Identification of reaction rate-determining steps at SOFC electrodes using State-Space Modelling Michel Prestat ETH-Zürich Institute for Nonmetallic Materials Head: Prof. L.J. Gauckler ETH - Ceramics http://ceramics.ethz.ch Solid Oxide Fuel Cell (SOFC) O2 reduction O2 ½O2 + 2e- D O2- O2 O2 O2mechanism? rate-limiting steps? e- cathode electrolyte fuel oxidation O2- O2anode e- H2 H2 H2O H2 + O2- D H2O + 2eH2O mechanism? rate-limiting steps? overall: H2 + ½O2 → H2O ETH - Ceramics http://ceramics.ethz.ch Outline Electrochemical Impedance Spectroscopy and State-Space Modelling Oxygen reduction at electronic conducting SOFC cathodes Oxygen reduction at mixed conducting SOFC cathodes ETH - Ceramics http://ceramics.ethz.ch Impedance spectroscopy Principle of impedance spectroscopy Small amplitude (5-10 mV) input signal → Linearization Current (A) steady-state operating point ~ I ~ I= 1 Z(jω) ~ E Admittance Transfer Function ~ E Potential (V) Z = impedance complex ( j2 = -1) frequency dependant ( ω = 2π f ) ETH - Ceramics http://ceramics.ethz.ch EIS spectra and equivalent circuits Im (Z) experimental EIS spectra R Re (Z) -6 Im (Z) f= 1 2π RC Im (Z) /Ω f (Hz) C -4 103 102 -2 104 Re (Z) R 10 1 0 R 0 2 4 6 8 10 12 Re (Z) / Ω C2 Im (Z) Re (Z) R1 R2 C2 Im (Z) C3 How to interpret the experimental equivalent circuit ?? R1 R2+R3 ETH - Ceramics Re (Z) R1 R2 R3 http://ceramics.ethz.ch State-Space Model calculating the faradaic impedance: electrochemical system Kads Kb O2(g) D Oads D O2Kdes E (input) electrode potential Kf K = model parameters (Kads, Kdes, Kf , Kb …) IF (output) faradaic current q = state variable (Oads concentration) State-Space Model dq = f (q , E , K) state equation dt IF = g (q, E , K) output equation ETH - Ceramics http://ceramics.ethz.ch State-Space Modelling time domain . linearization . θ = Kads(1- θ)2 +... θ = Aθ +B E IF = -Kf θ e-fE + … IF = Cθ +D E varying ω Laplace transform ZF(jω) Im(ZF) state-space model* frequency domain * * ** * * ** ** * Re(ZF) I . θ=0 E Simulink®: easy implementation of the model. Matlab®: state-space calculations and computing steady-state analysis ETH - Ceramics http://ceramics.ethz.ch Oxygen reduction at electronic conducting SOFC cathodes ETH - Ceramics http://ceramics.ethz.ch Electronic conducting cathodes O2(g) 2s O2 K ads K des 2Oads (adsorption) Oads Kdif Oads Oads (surface diffusion towards the tpb) electrode O2 Oads Vo 2e - Kf Kb Oox s (charge transfer at the tpb) Oads e- x O2- ( Oo ) No O2-reduction through the bulk of the electrode. Electrode = electron supplier Typical material: LaxSr1-xMnyO3 (LSM). ETH - Ceramics electrolyte triple phase boundary (tpb) x .. Electrolyte = O2- conductor (Vo and Oo) Typically YSZ (Y2O3 - ZrO2) http://ceramics.ethz.ch Oxygen reduction reaction models O2(g) 2s K ads K des 2Oads (adsorption) O2 Oads O2 Oads Oads reservoir θeq Kdif Oads Oads Oads Vo 2e- (surface diffusion towards the tpb) Kf Kb Diffusion processes 2nd Fick‘s law: Oox s θ3 (charge transfer at the tpb) θ 2θ 2 t z → Finite difference approach to estimate time and space derivatives