bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Live-cellmappingoforganelle-associatedRNAsviaproximitybiotinylation combinedwithprotein-RNAcrosslinking Authors/Affiliations PornchaiKaewsapsak1,5,DavidM.Shechner2-3,5,WilliamMallard2-3,JohnL.Rinn2-3, andAliceY.Ting1,4,6* 1DepartmentofChemistry,MassachusettsInstituteofTechnology,Cambridge, Massachusetts,USA; 2DepartmentofStemCellandRegenerativeBiology,andMolecularandCellular Biology,HarvardUniversity,Cambridge,Massachusetts,USA 3BroadInstituteofMassachusettsInstituteofTechnologyandHarvard,Cambridge, Massachusetts,USA 4DepartmentsofGenetics,Biology,andChemistry,StanfordUniversity,Stanford,CA, USA 5Co-firstauthors 6LeadContact *Correspondence:[email protected] Keywords RNAlocalization,SubcellularTranscriptomics,SequencingTechnologies, Peroxidase,APEX2,HorseradishPeroxidase,FISH,RNA-Seq,MammalianCellRNA Analysis Abstract ThespatialorganizationofRNAwithincellsisacrucialfactorinawiderangeof biologicalfunctions,spanningallkingdomsoflife.However,ageneral understandingofRNAlocalizationhasbeenhinderedbyalackofsimple,highthroughputmethodsformappingthetranscriptomesofsubcellularcompartments. Here,wedevelopsuchamethod,termedAPEX-RIP,whichcombinesperoxidasecatalyzed,spatiallyrestrictedinsituproteinbiotinylationwithRNA-protein chemicalcrosslinking.Wedemonstratethat,usingasingleprotocol,APEX-RIPcan isolateRNAsfromavarietyofsubcellularcompartments,includingthe mitochondrialmatrix,nucleus,bulkcytosol,andendoplasmicreticulum(ER),with higherspecificityandcoveragethandoconventionalapproaches.Wefurthermore identifycandidateRNAslocalizedtomitochondria-ERjunctionsandnuclearlamina, twocompartmentsthatarerecalcitranttoclassicalbiochemicalpurification.Since APEX-RIPissimple,versatile,anddoesnotrequirespecialinstrumentation,we envisionitsbroadapplicationinavarietyofbiologicalcontexts. Introduction SpatialcompartmentalizationofRNAiscentraltomanybiologicalprocessesacross allkingdomsoflife,andenablesdiverseregulatoryschemesthatexploitbothcoding andnoncodingfunctionsofthetranscriptome.Forexample,thelocalizationand spatiallyrestrictedtranslationofmRNAplaysafundamentalroleinasymmetriccell divisioninbacteriaandyeast,body-patternformationinDrosophilaandXenopus, signalingatmammalianneuronalsynapses(Jungetal.2014),andawidevarietyof 1 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 otherbiologicalcontexts.Inanotherexample,thelocalizationofnoncodingRNAs (ncRNAs)canplayanarchitecturalroleintheassemblyofsubcellularstructures, includingshort-rangechromatinloops,higher-orderchromatindomains,andlarge sub-nuclearstructureslikenucleoliandBarrbodies(RinnandGuttman2014; Engreitz,Ollikainen,andGuttman2016).However,despitetheseexamples,our generalunderstandingofthebreadthandbiologicalsignificanceofRNAsubcellular localizationremainsinchoate. TechniquesthatelucidatethesubcellularlocalizationofRNAsaretherefore criticalforadvancingourunderstandingofRNAbiology.Classically,suchtechniques relyeitheronimagingorbiochemicalapproaches.Imagingmethods–suchas FluorescenceInSituHybridization(FISH)andartificialRNAreporterschemes–are powerfultoolsforelucidatingthepositionsofasmallnumberoftargetRNAsatlowto-moderatethroughput(Wilketal.2016;K.H.Chenetal.2015;Paige,Wu,and Jaffrey2011;Hocineetal.2013;Nellesetal.2016).Alternatively,unbiased approachesforRNAdiscoverycouplebiochemicalmanipulationstodeep sequencing.Forexample,theRNApartnersofproteinswithcharacteristic subcellularlocalizationcanbeidentifiedthroughavarietyoftechniquesthatcouple proteinimmunoprecipitationtoRNA-seq(Uleetal.2003;ChristopherGilbertetal. 2004).SuchmethodshaverevealedmanylocalizedmRNAs,inadditiontonovel non-codingRNAsinvolvedinRNAsplicing(Chietal.2009)andRNAi(Motamediet al.2004).Onabroaderscale,adeepsamplingofRNAsresidingwithinacellular compartment—forexample,anintactorganelleofinterest,orpartitionsalonga sucrosegradient,canbeidentifiedbycouplingsubcellularfractionationtoRNA-Seq (“Fractionation-Seq”)(Sterne-Weileretal.2013;Merceretal.2011). However,atechnologicalgapexistsamongthesecurrentmethodsfor studyingRNAlocalization.Imagingapproachesareoflimitedthroughput,andmay requirespecializedreagents,constructs,ormicroscopesthatareonlyaccessibletoa handfuloflaboratories(Wilketal.2016;K.H.Chenetal.2015;Paige,Wu,and Jaffrey2011;Hocineetal.2013;Nellesetal.2016).Theefficacyof immunoprecipitation-basedapproachesishighlysensitivetotheantibodiesand enrichmentprotocolsused(Hendricksonetal.2016)andcapturesonlyRNAsthat aredirectlycomplexedwitheachtargetprotein.Fractionation-Seqisapplicableonly toorganellesandsubcellularfractionsthatcanbepurified,andisfrequently