94E-02 Np-237 7.62E-10 1.15E-07 4.78E-07 1.88E-06 4.08E-06 6.93E-06 1.03E-05 1.40E-05 1.79E-05 2.19E-05 2.96E-05 3.56E-05 Np-238 6.04E-13 1.73E-10 7.67E-10 3.26E-09 7.55E-09 1.37E-08 2.17E-08 3.16E-08 4.33E-08 5.68E-08 8.86E-08 1.20E-07 Np-239 2.01E-06 2.31E-06 2.38E-06 2.52E-06 2.69E-06 2.86E-06 3.03E-06 3.21E-06 3.39E-06 3.58E-06 4.04E-06 4.38E-06 Pu-238 4.51E-13 1.40E-09 1.26E-08 1.07E-07 3.66E-07 8.74E-07 1.71E-06 2.91E-06 4.52E-06 6.51E-06 1.14E-05 1.64E-05 Pu-239 3.22E-06 4.68E-05 8.74E-05 1.48E-04 1.89E-04 2.16E-04 2.33E-04 2.42E-04 2.45E-04 2.45E-04 2.38E-04 2.27E-04 Pu-240 1.24E-08 1.71E-06 6.09E-06 1.87E-05 3.24E-05 4.52E-05 5.62E-05 6.53E-05 7.24E-05 7.77E-05 8.29E-05 8.48E-05 Pu-241 1.00E-10 1.52E-07 1.09E-06 6.60E-06 1.63E-05 2.83E-05 4.05E-05 5.14E-05 6.02E-05 6.65E-05 7.33E-05 7.24E-05 Pu-242 1.28E-13 2.13E-09 3.21E-08 4.24E-07 1.73E-06 4.40E-06 8.66E-06 1.46E-05 2.19E-05 3.05E-05 5.00E-05 6.99E-05 Pu-243 1.44E-17 2.91E-13 4.55E-12 6.37E-11 2.77E-10 7.50E-10 1.56E-09 2.77E-09 4.39E-09 6.40E-09 1.18E-08 1.76E-08 Am-241 2.48E-14 3.96E-10 5.77E-09 6.98E-08 2.59E-07 5.91E-07 1.03E-06 1.52E-06 1.99E-06 2.38E-06 2.77E-06 2.71E-06 Am-242m 7.20E-18 1.07E-12 2.81E-11 5.52E-10 2.56E-09 6.60E-09 1.24E-08 1.90E-08 2.54E-08 3.06E-08 3.61E-08 3.45E-08 Am-242 2.40E-17 5.87E-13 9.15E-12 1.16E-10 4.53E-10 1.09E-09 2.03E-09 3.20E-09 4.48E-09 5.75E-09 7.80E-09 8.69E-09 Am-243 7.12E-17 1.55E-11 4.92E-10 1.39E-08 9.12E-08 3.28E-07 8.49E-07 1.79E-06 3.26E-06 5.34E-06 1.16E-05 2.00E-05 Cm-242 2.89E-17 7.56E-12 2.32E-10 5.55E-09 3.06E-08 9.28E-08 2.04E-07 3.64E-07 5.65E-07 7.91E-07 1.23E-06 1.53E-06 Cm-243 2.61E-21 7.70E-15 4.96E-13 2.53E-11 2.21E-10 9.44E-10 2.71E-09 6.04E-09 1.13E-08 1.85E-08 3.72E-08 5.53E-08 Cm-244 6.40E-20 1.55E-13 1.03E-11 6.22E-10 6.55E-09 3.35E-08 1.16E-07 3.11E-07 7.02E-07 1.40E-06 4.26E-06 9.88E-06 Cm-245 1.76E-23 4.53E-16 6.13E-14 7.51E-12 1.19E-10 8.14E-10 3.47E-09 1.10E-08 2.80E-08 6.11E-08 2.14E-07 5.23E-07 229 A4.4 Prismatic Hexagonal Block Fission Products Concentrations Burnup steps (GWD/t) Fission Products 0.5 5 10 20 30 40 50 60 70 80 100 120 Kr-85 3.25E-08 3.17E-07 