diffusion layer O2 Oads θ2 O2 Oads θ1 x O2- ( Oo ) tpb electrolyte → state variable θ (θ1, θ2, θ3) = vector θ1 ≤ θ 2 ≤ θ 3 ETH - Ceramics http://ceramics.ethz.ch Model implementation in Simulink® Block diagrams: as many as compartments in the diffusion layer. K dif 2θi-1 θi θ K ads pO2 (1 θi )2 K des θi2 2i-2 ( θi i1 ) ( + chg transfer kinetics) t 3 3 2 in-port out-port θ1 θ2 θ3 θ2 θ3 (2) θ2 θ1 (3) IF E input output tpb (1) ETH - Ceramics http://ceramics.ethz.ch Model Implementation in Simulink® Block diagram n°2 K θ θ2 2θ Kads pO2 (1 θ2 )2 K des θ22 dif ( 1 θ2 3 ) t 4 3 3 u2 Kads pO2 Kdes u2 1 Kdif/4 + + + - θ2 state variable - in-ports 1/3 + θ3 2/3 + θ1 θ2 ETH - Ceramics out-port to block diagrams (1) and (3) http://ceramics.ethz.ch Im(ZF) / W -0.6 Modelling results O2 Oads -0.4 R1 electrode O2 -0.2 rds = charge transfer rds = rate-determining step(s) Oads 0 2 2.5 Im(ZF) / W -0.6 Re(ZF) / W 3 electrolyte 3.5 O2O2 C2 Oads -0.4 R1 -0.2 electrode O2 R2 Oads rds = adsorption and charge transfer 0 2 2.5 Re(ZF) / W 3 electrolyte 3.5 O2- Im(ZF) / W -0.6 O2 Oads -0.4 electrode O2 -0.2 Oads 45° rds = diffusion and charge transfer 0 2 2.5 Re(ZF) / W 3 electrolyte 3.5 O2- Im(ZF) / W -0.6 O2 Oads -0.4 electrode O2 -0.2 Oads rds = adsorption, diffusion and charge transfer 0 2 ETH - Ceramics 2.5 Re(ZF) / W 3 3.5 electrolyte O2- http://ceramics.ethz.ch Modelling results Im(ZF) / W -0.6 O2 C2 Oads -0.4 R1 -0.2 electrode O2 R2 Oads rds = adsorption and charge transfer 0 2 2.5 Re(ZF) / W 3 3.5 electrolyte O2- charge transfer rate constants (potential dependant) R2 R1 and R2 are not independant (K f K b ) R1 2(K ads pO2 K des )x1 2K ads pO2 adsorption/desorption rate constants → Necessity of a modelling approach to comprehensively interpret experimental impedance even for relatively simple reaction models ETH - Ceramics http://ceramics.ethz.ch Experimental reference potentiostat electrode (DC) working electrode frequency response analyzer counter (AC) electrode ~ E+E ~ I+I CDL -3 CF ZTOT = RΩ R1 R2 ZF ETH - Ceramics Im (ZTOT) / Ω CDL high CDL moderate CDL=0 (ZF) -2 -1 0 0 1 2 3 4 5 Re (ZTOT) / Ω http://ceramics.ethz.ch Experimental porous ~10-30 mm „real“ electrodes dense ~100 nm -1 mm Geometrically well-defined electrodes microstructured ~20 mm -100 mm top view ETH - Ceramics http://ceramics.ethz.ch Comparison modelling - experiments Example of the LSM/YSZ interface Im(Z) [W] -1.5 La0.85Sr0.15MnO3 @ 800°C I =170 mA.cm-2 in air. Zexp Zsim -1.0 One unique vector (Kads, Kdes Kdif, kf) has to describe at least 4 different impedance spectra Zexp → practical identification -0.5 0.0 2 3 Re (Z) [W] 4 5 - (RΩ, CDL) O2 Oads -1.0 Im(ZF) [W] ZF electrode O2 Oads -0.5 electrolyte O20.0 1.0 ETH - Ceramics 1.5 2.0 Re (ZF) [W] 2.5 3.0 rds = adsorption, diffusion and charge transfer http://ceramics.ethz.ch Oxygen reduction at mixed ionic-electronic conducting SOFC cathodes ETH - Ceramics http://ceramics.ethz.ch Mixed ionic-electronic electrodes (MIEC) O2 Current (A) Oads O2- Intermediate T° (500-800°C) ideal electrode electrode LSCF Oads O2- O2- O2- LSM