Algebra 2 -- First Quarter Exam Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. ____ 1. For π(π₯) = β4π₯ + 7, find π(3). A. 17 ____ B. β5 C. β19 D. 19 2. Find the domain and range. Also, state whether or not it is a function. A. B. C. D. domain: (-2, 2); range: (-2, 2); Yes domain: [-2, 2]; range: [-2, 2]; No domain: (-2, 2); range: (-2, 2); No domain: [-2, 2]; range: [-2, 2]; Yes Find the slope of the line through the pair of points. ____ 3. (12, β4) and (β9, 3) A. 3 ____ B. ο3 C. ο 1 D. 1 3 3 4. Find the point-slope form of the equation of the line passing through the points (β7, 0) and (β6, β1). A. y β 0 = (x + 6) C. y β 0 = (x + 7) B. y + 1 = ο(x + 7) D. y β 0 = ο(x + 7) Find the slope of the line. ____ 5. 2x β y = 12 A. 2 B. 1 2 C. ο 1 2 D. ο2 ____ 6. Find the slope of the line. y 4 2 β4 β2 O 2 4 x β2 β4 A. 4 ____ B. 0 C. 1 D. undefined 7 7. Graph the equation π¦ = 4 π₯ β 1 . A. C. y β4 β2 4 4 2 2 O 2 4 β2 O β2 β4 β4 D. y β2 β4 x β2 B. β4 y 4 2 2 2 4 x 4 x 2 4 x y 4 O 2 β4 β2 O β2 β2 β4 β4 ____ 8. Graph the equation 3π₯ + 6π¦ = 24 by finding the intercepts. A. C. y 16 y 4 12 O 4 8 12 16 x 8 β4 4 β8 β16 β12 β12 β8 β4 O 4 x β4 β16 B. 16 β4 D. y 16 12 12 8 8 4 4 O 4 8 12 β4 x O 4 8 12 16 x β4 β4 9. Suppose f(x) = 4x β 2 and g(x) = β 2x + 1. Find the value of ____ 10. Describe the transformation: π(π₯) = y 2 |π₯ 5 π(2) . π(β2) β 3| β 2 A. The graph of g is a translation 3 units left, a vertical shrink, and a translation 2 units up of the parent absolute value function. C. The graph of g is a translation 3 units right, a vertical shrink, a reflection in the -axis, and a translation 2 units down of the parent absolute value function. B. The graph of g is a translation 3 units left, a vertical shrink, and a translation 2 units down of the parent absolute value function. D. The graph of g is a translation 3 units right, a vertical shrink, and a translation 2 units down of the parent absolute value function. 11. Identify the function family to which π(π₯) = β3(π₯ + 3)2 β 2 belongs. Compare the graph of f to the graph of its parent function (describe the transformation). y 5 4 3 2 1 β5 β4 β3 β2 β1 β1 1 2 3 4 5 x β2 β3 β4 β5 Write a function g whose graph represents the indicated transformation of the graph of f. ____12. π(π₯) = 2π₯ + 9; translation 5 units left A. π(π₯) = 2π₯ β 1 C. π(π₯) = 2π₯ + 19 B. π(π₯) = 2π₯ + 4 D. π(π₯) = 2π₯ + 14 ____13. π(π₯) = 2π₯ β 6; translation 4 units down A. π(π₯) = 2π₯ β 2 C. π(π₯) = 2π₯ β 10 B. π(π₯) = 2π₯ β 14 D. π(π₯) = 2π₯ + 2 ____14. π(π₯) = β|2π₯ β 5| β 4; reflection in the x-axis A. π(π₯) = |2π₯ β 5| + 4 C. π(π₯) = |2π₯ β 5| β 4 B. π(π₯) = |β2π₯ + 5| + 4 D. π(π₯) = β|2π₯ + 5| β 4 ____15. π(π₯) = 4|π₯ + 5| β 8; vertical shrink by a factor of 1 2 A. π(π₯) = 2|π₯ + 5| + 4 C. π(π₯) = 2|π₯ + 5| + 8 B. π(π₯) = 2|π₯ + 5| β 8 D. π(π₯) = 2|π₯ + 5| β 4 ____16. π(π₯) = π₯; translation 6 units up followed by a vertical stretch by a factor of 4 A. π(π₯) = 4π₯ + 6 C. π(π₯) = 4π₯ β 6 B. π(π₯) = 4π₯ + 24 D. π(π₯) = 4π₯ β 24 Without graphing, classify each system as independent, dependent, or inconsistent. β2π₯ β 2π¦ = β2 ____ 17. { π₯ β π¦ = β3 A. dependent B. independent C. Inconsistent Solve the system by graphing. β2π₯ β π¦ = 1 ____ 18. { 2π₯ β 5π¦ = 5 A. C. y β4 β2 4 4 2 2 O 2 4 β4 x O β2 β4 β4 2 4 x 2 4 x (0, 1) B. D. y (1, 0) β2 β2 (0, β1) β4 y β2 y 4 4 2 2 O 2 4 x β4 β2 O β2 β2 β4 β4 (β1, 0) Use the elimination method to solve the system. π₯ + π¦ = β4 ____ 19. { π₯ β 3π¦ = 16 A. (β1, 5) B. (1, β5) C. (β5, 1) D. (5, β1) Solve the system by the method of substitution. π₯ + π¦ = β5 ____ 20. { 5π₯ β 4π¦ = 11 A. (β4, β1) B. (1, 4) C. (β1, β4) D. (4, 1) ____ 21. A rental car agency charges a flat fee of $22.00 plus $1.00 per day to rent a certain car. Another agency charges a fee of $18.25 plus $2.25 per day to rent the same car. a. b. Write a system of equations to represent the cost c for renting a car at each agency for d days. Find the number of days for which the costs are the same. Round your answer to the nearest whole day. A. a. {π = 1.00π + 18.25 π = 2.25π + 22.00 b. 7 B. a. {π = 1.00π + 22.00 π = 2.25π + 18.25 b. 3 C. a. {π = 1.00π + 18.25 π = 2.25π + 22.00 b. 3 D. a. {π = 1.00π + 22.00 π = 2.25π + 18.25 b. 7 22. Write a system of inequalities for the following graph. Solve the system of inequalities by graphing. π¦ β€ β4π₯ β 1 ____ 23. { π¦ > 3π₯ β 3 A. C. y β4 β2 4 4 2 2 O 2 4 β2 O β2 β4 β4 D. y β2 β4 x β2 B. β4 y 4 2 2 2 4 x 4 x y 4 O 2 β4 β2 O β2 β2 β4 β4 2 4 x
© Copyright 2025 Paperzz