6.17E-07 1.17E-06 1.68E-06 2.13E-06 2.54E-06 2.90E-06 3.23E-06 3.51E-06 3.97E-06 4.30E-06 Sr-90 7.25E-07 7.09E-06 1.39E-05 2.66E-05 3.83E-05 4.91E-05 5.90E-05 6.81E-05 7.63E-05 8.38E-05 9.66E-05 1.07E-04 Ag-109 4.06E-09 6.90E-08 1.97E-07 6.06E-07 1.19E-06 1.95E-06 2.85E-06 3.89E-06 5.04E-06 6.27E-06 8.89E-06 1.16E-05 Ag-110m 4.80E-13 6.86E-11 3.56E-10 1.95E-09 5.37E-09 1.10E-08 1.93E-08 3.05E-08 4.48E-08 6.25E-08 1.09E-07 1.68E-07 Cs-137 7.78E-07 7.74E-06 1.54E-05 3.07E-05 4.58E-05 6.07E-05 7.55E-05 9.01E-05 1.04E-04 1.19E-04 1.47E-04 1.74E-04 Xe-131 1.02E-07 3.07E-06 6.58E-06 1.33E-05 1.96E-05 2.54E-05 3.06E-05 3.52E-05 3.92E-05 4.26E-05 4.74E-05 4.99E-05 Xe-133 5.18E-07 7.85E-07 7.84E-07 7.82E-07 7.80E-07 7.77E-07 7.74E-07 7.71E-07 7.67E-07 7.64E-07 7.57E-07 7.51E-07 Xe-135 1.71E-08 1.71E-08 1.69E-08 1.64E-08 1.58E-08 1.50E-08 1.41E-08 1.32E-08 1.23E-08 1.13E-08 9.76E-09 8.37E-09 Xe-136 1.33E-06 1.36E-05 2.73E-05 5.50E-05 8.30E-05 1.11E-04 1.40E-04 1.69E-04 1.98E-04 2.28E-04 2.88E-04 3.48E-04 Nd-143 8.58E-08 5.35E-06 1.22E-05 2.49E-05 3.60E-05 4.56E-05 5.37E-05 6.03E-05 6.53E-05 6.87E-05 7.10E-05 6.82E-05 Nd-144 7.12E-09 7.30E-07 2.81E-06 1.02E-05 2.09E-05 3.41E-05 4.93E-05 6.61E-05 8.42E-05 1.04E-04 1.45E-04 1.90E-04 Nd-145 4.94E-07 4.86E-06 9.58E-06 1.86E-05 2.72E-05 3.52E-05 4.27E-05 4.97E-05 5.62E-05 6.22E-05 7.23E-05 8.03E-05 Nd-146 3.77E-07 3.77E-06 7.54E-06 1.52E-05 2.29E-05 3.08E-05 3.88E-05 4.71E-05 5.56E-05 6.44E-05 8.29E-05 1.03E-04 Pm-147 6.08E-08 2.12E-06 4.41E-06 8.07E-06 1.07E-05 1.25E-05 1.36E-05 1.43E-05 1.46E-05 1.45E-05 1.38E-05 1.28E-05 Pm-148 7.99E-11 8.95E-09 2.06E-08 4.08E-08 5.78E-08 7.19E-08 8.34E-08 9.28E-08 1.00E-07 1.06E-07 1.16E-07 1.18E-07 Pm-148m 4.77E-11 8.91E-09 2.24E-08 4.50E-08 6.25E-08 7.52E-08 8.39E-08 8.90E-08 9.13E-08 9.14E-08 8.80E-08 8.03E-08 Pm-149 4.93E-08 5.48E-08 5.69E-08 6.10E-08 6.46E-08 6.79E-08 7.09E-08 7.36E-08 7.62E-08 7.85E-08 8.27E-08 8.54E-08 Pm-151 1.11E-08 1.16E-08 1.20E-08 1.27E-08 1.34E-08 1.41E-08 1.47E-08 1.53E-08 1.60E-08 1.66E-08 1.77E-08 1.86E-08 Sm-147 1.23E-10 5.31E-08 2.41E-07 9.44E-07 1.95E-06 3.12E-06 4.36E-06 5.58E-06 6.72E-06 