complicatedbycontaminants(falsepositives)andlossofmaterial(falsenegatives) Therefore,anewtechnologyisneededforunbiasedandlarge-scalediscoveryand characterizationofRNAneighborhoods,withhighspatialspecificity,andwithin cellularstructuresthatcannotbeenrichedbybiochemicalfractionation. Hereweintroducesuchatechnology–termedAPEX-RIP–thatenables unbiaseddiscoveryofendogenousRNAsinspecificcellularlocales.APEX-RIP mergestwoexistingtechnologies:APEX(engineeredascorbateperoxidase)catalyzedproximitybiotinylationofendogenousproteins(Rheeetal.2013),and RNAImmunoPrecipitation(RIP)(ChristopherGilbertetal.2004).Wedemonstrate thatAPEX-RIPisabletoenrichendogenousRNAsinmembrane-enclosedcellular organelles,suchasthemitochondrionandnucleus,andinmembrane-abutting cellularregionssuchasthecytosolicfaceoftheendoplasmicreticulum.The specificityandcoverageofthisapproacharemuchhigherthanthoseobtainedby 2 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 traditionalFractionation-Seq.Moreover,byapplyingAPEX-RIPtomultiple mammalianorganelles,wehavegeneratedhighqualitydatasetsof compartmentalizedRNAsthatshouldserveasvaluableresourcesfortestingand generatingnovelhypothesespertinenttoRNAbiology. DevelopmentofAPEX-RIPmethodandapplicationtomitochondria APEXisanengineeredperoxidasethatcanbetargetedbygeneticfusiontovarious subcellularregionsofinterest(Rheeetal.2013)(Figure1A).Uponadditionofits substrates,biotin-phenol(BP)andhydrogenperoxide(H2O2),tolivecells,APEX catalyzestheformationofbiotin-phenoxylradicalsthatthendiffuseoutwardand covalentlybiotinylatenearbyendogenousproteins.Moredistalproteinsarenot significantlylabeledbecausethebiotin-phenoxylradicalhasahalf-lifeoflessthan1 millisecond(WishartandMadhavaRao2010).PreviousworkhasshownthatAPEXcatalyzedproximitybiotinylation,coupledtostreptavidinenrichmentandmass spectrometry,cangenerateproteomicmapsofthemitochondrialmatrix, intermembranespace,outermembrane,andnucleoid,eachwith<5nmspatial specificity(Rheeetal.2013;Hungetal.2014;Hungetal.2017;Hanetal.2017). BecausemostcellularRNAsexistincloseproximitytoproteins,wereasoned thatAPEX-taggedsubcellularproteomescouldalsoprovideaccesstothenearby RNAcontent,ifproteinsandRNAcouldbecrosslinkedtogetherinsitu,immediately beforeorafterAPEXlabeling.Asourfirsttargetorganelle,weselectedthe mitochondrionbecauseitsRNAcontent--derivedfromboththemitochondrial genomeandfromimported,nuclear-encodedRNAs--hasbeenextensively characterizedbyawidearrayofcomplementarymethods(Merceretal.2011;Alán etal.2010;Piechotaetal.2006;Roetal.2013),henceprovidinga“gold-standard” towhichwecancompareourresults.Themitochondrialmatrixwasalsothefirst mammaliancompartmentmappedbyAPEXproteomicsmethodology(Rheeetal. 2013).AsaRNA-proteinchemicalcrosslinker,weoptedformildformaldehyde treatment,whichcovalentlycapturesmostprotein-proteinandprotein-nucleicacid interactions,andcanbeachievedwithminimaldisruptionofnativeinteractionsin livecells.ItisforthesereasonsthatformaldehydeisusedforseveralRIP(Chris GilbertandSvejstrup2006)technologiesforidentifyingtheRNApartnersofspecific proteinsofinterest,includingourown“fRIP-Seq”protocol(Hendricksonetal.2016). SinceitwasunclearaprioriwhetherAPEX-catalyzedbiotinylationshould precedeorfollowtheformaldehydecrosslinkingstep,weexploredbothschemesin parallel(FigureS1A;seemethods).Eachprotocol,appliedtoHEK293Tcells expressingmitochondrially-localizedAPEX2(“mito-APEX2”,Figures1B-C),resulted inclearenrichmentoffifteenmitochondrial-encodedRNAs—relativetothe cytosolicmarkerGAPDH—asgaugedbyRT–qPCR(averageof49.3±3.5and 60.9±4.1-foldenrichment,respectively,FigureS1A).Assumingthatfixingcellsprior tobiotinylationwouldbettercapturetransientorweakRNA–proteininteractions, weselectedthecrosslinking-then-BPprotocolforRNA-Seqanalysis.Whilethis confirmedthatmitochondrialmRNAswereenriched,asizeable“shoulder”of conspicuousoff-targetRNAswerealsounexpectedlyenriched(FigureS1B).Thus, were-examinedourlabelingandcrosslinkingprotocols,usingasamplingofthese off-targetRNAmarkers(e.g.,theabundantnuclearRNAXIST,andcytosol-localized 3 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 RNAsHOOK2andMAN2C1).ThismorecomprehensiveanalysisrevealedthatAPEX labelingfollowedbycrosslinkingprovidessuperiorspecificity(FigureS1C).We hypothesizethatthemildformaldehydetreatmentcompromisesmembrane integrity(Foxetal.1985),allowingBPradicalstoescapetoadjoiningcompartments whenAPEXlabelingisperformedafterformaldehydetreatment. WeusedtheoptimizedAPEXfollowedbycrosslinkingprotocoltomap mitochondrialRNAsinmito-APEX2-expressingHEK293Tcells(Figure1D,Table1, tab2).Gene-levelanalysis,comparingRNAcountsbeforeandafterstreptavidin