Algebra 2 -- First Quarter Exam Review
Multiple Choice
Identify the letter of the choice that best completes the statement or answers the question.
____
1. For π(π₯) = β4π₯ + 7, find π(3).
A. 17
____
B. β5
C. β19
D. 19
2. Find the domain and range. Also, state whether or not it is a function.
A.
B.
C.
D.
domain: (-2, 2); range: (-2, 2); Yes
domain: [-2, 2]; range: [-2, 2]; No
domain: (-2, 2); range: (-2, 2); No
domain: [-2, 2]; range: [-2, 2]; Yes
Find the slope of the line through the pair of points.
____
3. (12, β4) and (β9, 3)
A. 3
____
B. ο3
C.
ο
1
D. 1
3
3
4. Find the point-slope form of the equation of the line passing through the points (β7, 0) and (β6, β1).
A. y β 0 = (x + 6)
C. y β 0 = (x + 7)
B. y + 1 = ο(x + 7)
D. y β 0 = ο(x + 7)
Find the slope of the line.
____
5. 2x β y = 12
A. 2
B. 1
2
C.
ο
1
2
D. ο2
____
6. Find the slope of the line.
y
4
2
β4
β2
O
2
4
x
β2
β4
A. 4
____
B. 0
C. 1
D. undefined
7
7. Graph the equation π¦ = 4 π₯ β 1 .
A.
C.
y
β4
β2
4
4
2
2
O
2
4
β2
O
β2
β4
β4
D.
y
β2
β4
x
β2
B.
β4
y
4
2
2
2
4
x
4
x
2
4
x
y
4
O
2
β4
β2
O
β2
β2
β4
β4
____
8. Graph the equation 3π₯ + 6π¦ = 24 by finding the intercepts.
A.
C.
y
16
y
4
12
O
4
8
12
16
x
8
β4
4
β8
β16
β12
β12
β8
β4
O
4
x
β4
β16
B.
16
β4
D.
y
16
12
12
8
8
4
4
O
4
8
12
β4
x
O
4
8
12
16 x
β4
β4
9. Suppose f(x) = 4x β 2 and g(x) = β 2x + 1. Find the value of
____ 10. Describe the transformation: π(π₯) =
y
2
|π₯
5
π(2)
.
π(β2)
β 3| β 2
A. The graph of g is a translation 3 units
left, a vertical shrink, and a translation 2
units up of the parent absolute value
function.
C. The graph of g is a translation 3 units
right, a vertical shrink, a reflection in the
-axis, and a translation 2 units down of
the parent absolute value function.
B. The graph of g is a translation 3 units
left, a vertical shrink, and a translation 2
units down of the parent absolute value
function.
D. The graph of g is a translation 3 units
right, a vertical shrink, and a translation 2
units down of the parent absolute value
function.
11. Identify the function family to which π(π₯) = β3(π₯ + 3)2 β 2 belongs. Compare the graph of f to the graph
of its parent function (describe the transformation).
y
5
4
3
2
1
β5
β4
β3
β2
β1
β1
1
2
3
4
5
x
β2
β3
β4
β5
Write a function g whose graph represents the indicated transformation of the graph of f.
____12. π(π₯) = 2π₯ + 9; translation 5 units left
A. π(π₯) = 2π₯ β 1
C. π(π₯) = 2π₯ + 19
B. π(π₯) = 2π₯ + 4
D. π(π₯) = 2π₯ + 14
____13. π(π₯) = 2π₯ β 6; translation 4 units down
A. π(π₯) = 2π₯ β 2
C. π(π₯) = 2π₯ β 10
B. π(π₯) = 2π₯ β 14
D. π(π₯) = 2π₯ + 2
____14. π(π₯) = β|2π₯ β 5| β 4; reflection in the x-axis
A. π(π₯) = |2π₯ β 5| + 4
C. π(π₯) = |2π₯ β 5| β 4
B. π(π₯) = |β2π₯ + 5| + 4
D. π(π₯) = β|2π₯ + 5| β 4
____15. π(π₯) = 4|π₯ + 5| β 8; vertical shrink by a factor of
1
2
A. π(π₯) = 2|π₯ + 5| + 4
C. π(π₯) = 2|π₯ + 5| + 8
B. π(π₯) = 2|π₯ + 5| β 8
D. π(π₯) = 2|π₯ + 5| β 4
____16. π(π₯) = π₯; translation 6 units up followed by a vertical stretch by a factor of 4
A. π(π₯) = 4π₯ + 6
C. π(π₯) = 4π₯ β 6
B. π(π₯) = 4π₯ + 24
D. π(π₯) = 4π₯ β 24
Without graphing, classify each system as independent, dependent, or inconsistent.
β2π₯ β 2π¦ = β2
____ 17. {
π₯ β π¦ = β3
A. dependent
B. independent
C. Inconsistent
Solve the system by graphing.
β2π₯ β π¦ = 1
____ 18. {
2π₯ β 5π¦ = 5
A.
C.
y
β4
β2
4
4
2
2
O
2
4
β4
x
O
β2
β4
β4
2
4
x
2
4
x
(0, 1)
B.
D.
y
(1, 0)
β2
β2
(0, β1)
β4
y
β2
y
4
4
2
2
O
2
4
x
β4
β2
O
β2
β2
β4
β4
(β1, 0)
Use the elimination method to solve the system.
π₯ + π¦ = β4
____ 19. {
π₯ β 3π¦ = 16
A. (β1, 5)
B. (1, β5)
C. (β5, 1)
D. (5, β1)
Solve the system by the method of substitution.
π₯ + π¦ = β5
____ 20. {
5π₯ β 4π¦ = 11
A. (β4, β1)
B. (1, 4)
C. (β1, β4)
D. (4, 1)
____ 21. A rental car agency charges a flat fee of $22.00 plus $1.00 per day to rent a certain car. Another agency
charges a fee of $18.25 plus $2.25 per day to rent the same car.
a.
b.
Write a system of equations to represent the cost c for renting a car at each agency for d
days.
Find the number of days for which the costs are the same. Round your answer to the
nearest whole day.
A. a. {π = 1.00π + 18.25
π = 2.25π + 22.00
b. 7
B. a. {π = 1.00π + 22.00
π = 2.25π + 18.25
b. 3
C. a. {π = 1.00π + 18.25
π = 2.25π + 22.00
b. 3
D. a. {π = 1.00π + 22.00
π = 2.25π + 18.25
b. 7
22. Write a system of inequalities for the following graph.
Solve the system of inequalities by graphing.
π¦ β€ β4π₯ β 1
____ 23. {
π¦ > 3π₯ β 3
A.
C.
y
β4
β2
4
4
2
2
O
2
4
β2
O
β2
β4
β4
D.
y
β2
β4
x
β2
B.
β4
y
4
2
2
2
4
x
4
x
y
4
O
2
β4
β2
O
β2
β2
β4
β4
2
4
x
© Copyright 2026 Paperzz