7.73E-06 9.26E-06 1.01E-05 Sm-148 2.42E-11 4.12E-08 2.20E-07 9.90E-07 2.26E-06 3.96E-06 6.06E-06 8.49E-06 1.12E-05 1.42E-05 2.09E-05 2.81E-05 Sm-149 6.13E-08 1.45E-07 1.48E-07 1.51E-07 1.52E-07 1.49E-07 1.45E-07 1.39E-07 1.32E-07 1.25E-07 1.11E-07 9.83E-08 Sm-151 3.97E-08 3.18E-07 4.40E-07 5.28E-07 5.69E-07 6.00E-07 6.25E-07 6.42E-07 6.54E-07 6.60E-07 6.80E-07 6.74E-07 230 Eu-153 1.35E-08 2.15E-07 5.04E-07 1.31E-06 2.40E-06 3.71E-06 5.20E-06 6.79E-06 8.44E-06 1.01E-05 1.32E-05 1.57E-05 Eu-154 3.76E-11 6.54E-09 2.76E-08 1.19E-07 2.83E-07 5.21E-07 8.26E-07 1.18E-06 1.58E-06 1.98E-06 2.78E-06 3.43E-06 Eu-155 3.92E-09 2.94E-08 4.80E-08 8.38E-08 1.34E-07 2.06E-07 3.00E-07 4.13E-07 5.40E-07 6.77E-07 9.50E-07 1.19E-06 Gd-155 5.62E-12 1.87E-10 3.44E-10 5.96E-10 9.12E-10 1.33E-09 1.82E-09 2.35E-09 2.87E-09 3.34E-09 4.23E-09 4.79E-09 Gd-156 3.34E-10 2.61E-08 8.80E-08 2.90E-07 6.10E-07 1.10E-06 1.82E-06 2.85E-06 4.27E-06 6.18E-06 1.17E-05 1.99E-05 Gd-157 3.66E-10 7.55E-10 1.03E-09 1.50E-09 1.91E-09 2.29E-09 2.68E-09 3.07E-09 3.48E-09 3.91E-09 5.13E-09 6.29E-09 231 A4.5 Pebble Fuel Element Criticality Data per Burnup Step Burnup (GWD/t) K-effective 0 1.516883 0.5 1.456028 5 1.428048 10 1.401606 20 1.344026 30 1.285172 40 1.227301 50 1.170394 60 1.11E+00 70 1.06E+00 80 9.98E-01 100 8.91E-01 120 8.03E-01 A4.6 Prismatic Hexagonal Block Criticality Data per Burnup Step Burnup (GWD/t) K-effective 0 1.460909 0.5 1.402415 5 1.372111 10 1.342032 20 1.279117 30 1.219249 40 1.164353 50 1.113787 60 1.07E+00 70 1.02E+00 80 9.78E-01 100 9.01E-01 120 8.34E-01 232 VITA Tholakele Prisca Ngeleka Education 2000 National Diploma in Chemical Engineering Mangosuthu Technikon, Durban, South Africa 2001 Baccalaureus Technologiae in Chemical Engineering Mangosuthu Technikon, Durban, South Africa 2006 Master of Science in Chemical Engineering North West University, Potchefstroom, South Africa 2009 Master of Science in Nuclear Engineering North West University, Potchefstroom, South Africa 2012 Doctor of Philosophy in Nuclear Engineering Pennsylvania State University, Pennsylvania, United States of America
© Copyright 2026 Paperzz