enrichment,revealedthatall13mRNAsencodedbythemitochondrialgenomewere highlyenriched(greaterthan3.5fold)inthreeindependentreplicates(Figures1D andS1E,Table1tab1).EnrichmentwasabsentinnegativecontrolswithH2O2 omitted(FigureS1F).Readdensityplotsmappedtothemitochondrialgenome demonstratedthatmostofourcapturedRNAscorrespondtofully-processed transcripts,includingmRNAs,interstitialtRNAs,andtheD-loopleadersequence fromwhichmitochondrialtranscriptioninitiates(Figure1E).Intriguingly,mitomRNAreaddensitiesappearedtocorrelatewithpreviousmeasuresofmRNAhalflife(Nagao,Hino-Shigi,andSuzuki2008).Forexample,mRNAsencodingMTCO1-3 havelongerhalf-lives,andmorereadsfromAPEX-RIP,thanmRNAsencoding MTND1-2. APEX-RIPmappingofthenuclear-cytoplasmicRNAdistribution HavingestablishedthatAPEX-RIPisbothspecificandsensitiveinthe mitochondrion,wenextturnedourattentiontoamorechallengingcompartment: themammaliannucleus.Thenucleusismorecomplexandhasalessdefined transcriptomethanthemitochondrialmatrix,butpreviousFractionation-Seq datasets,includingbyENCODE(Dunhametal.2012)(FiguresS2A–D),againprovide areferencelisttowhichwecancompareourresults. WegeneratedHEK293TcellsthatstablyexpressAPEX2inthenucleus (APEX-NLS)orinthecytosol(APEX-NES;NESisanuclearexportsignal).The specificityofinsitubiotinylationbytheseconstructswithineachcompartmentwas confirmedbyimaging(Figure2A).Wholecelllysatespreparedfromeachcellline alsoproduceddistinct“fingerprints”ofbiotinylatedproteins,asassayedby streptavidinblotting(FigureS1D). WeperformedAPEX-RIPonbothAPEX-NLSandAPEX-NEScells,usingthe biotinylation-first/crosslinking-secondprotocolestablishedabove,withan additionalone-minuteradical-quenchingstepinbetweentheAPEXandcrosslinking steps(FigureS3A;seemethods).Encouragingly,“goldstandard”nuclearand cytosolicRNAs(definedfromtheENCODEdataasthetop1000RNAsineach compartment;seeTable2tab4)wereenrichedfromthecorrespondingcelllinesas predicted(Figure2BhistogramsandFiguresS2E–F).Moreover,whendirectly comparingthefold-enrichmentsfromeachcompartmenttooneanother,itwas apparentthatAPEX-NLShadeffectivelyenrichedknownnuclear-localizedRNAs, whileAPEX-NEShadenrichedknowncytosol-localizedRNAs(Figure2Bscatterplot, Table2tab3).WecalculatedforeachRNAa“nuclearpreferencescore,"definedas theminimumgeometricdistanceofeachpointtotheliney=x(correspondingtothe setofgeneswhicharenotpreferentiallyenrichedfromeithercompartment). 4 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 ReceiverOperatorCharacteristic(ROC)analysisofthesenuclearpreferencescores wasusedtofilterthedataandobtainfinaltranscriptlistsof5,467nuclearRNAsand 10,130cytosolicRNAsfromlivingHEK293Tcells(Table2tabs1and2).Thefalse discoveryratesofthesetwolistsare<0.6%and<0.4%,respectively. Whenplottedbynuclearpreferencescore,thehumantranscriptome displayedanoverallbimodaldistribution,whereinthemajorityofspecieswere cytoplasmic,appendedbyasmallerright-shiftedpopulaceofpredominantlynuclear RNAs(Figure2C,left).Asmightbepredicted(Derrienetal.2012),manyofthislatter groupwerelncRNAs,whichclearlyshowedpreferentialnuclearlocalization(Figure 2C,middle).MostmRNAsappearedtobecytosolicinourdata(Figure2C,right). Notably,wealsoobservedsizeablepopulacesofRNAsexhibitingnoncanonical nuclear–cytoplasmicpartitioning(Figure2D).3323mRNAs–includingC1orf63,for example(Figure2D)–appearedpreferentiallynuclear.Manyofthesespecieshave beenproposedtoplayaroleindampeninggeneexpressionnoise(BaharHalpernet al.2015).Conversely,234lncRNAsappearedpreferentiallycytoplasmic;these includetheknowncytoplasmiclncRNASNHG5,amodulatorofstaufen-mediated decaythatinfluencescolorectaltumorgrowth(Derrienetal.2012;Damasetal. 2016)(Figure2D). OurAPEX-RIPnuclearandcytosolicRNAlistsprovideanopportunityfora head-to-headcomparisonwiththetraditionalFractionation-Seqmethodfor mappingsubcellularRNAlocalization.ROCanalysisoftheENCODEFractionationSeqdatayieldedalistof3,056RNAsenrichedbynuclearfractionation(Table2tab 5).OftheseRNAs,81%(2469)werealsoenrichedinourAPEX-RIPnucleardataset, implyinggeneralagreementbetweenthetwotechnologies(Figure2E).Notably, APEX-RIPalsoenrichednearly3000additionaltranscripts.ThesemaybenuclearlocalizedRNAsthatwereopaquetotheENCODEprotocol,orcontaminantsenriched byAPEX-RIP.Toaddressthispossibility,weexaminedeachdatasetforconspicuous non-nuclearcontaminants:RNAsthatareknowntobelocalizedattheEndoplasmic Reticulum(Jan,Williams,andWeissman2014).Satisfyingly,theAPEX-RIPnuclear dataset,thoughlarger,containedfewerERcontaminantsthandidtheanalogous fractionation-baseddataset,implyingthatAPEX-RIPproduceshigherspecificity