1st Quarter Exam Review

Algebra 2 -- First Quarter Exam Review
Multiple Choice
Identify the letter of the choice that best completes the statement or answers the question.
____
1. For 𝑓(π‘₯) = βˆ’4π‘₯ + 7, find 𝑓(3).
A. 17
____
B. –5
C. –19
D. 19
2. Find the domain and range. Also, state whether or not it is a function.
A.
B.
C.
D.
domain: (-2, 2); range: (-2, 2); Yes
domain: [-2, 2]; range: [-2, 2]; No
domain: (-2, 2); range: (-2, 2); No
domain: [-2, 2]; range: [-2, 2]; Yes
Find the slope of the line through the pair of points.
____
3. (12, –4) and (–9, 3)
A. 3
____
B. ο€­3
C.
ο€­
1
D. 1
3
3
4. Find the point-slope form of the equation of the line passing through the points (–7, 0) and (–6, –1).
A. y – 0 = (x + 6)
C. y – 0 = (x + 7)
B. y + 1 = ο€­(x + 7)
D. y – 0 = ο€­(x + 7)
Find the slope of the line.
____
5. 2x – y = 12
A. 2
B. 1
2
C.
ο€­
1
2
D. ο€­2
____
6. Find the slope of the line.
y
4
2
–4
–2
O
2
4
x
–2
–4
A. 4
____
B. 0
C. 1
D. undefined
7
7. Graph the equation 𝑦 = 4 π‘₯ βˆ’ 1 .
A.
C.
y
–4
–2
4
4
2
2
O
2
4
–2
O
–2
–4
–4
D.
y
–2
–4
x
–2
B.
–4
y
4
2
2
2
4
x
4
x
2
4
x
y
4
O
2
–4
–2
O
–2
–2
–4
–4
____
8. Graph the equation 3π‘₯ + 6𝑦 = 24 by finding the intercepts.
A.
C.
y
16
y
4
12
O
4
8
12
16
x
8
–4
4
–8
–16
–12
–12
–8
–4
O
4
x
–4
–16
B.
16
–4
D.
y
16
12
12
8
8
4
4
O
4
8
12
–4
x
O
4
8
12
16 x
–4
–4
9. Suppose f(x) = 4x – 2 and g(x) = – 2x + 1. Find the value of
____ 10. Describe the transformation: 𝑔(π‘₯) =
y
2
|π‘₯
5
𝑓(2)
.
𝑔(βˆ’2)
βˆ’ 3| βˆ’ 2
A. The graph of g is a translation 3 units
left, a vertical shrink, and a translation 2
units up of the parent absolute value
function.
C. The graph of g is a translation 3 units
right, a vertical shrink, a reflection in the
-axis, and a translation 2 units down of
the parent absolute value function.
B. The graph of g is a translation 3 units
left, a vertical shrink, and a translation 2
units down of the parent absolute value
function.
D. The graph of g is a translation 3 units
right, a vertical shrink, and a translation 2
units down of the parent absolute value
function.
11. Identify the function family to which 𝑓(π‘₯) = βˆ’3(π‘₯ + 3)2 βˆ’ 2 belongs. Compare the graph of f to the graph
of its parent function (describe the transformation).
y
5
4
3
2
1
–5
–4
–3
–2
–1
–1
1
2
3
4
5
x
–2
–3
–4
–5
Write a function g whose graph represents the indicated transformation of the graph of f.