electrolyte Ee Typical material: La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF). Competition between two reaction pathways for O2 reduction: surface and bulk. → the fastest pathway is rate-determining Potential (V) q Why is LSCF a better electrocatalyst than LSM for oxygen reduction? → the rate-detemining pathway influences the microstructure of the electrode ETH - Ceramics http://ceramics.ethz.ch Mixed ionic-electronic electrodes surface pathway is rate-limiting: → porous electrodes, large tpb top view bulk and surface pathways are rate-limiting: → Optimization of microstructure (a, b) b a bulk pathway is rate-limiting: → thin dense electrodes, large electrolyte coverage, low tpb. ETH - Ceramics http://ceramics.ethz.ch gwd electrodes Model system: geometrically well-defined (gwd) electrodes O2 LSCF electrode d S d CGO electrolyte electrolyte tpb O2- S and ltpb constant S=0.25 cm2, ltpb= 2cm O2- d is varied d ~ 100 nm - 1 µm → Zsim (E, pO2, d) ETH - Ceramics http://ceramics.ethz.ch Experimental gwd LSCF layers are prepared by pulsed laser deposition: dense, crack-free. LSCF electrode S CGO electrolyte tpb LSCF 300 nm CGO → Zexp (E, pO2, d) = Zsim (E, pO2, d) ? ETH - Ceramics http://ceramics.ethz.ch Summary electrochemical reactions yield complex impedance behavior necessity of a modelling approach (analytical or numerical) use of geometrically well-defined electrodes State-Space Modelling (with modern computation tools) enables to simulate the electrochemical behavior of multistep reactions faradaic impedance I-U curves electroactive species concentration profiles ETH - Ceramics http://ceramics.ethz.ch Outlook SOFC electrode reactions with mixed conductors Single gas chamber SOFC State-Space Modelling of entire cells: - with ionic conducting electrolyte (YSZ) - with mixed ionic-electronic conducting electrolyte (GdO-CeO2) SSM approach can be applied to any other field of electrochemistry PEM-FC, batteries, corrosion, electrodeposition… ETH - Ceramics http://ceramics.ethz.ch Many thanks to ... ETH-Zürich S. Rey-Mermet, Dr. Paul Muralt (EPF-Lausanne, Lab. de Céramique) Dr. J.-F. Koenig (Université de Strasbourg, Lab. d‘éléctrochimie) S. Schlumpf SOFC group of ETH-Zürich ETH - Ceramics http://ceramics.ethz.ch END ETH - Ceramics http://ceramics.ethz.ch Tentative model for oxygen reduction at LSCF T = 700°C gas phase: O2 - air - no gas phase diffusion - pO2 constant Kads Kdes Oads Dense electrode (LSCF) Kin Kout Slow surface diffusion (negligible) Dense electrode: O2Kads D O2Electrolyte (CGO) Kf Kb O2- triple phase boundary (tpb) gas/electrode/electrolyte ETH - Ceramics O2 - mixed conducting: e- (h) and O2- low potential gradient - well-defined dimension Kdes Oads Kfs Kbs Electrolyte - pure O2- conductor O2- Competition between surface and bulk pathways http://ceramics.ethz.ch Mixed ionic-electronic electrodes Modelling MIEC is still very controversial O2 Oads Vo 2e- Oox Oads O2- O2 electrode Oads Oads O2- O2- O2- electrolyte Modelling MIEC is still very controversial - incorpotation of oxygen in the the - extension of space charge region - influence of permittivity ETH - Ceramics - influence of permittivity: presence of a displacement current? - is electroneutrality fulfilled? http://ceramics.ethz.ch Model Implementation in Simulink® dθads 2 2 = Kads pO2(1-qads) – Kdesqads – Kf(E) qads + Kb(E) (1-qads) dt IF = Ki [– Kf(E) qads + Kb(E) (1-qads)] u2 Kads pO2 Kdes u2 1 θads + + θads + - 1-θads state variable function Kf (E) kf exp(-2 b f E) x + E input kb exp (2 (1-b) f E) x Ki IF output function Kb (E) ETH - Ceramics http://ceramics.ethz.ch Model Implementation in Simulink® dθads 2 2 = Kads pO2(1-qads) – Kdesqads – Kf(E) qads + Kb(E) (1-qads) dt IF = Ki [– Kf(E) qads + Kb(E) (1-qads)] u2 Kads pO2 Kdes u2 1 θads + + θads + - 1-θads integrator function Kf (E) kf exp(-2 b f E) x + E input kb exp (2 (1-b) f E) x Ki IF output function Kb (E) ETH - Ceramics http://ceramics.ethz.ch Alternative approch: modeling the impedance new model reaction model DOOads D OO2-2OO22 D , D 2 ads state-space modeling experimental impedance Im (Z) faradaic impedance Im (Z) Re (Z) Re (Z) validation of the model assessment of kinetics ETH - Ceramics http://ceramics.ethz.ch Model 1 (without surf. diffusion) Dissociative adsorption: Kads O2(g) + 2s D 2Oads Kdes O2 Charge transfer: electrode θads Oads Kf(E) Oads + 2e- D O2- x electrolyte O2- ( Oo ) Kb(E) → consecutive reaction steps → state variable θads = scalar → state-space model dθads 2 2 = Kads pO2(1-qads) – Kdesqads – Kf(E) qads + Kb(E) (1-qads) dt IF = Ki [– Kf(E) qads + Kb(E) (1-qads)] ETH - Ceramics http://ceramics.ethz.ch Numerical approach Kads O2(g) + 2s D 2Oads Kdes O2 Oads O2 Oads Oads reservoir θeq Kdif Oads " Oads Kf(E) Oads + 2e- D O2- θ3 Kb(E) Diffusion processes 2nd Fick‘s law: diffusion layer θ 2θ 2 t z → Finite difference approach to estimate time and space derivatives O2 Oads θ2 O2 Oads θ1 x O2- ( Oo ) tpb electrolyte → state variable θ (θ1, θ2, θ3) = vector θ1 ≤ θ 2 ≤ θ 3 ETH - Ceramics http://ceramics.ethz.ch Model implementation in Simulink® Block diagram n°2 K θ θ2 2θ Kads pO2 (1 θ2 )2 K des θ22 dif ( 1 θ2 3 ) t 4 3 3 u2 Kads pO2 Kdes u2 1 Kdif/4 + + + - 1 s Integrator (θ2) - in-ports 1/3 + θ3 2/3 + θ1 θ2 ETH - Ceramics out-port to block diagrams (1) and (3) http://ceramics.ethz.ch Im(ZF) / W -0.6 Modelling results O2 C2 Oads -0.4 R1 -0.2 rds = adsorption and charge transfer electrode O2 R2 Oads 0 2 2.5 Re(ZF) / W 3 electrolyte 3.5 O2- charge transfer rate constants (potential dependant) R2 amount of adsorbed oxygen x1 R1 and R2 are not independant (K f K b ) R1 2(K ads pO2 K des )x1 2K ads pO2 adsorption/desorption rate constants 2K ads pO2 K f K b 2K ads pO 2 Kf Kb ) 2 ) 4 K ads pO2 K des K ads K b ) 2 K ads pO2 K des ) → Necessity of a modelling approach to comprehensively interpret experimental impedance ETH - Ceramics http://ceramics.ethz.ch Experimental investigation O2 electrode O2- O2- Consequence of parallel pathways electrolyte Intermediate T° SOFC (600-800°C). Typical material: LaxSr1-xCoyFe1-yO3 (LSCF). ETH - Ceramics http://ceramics.ethz.ch
© Copyright 2025 Paperzz