thanFractionation-Seq(Figure2F,left). Tocomparethecoverage/sensitivityofeachmethod(sometimestermed recall),weexaminedtheenrichmentineachdatasetoflncRNAs,whicharethought tobepredominantlynuclear(Derrienetal.2012).Weassembledalistof827 annotatedlncRNAs(GENCODEhg19)withaverageFPKMpre-enrichmentgreater than1.0(Table2tab7).OftheselncRNAs,71.7%areenrichedinourAPEX-RIPderivednucleardataset,whilenuclearFractionation-Seqfromthesamecellline enrichedonly43.4%(Figure2E,right).WeconcludethatAPEX-RIPcanbesuperior toFractionation-Seqintermsofbothspecificityandcoverage,foranalysisof endogenousRNAsubcellularlocalization. EnrichmentofRNAsproximaltotheERmembrane TheaboveeffortsestablishthatAPEX-RIPcanenrichRNAsinmembrane-enclosed cellularcompartments.Wenextsoughttoaddresswhetherthetechniquecould successfullycapturethetranscriptomesof“open”subcellularregions.Previous 5 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 proteomicworkhasshownthatAPEXtaggingexhibitssufficientspatialspecificity forsuchopencompartments,sincethistechnologyhasproducedhighlyspecific proteomicmapsof,forexample,themammalianneuronalsynapticcleft(Lohetal. 2016),outermitochondrialmembrane(Hungetal.2017),mitochondrial nucleoid(Hanetal.2017),andG-proteincoupledreceptorinteraction network(Lobingieretal.2017;Paeketal.2017).Wewereunsure,however,ifthe additionalformaldehydecrosslinkingstepwouldpreserveorblurtheestimated<10 nanometerspatialresolutionofAPEXlabeling(Rheeetal.2013). AsatestcaseforthegeneralityofAPEX-RIPatsuchopencompartments,we selectedtheEndoplasmicReticulum(ER).TheERisanappealingtargetforseveral reasons.First,itishosttoaknownsetofcharacteristicRNAsthatwecanuseas positivecontrols—theso-called“secretome”—whichcomprisesmRNAsencoding secreted,glycosylated,and/ortransmembraneproteins,thataretranslatedby ribosomesontheroughER.Second,theERprovidestheopportunitytocomparethe efficacyofAPEX-RIPtoalternativeapproaches,sinceRNAsinthissubcellularlocale havebeenpreviouslycharacterizedbothbyFractionation-Seq,andbyanewer methodologytermedproximity-dependentribosomeprofiling(Jan,Williams,and Weissman2014;Williams,Jan,andWeissman2014).Thislattertechniquemaps activeproteintranslationattheERmembranebycombiningribosome profiling(Ingoliaetal.2009)withproximity-restrictedsequence-specific biotinylation,usinganER-targetedbiotinligaseandribosomesthataretaggedwith thepeptidesubstrate(AviTag)ofthatligase. SinceitwasinitiallyunclearwhichfaceoftheERmembrane(cytosolicor luminal)wouldbemostamenabletotheAPEX-RIPmethod,wegeneratedfusion constructsthatlocalizedtheperoxidasecatalyticcentertoeach(Figures3A–B). ERM-APEX2targetsAPEX2totheERcytosolicsurfaceviaa27-aminoacidfragment derivedfromthenativeERmembrane(ERM)proteincytochromeP450C1.HRPKDELtargetshorseradishperoxidase(HRP)totheERlumenviaanN-terminalERtargetingsignalandaC-terminalKDELER-retentionmotif(Martelletal.2012).We haveshownthatHRPcatalyzesthesameproximity-dependentbiotinylation chemistryasAPEX2(Lohetal.2016),buthashigherspecificactivitythanAPEX2in theERlumen(Lametal.2014).WegeneratedHEK293Tcellsstablyexpressing ERM-APEX2andHRP-KDEL,andconfirmedbymicroscopyandstreptavidinblotting thateachproducedtheexpectedlabelingpatterns(Figures3CandD).Next,we comparedtheefficacyofeachconstructfortargetRNAisolation,usingthe biotinylation-first/crosslinking-secondAPEX-RIPprotocol,andanalyzingour resultsviaRT-qPCRanalysisofestablishedsecretomeandnon-secretomemRNAs24. ParallelexperimentswithAPEX2-NEScellsservedasnegativecontrols(Figure3E). Intriguingly,whileAPEX-RIPfromHRP-KDELcellsefficientlyenrichedtarget secretomemRNAsrelativetonon-targetcontrols(averagefoldenrichment=19.5, pairedt-testp-value=0.00009),parallelexperimentsinERM-APEX2cellsexhibited onlymodest,qualitativeenrichmentoftargetspecies(averagefoldenrichment= 1.49,pairedt-testp-value=0.0515).Indeed,resultsfromERM-APEX2cellswere nearlyindistinguishablefromthoseacquiredfromAPEX2-NEScontrolcells(paired t-testp-value=0.830,Figure3E,right).Thisissurprising,sinceproteomic 6 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 experimentsinHEK293TcellsexpressingtheidenticalERM-APEX2construct yieldedhighlyspecificenrichmentofER-localizedproteins(Hungetal.2017). OurdatastronglyimplythatAPEX-RIPdoesnothavethesamespatial specificityasperoxidase-catalyzedproteomiclabeling,andmaybelimitedby perturbationsinducedbyformaldehydecrosslinking.However,wewerehighly encouragedbythedataobtainedwiththeHRP-KDELconstruct.Wehypothesizethat APEX-RIPwiththisconstructiseffectivebecauseformaldehydecrosslinking physicallycouplesRNAsonthecytosolicfaceoftheERtoproteincomplexesthatare biotinylatedwithintheERlumen,therebyallowingtargetRNAstobeenrichedby