____12. 𝑓(π‘₯) = 2π‘₯ + 9; translation 5 units left
A. 𝑔(π‘₯) = 2π‘₯ βˆ’ 1
C. 𝑔(π‘₯) = 2π‘₯ + 19
B. 𝑔(π‘₯) = 2π‘₯ + 4
D. 𝑔(π‘₯) = 2π‘₯ + 14
____13. 𝑓(π‘₯) = 2π‘₯ βˆ’ 6; translation 4 units down
A. 𝑔(π‘₯) = 2π‘₯ βˆ’ 2
C. 𝑔(π‘₯) = 2π‘₯ βˆ’ 10
B. 𝑔(π‘₯) = 2π‘₯ βˆ’ 14
D. 𝑔(π‘₯) = 2π‘₯ + 2
____14. 𝑓(π‘₯) = βˆ’|2π‘₯ βˆ’ 5| βˆ’ 4; reflection in the x-axis
A. 𝑔(π‘₯) = |2π‘₯ βˆ’ 5| + 4
C. 𝑔(π‘₯) = |2π‘₯ βˆ’ 5| βˆ’ 4
B. 𝑔(π‘₯) = |βˆ’2π‘₯ + 5| + 4
D. 𝑔(π‘₯) = βˆ’|2π‘₯ + 5| βˆ’ 4
____15. 𝑓(π‘₯) = 4|π‘₯ + 5| βˆ’ 8; vertical shrink by a factor of
1
2
A. 𝑔(π‘₯) = 2|π‘₯ + 5| + 4
C. 𝑔(π‘₯) = 2|π‘₯ + 5| + 8
B. 𝑔(π‘₯) = 2|π‘₯ + 5| βˆ’ 8
D. 𝑔(π‘₯) = 2|π‘₯ + 5| βˆ’ 4
____16. 𝑓(π‘₯) = π‘₯; translation 6 units up followed by a vertical stretch by a factor of 4
A. 𝑔(π‘₯) = 4π‘₯ + 6
C. 𝑔(π‘₯) = 4π‘₯ βˆ’ 6
B. 𝑔(π‘₯) = 4π‘₯ + 24
D. 𝑔(π‘₯) = 4π‘₯ βˆ’ 24
Without graphing, classify each system as independent, dependent, or inconsistent.
βˆ’2π‘₯ βˆ’ 2𝑦 = βˆ’2
____ 17. {
π‘₯ βˆ’ 𝑦 = βˆ’3
A. dependent
B. independent
C. Inconsistent
Solve the system by graphing.
βˆ’2π‘₯ βˆ’ 𝑦 = 1
____ 18. {
2π‘₯ βˆ’ 5𝑦 = 5
A.
C.
y
–4
–2
4
4
2
2
O
2
4
–4
x
O
–2
–4
–4
2
4
x
2
4
x
(0, 1)
B.
D.
y
(1, 0)
–2
–2
(0, –1)
–4
y
–2
y
4
4
2
2
O
2
4
x
–4
–2
O
–2
–2
–4
–4
(–1, 0)
Use the elimination method to solve the system.
π‘₯ + 𝑦 = βˆ’4
____ 19. {
π‘₯ βˆ’ 3𝑦 = 16
A. (–1, 5)
B. (1, –5)
C. (–5, 1)
D. (5, –1)
Solve the system by the method of substitution.
π‘₯ + 𝑦 = βˆ’5
____ 20. {
5π‘₯ βˆ’ 4𝑦 = 11
A. (–4, –1)
B. (1, 4)
C. (–1, –4)
D. (4, 1)
____ 21. A rental car agency charges a flat fee of $22.00 plus $1.00 per day to rent a certain car. Another agency
charges a fee of $18.25 plus $2.25 per day to rent the same car.
a.
b.
Write a system of equations to represent the cost c for renting a car at each agency for d
days.
Find the number of days for which the costs are the same. Round your answer to the
nearest whole day.
A. a. {𝑐 = 1.00𝑑 + 18.25
𝑐 = 2.25𝑑 + 22.00
b. 7
B. a. {𝑐 = 1.00𝑑 + 22.00
𝑐 = 2.25𝑑 + 18.25
b. 3
C. a. {𝑐 = 1.00𝑑 + 18.25
𝑐 = 2.25𝑑 + 22.00
b. 3
D. a. {𝑐 = 1.00𝑑 + 22.00
𝑐 = 2.25𝑑 + 18.25
b. 7
22. Write a system of inequalities for the following graph.
Solve the system of inequalities by graphing.
𝑦 ≀ βˆ’4π‘₯ βˆ’ 1
____ 23. {
𝑦 > 3π‘₯ βˆ’ 3
A.
C.
y
–4
–2
4
4
2
2
O
2
4
–2
O
–2
–4
–4
D.
y
–2
–4
x
–2
B.
–4
y
4
2
2
2
4
x
4
x
y
4
O
2
–4
–2
O
–2
–2
–4
–4
2
4
x