streptavidin(Figure3A).Furthermore,weobservedthatthetargetspecificityofthis approachcouldbegreatlyimprovedbyadditionofaone-minuteradical-quenching stepinbetweenthebiotinylationandcrosslinkingstepsinourprotocol(Figure S3A).Wesurmisethatthisadditionalsteppreventsresidualperoxidase-generated radicalsfromleakingintoadjoiningcompartmentswhentheintegrityoftheER membraneiscompromisedduringformaldehydetreatment. Usingthisimprovedprotocol,weperformedAPEX-RIPonHRP-KDELcells (Table3tab2).Gene-levelanalysis,comparingRNAcountsbeforeandafter streptavidinpulldown,revealedadistinctpopulationofsubstantiallyenrichedRNAs (Figures3FandS3B).Encouragingly,themajority(63.4%)ofsecretomemRNAs (definedbyERproximalRNAs(Jan,Williams,andWeissman2014)andPhobius predictedmRNAswithexclusionofnuclearencodedmitochondrialmRNAs,see methods)residedinthisset,whilemost(97.1%)mRNAsinatestsetofknownnonsecretedgeneswerenotenriched,thusdemonstratingtheabilityofAPEX-RIPto isolateER-associatedtranscriptsfromthelargerpopulationofcellularRNAs(Figure 3F).UsinghistogramandROCanalysis,wedeterminedtheoptimallog2FKPM significancethresholdcutoffforeachexperimentalreplicate(FigureS3C;see methods),obtainingafinallistof2970ERM-associatedRNAsthatwere independentlyenrichedinmultipleexperiments(Table3tab1).Thisdataset exhibited94%specificity,basedonprevioussecretoryannotationasdefinedby GOCC,SignalP,TMHMM,orPhobius(Ashburneretal.2000;Petersenetal.2011; Kroghetal.2001;Käll,Krogh,andSonnhammer2004).Figure3Hshowsthatwe alsode-enrichedmRNAslackingsuchsignals.Coveragewaslikewiseexceptional (97%),asgaugedbytherecallof71literature-curatedwell-establishedERresident proteins’mRNAs(Table3tab5;Figure3I,seemethods). WenextcomparedtheERMAPEX-RIPdatasettoanalogousresultsobtained bysubcellularbiochemicalfractionation(ReidandNicchitta2012),andby proximity-dependentribosomeprofiling(Jan,Williams,andWeissman2014)(Table 3,tabs3and4,respectively).Encouragingly,APEX-RIPcapturesthemajorityof RNAsenrichedbyeachofthesealternativetechniques(70%and93%,respectively, Figure3J),implyingbroadagreementbetweenthedifferentmethodologies.To examinethisfurther,wequantifiedthespecificityandcoverageofeachapproach,as above(seemethods).SpecificityanalysisdemonstratedthatAPEX-RIPandribosome profilingexhibitedsimilarlyhighspecificity(94%and98%,respectively).However, Fractionation-Seqwassubstantiallynoisier,suchthatonly90%ofenrichedmRNAs boreasecretoryannotation(Figure3H);theremaining10%comprisedsizeable populationsofconspicuouscontaminants(FigureS3E).ThecoverageofER-localized 7 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 mRNAsretrievedbyAPEX-RIP(97%)wasalsoconsiderablyhigherthanthose retrievedbybothFractionation-Seqandribosomeprofiling(73%and77%, respectively,Figure3J).WeattributetheenhancedcoverageofAPEX-RIPtoits highersensitivity,sincethismethodappearsbettersuitedforcapturingRNAswith lowerabundancesthandothealternativeapproaches(FigureS3F-G).Suchhigher sensitivitymayalsoexplainwhythesetofRNAsenrichedbyAPEX-RIPissomuch largerthanthoseobtainedbyfractionationandribosome-profiling(Figure3H). Excitingly,thisfurtherunderscorestheabilityofAPEX-RIPtorecoverRNAsthatare opaquetoothermethods.Whilethevastmajority(88.7%)ofourenrichedRNAsare mRNAs,wealsoenrichhundredsofnoncodingRNAspecies–includingantisense RNAsandlincRNAs(Figure3G).TheseRNAsarenottranslated,andthuscannotbe detectedbyribosomeprofiling,andtendtobelowlyexpressed,makingthem difficulttargetsforeitherribosomeprofilingorFractionation-Seq. Insummary,APEX-RIPissuperiortoexistingmethodsformapping endogenousRNAsproximaltotheERmembrane,andmaybeextensibletoother membrane-abuttingsubcellularregionsaswell. HypothesesfromERandnuclearAPEX-RIPdatasets WewonderedifthehighlyspecificandcomprehensiveRNAsubcellularlocalization datasetsproducedbyAPEX-RIPcouldbeminedfornewbiologicalhypotheses.We firstobservedthat,ofthe2635mRNAsinourERMdataset,141codefor mitochondrialproteins.Itisthoughtthatthatthebulkofthenuclear-encoded mitochondrialproteomeistranslatedwithinthebulkcytosol,orinproximityto mitochondriathemselves(Lesnik,Golani-Armon,andArava2015),raisingthe possibilitythatthetranslationorsubsequentprocessingofthese141protein productsrequiremachinerylocalizedtotheER.Additionally,thesemRNAsmaybe translatedatmitochondria-ERcontactsites,someofwhichhavebeenobservedto containribosomes(Csordásetal.2006).Togaininitialinsightintotheseunusual RNAs,weanalyzedthese141genestoseewhether,relativetototalpoolofmRNAs encodingmitochondrially-localizedproteins,theywereenrichedinparticular properties(Table4tab1).Intriguingly,57.1%ofthesemRNAscodefor transmembraneproteins(aspredictedbyTMHMM),comparedtoonly20.4%forall mitochondrialproteinmRNAs(Figure4A).Mitochondrialsubcompartmentanalysis showedthattheER-proximalpopulationisenrichedforproteinsdestinedforthe innermitochondrialmembrane,andisdepletedforresidentmatrixproteins, comparedtothetotalmitochondrialproteome(Figure4B).Interestingly,proximitydependentribosomeprofilingbyWilliamsetal.inyeastusingbiotinligasetargeted totheoutermitochondrialmembrane(Williams,Jan,andWeissman2014)also showedenrichmentofmRNAsencodingproteinsdestinedfortheinner mitochondrialmembrane.Perhapsasubsetofinnermitochondrialmembranedestinedproteinsarelocallytranslatedatmitochondria-ERcontactsites. Next,wetestedwhethernewinsightscouldbegainedbyexaminingRNAs thatAPEX-RIPhadenrichedfrommorethanonesubcellularcompartment.Because theERlumeniscontiguouswiththatofthenuclearenvelope,wehypothesizedthat theHRP-KDELAPEX-RIPexperiment,inadditiontoenrichingRNAsproximaltothe ER,mightalsoenrichRNAsproximaltothenuclearmembrane.Thisregionwithin 8 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 thenucleus,termedthenuclearlamina,iswidelythoughttoplayacriticalrolein generepression(KindandvanSteensel2010),andinshapingtheglobalthreedimensionalarchitectureofchromatin(C.-K.Chenetal.2016).However,no exclusivelylaminar-residentRNAshaveyetbeenidentified.Wehypothesizedthat wemightidentifysuchlong-soughtlaminaRNAsbyintersectingourAPEX-RIP nuclearandERMRNAlists(Figure4C).Encouragingly,weobserved673suchRNAs intheintersectionlist,34ofwhicharelongnoncodingRNAs(Figure4D;Table4tab 2).ThissmalllistisacompellingstartingpointforexplorationofregulatoryRNAs thatmayresideinthenuclearlamina. Discussion MethodsformappingRNAsubcellularlocalizationareconstrainedbythelimitsof theirspatiotemporalprecision,thediversityofRNAspeciesthattheycan simultaneouslyanalyze,theirgeneralityacrosscelltypesandcompartments,and theireaseofuse.WebelievethatAPEX-RIPissuperiortoexistingimaging-and sequencing-basedtechniqueswithregardtomanyofthesefactors. Comparedtoimaging-basedtechnologies,APEX-RIPofferssuperiortarget throughput,easeofuse,andtemporalcontrol.Forexample,althoughmodern variantsofFISHcanachieveextremelyhighspatialprecision–evenenablingthe visualizationofindividualRNAmolecules(Batish,Raj,andTyagi2011)–this techniquerequiresthesynthesisandtestingofcustomizedfluorescentprobesfor eachtranscriptunderenquiry,acumbersomeprocessthatlimitsthroughput(Cabili etal.2015).AhighlymultiplexedFISHvariant,merFISH,substantiallyboosts throughput—enablingthousandsoftranscriptstobesimultaneouslyvisualized— butrequirescomplexprotocolsforprobesetdesignandimaging(K.H.Chenetal. 2015).Analternateapproach,FISSEQ,achievessimilartargetdepthwithoutthe needforgene-specificprobes,butinsteadreliesoncustomizedinstrumentationand arococoprocessofinsitusequencingandimaging(Leeetal.2014).Notably,without incorporatingadditionalstainsormarkers,theseimaging-basedapproaches providelittleinformationregardingthelocalenvironment(i.e.,proximalcellular compartmentsorfeatures)neareachRNAtarget.Furthermore,thesetechniques fundamentallylacktemporalprecision:eachrequiresextensivelyfixingand permeabilizingcellspriortodatacollection,duringwhichtimediffusionortheloss ofcellularintegritycanperturbendogenousRNAlocalization.Thislatterissuecan becircumventedthroughavarietyoflive-cellimagingtechnologies,butthese requiretheimplementationofcustomizedreagentsthatlimitthroughput,andmay evendistortthelocalizationoftheRNAtargetsunderenquiry(Paige,Wu,andJaffrey 2011;Hocineetal.2013;Nellesetal.2016).Bycontrast,APEX-RIPisnot encumberedbyanyoftheseconstraints.Itdoesnotrequirethedevelopmentof target-specificexpressionconstructsorprobes;nordoesitrelyonspecialized instrumentation.TheensembleofRNAtargetsanalyzed(and,forthatmatter,the arrayofRNAclassesanalyzed)istheoreticallylimitedonlybythelibrarysynthesis andsequencingprotocolsemployed.Moreover,sinceAPEX-RIPcapturesonlyRNAs proximaltoaspecificsubcellularcompartment,anddoessoduringaone-minute reaction,thetechniqueoffersbothgreaterinformationcontentandhighertemporal resolutionthandoitsimaging-basedalternatives. 9 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 Comparedtofractionation-basedtechnologies,APEX-RIPofferssuperior accuracy,easeofuse,andgeneralversatility.AsillustratedinthenucleusandER, ourtechniqueoutperformsconventionalFractionation-Seqwithregardtoboth targetspecificityandrecall,apparentlycircumventingthedualissuesoftargetloss andoff-targetcontaminationthatcanplaguesuchapproaches(Figures2E-F).We ascribethisperformanceboosttotwoprincipalfactors.First,thehigh spatiotemporalprecisionaffordedbyinsitubiotinylation(Rheeetal.2013)allows ustoefficientlyisolatetargetmaterialfromcontaminantsthatmightbedifficultto removebyclassicalfractionation,therebyimprovingspecificity.Second,covalently couplingtargetRNAstoaffinity-taggedproteinsallowsustorecoverlow-abundance orweaklyaffiliatedtranscriptsthatmightotherwisebelostduringbiochemical enrichment,therebyimprovingtargetrecall.Perhapsmoreimportantly,however, wehaveachievedtheseresultsinavarietyofsubcellularcompartmentsusinga commonprotocol,thusobviatingtheneedtodevelopcustomizedpurification schemesforeachcompartment.ThisgeneralityshouldenableAPEX-RIPtoaccess “unpurifiable”subcellularcompartmentsforwhichsuchpurificationschemeswould beimpossible.Whilearelatedtechnology,proximity-dependentribosomeprofiling, exhibitssimilarversatilitywithindiversesubcellularmilieus(Jan,Williams,and Weissman2014),thisapproachislimitedtomRNAsactivelyundergoingtranslation. Italsorequiresbiotinstarvationpriortotagging,whichistoxictomammaliancells. Aswehavedemonstrated,APEX-RIPcanmapdiverseclassesofnoncodingRNAand quiescentmRNA(Figure3G),andtoxicprotocolsstarvingcellsofessentialnutrients forhoursarenotrequired. TheAPEX-RIPmethodologydoeshavenotablelimitations.Cellstobe analyzedmustbetransfectedwitharecombinantconstruct,incontrasttoFISHand Fractionation-Seq,whichcanbeperformedonnativetissues.APEX-RIPalsogives poorspatialspecificityinmembrane-freesubcellularregions. TheAPEXperoxidaseusedherehasalsopreviouslybeenusedtogenerate contrastforelectronmicroscopyinfixedcells(Martelletal.2012;Lametal.2014), andforspatially-resolvedproteomicmappinginlivingcells(Rheeetal.2013;Hung etal.2014;Lohetal.2016;Hanetal.2017;Hungetal.2017;Micketal.2015).This studyextendsAPEXtoanewclassofapplicationsandtoanewbiopolymer.In principle,itshouldbepossibletoutilizeasingleAPEX-expressingcelllineto characterizeatargetsubcellularcompartmentbyelectronmicroscopic,proteomic, andtranscriptomicmeans.Relatedmethodsforproteomicmapping,suchas BioID(Rouxetal.2012),lackthisversatility,becausetheunderlyingchemistryisnot asflexibleastheone-electronoxidationreactioncatalyzedbyAPEX. Weanticipatethattheinitialsubcellulartranscriptomicmappresentedin thiswork—probingthemitochondrialmatrix,cytosol,nucleus,andERmembraneof HEK293Tcells—willserveasvaluableresourcesforcellbiologists.Analysisofthese datahasalreadyyieldedpotentialinsightintonuclear-retainedmRNAs,cytosolic lncRNAs,putativelamina-localizedRNAs,andgenesthatmaybetranslatedlocallyat mitochondria-endoplasmicreticulumjunctions.ApplyingAPEX-RIPatother subcellularcompartmentswillfurtherexpandthedepthandbreadthofthismap. Furthermore,giventhehightemporalresolutionofAPEX-RIP,weimaginethatour technologymightenableprofilingofsubcellularRNApoolsinresponsetoacute 10 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 stimuliordrugs,orthroughoutstagesofthecellcycleanddevelopment. Collectively,suchstudieswouldyieldanunderstandingintothebiologyofRNA subcellularlocalizationatunprecedentedscale. Significance RNAsubcellularlocalizationisacriticalfactorthatinfluencesawidearrayof biologicalprocesses,rangingfromDrosophilaembryogenesistomammalian neuronalsignaling.However,whilethisspatiallayeroftranscriptomeregulationhas beencharacterizedinahandfulofcontexts,abroaderunderstandingofitsoverall extent,thefactorsgoverningitsestablishment,anditsimpactonbiologicalfunction, remaininchoate.Thelimitationshinderingthisunderstandinghavebeenlargely technical,sinceconventionalmethods—suchasfluorescenceinsituhybridization (FISH)andFractionation-Sequencing(“Frac-Seq”)—dependuponspecialized reagentsandprotocolsthatcanlimitthroughputandgeneralapplicability.To addressthisfundamentalneed,wehavedevelopedanewstrategy—APEX-RIP— whichusesasimpletoolkitandworkflowtomapthetranscriptomesofdiscrete subcellularcompartmentsathighdepthandspatiotemporalresolution.APEX-RIP utilizestheengineeredascorbateperoxidaseAPEXtobiotinylateproteinswithina targetsubcellularcompartmentinlivecells;theseaffinity-taggedproteinsarethen chemicallycrosslinkedinsitutonearbyRNAs.Whenappliedtoavarietyof membrane-enclosedandmembrane-adjacentcompartments,theAPEX-RIPstrategy exhibitedhighertargetspecificityandcoveragethandoconventionalfractionationsequencing-basedapproaches,atadepthfarexceedingthoseattainablebyimagingbasedmethods.Furthermore,APEX-RIPcanbeappliedtocompartmentsthatare recalcitranttoconventionalbiochemicalpurification.Giventhesuperiorprecision, flexibility,andeaseofthisapproach,weanticipatethatAPEX-RIPwillprovidea powerfultoolfordissectingRNAsubcellularlocalizationinabroadrangeof biologicalcontexts. Authorcontributions Conceptualization,PK,DMS,AYT;Methodology,PK,DMS,AYT;Validation,PKand DMS;FormalAnalysis,PKandWM;Investigation,PKandDMS;DataCuration,PK; Writing–OriginalDraft,PK,DMS,andAYT;Writing–Review&Editing,PK,DMS, JLR,andAYT;Visualization,PK,DMS,andAYT;Supervision,JLRandAYT;Project Administration,AYT;FundingAcquisition,JLRandAYT. Acknowledgements WethankmembersoftheTinglaboratory,especiallyJeffreyMartellforvaluable experimentaladviceandOzanAygunforthecuratedERproteinlist.Wethankthe Rinnlaboratory,especiallyChinmayShukla,forvaluablecomputationaladvice. FundingwasprovidedbytheNIH(R01-CA186568toA.Y.T.andU01DA040612to J.L.R.)andStanford(toA.Y.T). 11 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 Figure1.APEX-RIPinmitochondria.(A)OverviewoftheAPEX-RIPworkflow.Cells expressingAPEX2(grey‘pacmen’)targetedtothecompartmentofinterest(here,the mitochondrialmatrix.)areincubatedwiththeAPEXsubstratebiotin-phenol(BP;redB: biotin).Aone-minutepulseofH2O2initiatesbiotinylationofproximalendogenous proteins(Rheeetal.2013),whicharethencovalentlycrosslinkedtonearbyRNAsby0.1% formaldehyde.Followingcelllysis,biotinylatedspeciesareenrichedbystreptavidin pulldown,andcoelutingRNAsareanalyzedbyRT-qPCRorRNA-Seq.IMM:inner mitochondrialmembrane.(B)ImagingAPEX2biotinylationinsitu.HEK293Tcells expressingV5-taggedmito-APEX2werebiotinylatedandfixedasdescribedin(A)and stainedasindicated.ThebottomrowisanegativecontrolinwhichH2O2treatmentwas omitted.Scalebars,10µm.(C)Streptavidinblotanalysisofwholecelllysatespreparedas describedin(A).Insitubiotinylation(lane1)isablatedintheabsenceoftheAPEX2protein, H2O2,orBP.Anti-V5blotdetectsexpressionofmito-APEX2.(D-E)mito-APEX-RIPefficiently recoversthemitochondrialtranscriptome.(D)Gene-levelRNA-Seqanalysisofmito-APEXRIPenrichmentforRNAslongerthan200nt.Datafromonebiologicalreplicateareshown. (E)Nucleotide-levelRNA-Seqanalysisofmito-APEX-RIP,mappedtothehuman mitochondrialgenome(innermostcircle).Outermostcircle:readsfromthefullAPEX-RIP 12 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 519 520 521 protocol;middlecircle:readsfromthenegativecontrol.Notetheenrichmentofseveral mitochondrially-encodedtRNAsandtheD-loopleadertranscript.RibosomalRNAswere removedduringlibrarypreparation(seemethods).Seealso:FigureS1. 13 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 522 523 524 525 526 527 528 529 530 531 Figure2.APEX-RIPmappingofthenuclear-cytoplasmicRNAdistribution.(A) Fluorescenceimagingofnuclearandcytosol-targetedAPEX2fusionconstructs.HEK293T cellsexpressingtheindicatedconstructs(“NLS,”nuclearlocalizationsignal;“NES,”nuclear exportsignal)werelabeledwithbiotin-phenol,crosslinkedandstainedasindicated.DIC, DifferentialInterferenceContrast.Scalebars,10µm.(B)CombinedanalysisofAPEX2-NLS andNESexperimentsdistinguishesnuclearandcytoplasmicallylocalizedRNAs.Fold enrichmentvalueswerecalculatedrelativetomatchedinputsamples;themedianvaluesof 14 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 threereplicatesareshown(seemethods).The1000RNAswiththehighestpredicted nuclearandcytosoliclocalizationbyENCODE(Dunhametal.2012)arecoloredgreenand red,respectively(seemethods).Histogramplots,summarizingtheseparationoftheseRNA standardsbyeachAPEX2construct,areprojectedalongtheaxesofthescatterplotanduse thesamescales.TheblackdottedlinemarksthecutoffbetweennuclearandcytosolicRNAs. (C)APEX-RIPcapturestheestablishednuclear-cytoplasmicdistributionofmRNAsand lncRNAs.Top:APEX2-NLSversusAPEX2-NESscatterplots,asin(B),forallRNAs(left), lncRNAs(middle),andmRNAs(right).Dataarethemediansofthreereplicates.Dottedlines markthecutoffbetweennuclearandcytosolicRNAs,asin(B).Bottom:histogramplotsof nuclearpreferencescores(seemethods)foreachclassofRNA.Dottedredlines:theROCderivedsignificancethreshold(seemethods).Inset:thecompletedistribution.(D)Read densityplotsofRNAswithstereotypicalandatypicallocalization.Foreachgene,acommon y-scaleisusedforallreadtracks.SnoRNAsencodedintheSNHG5genebodyareindicated asgrayrectangles.(E)VenndiagramcomparingAPEX-RIPandENCODEnuclearRNA datasets(Dunhametal.2012).(F)NuclearAPEX-RIPismorespecificandsensitivethanis biochemicalfractionation.Left:SpecificityoftheAPEX-RIPandENCODEnuclearRNA datasets(Dunhametal.2012).Off-targetRNAsweredefinedactivelytranslatedERproximalmRNAs(Jan,Williams,andWeissman2014).Right:Recallofnuclearstandard RNAs,definedasasetof827lncRNAsannotatedbyGENCODEhg19withaveragepreenrichmentFPKM≥1.0.Seealso:FigureS2. 15 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 552 553 16 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 Figure3.APEX-RIPmapsRNAsproximaltotheEndoplasmicReticulum.(A—B) SchematicssummarizingalternateER-targetingstrategies.(A)HRP,targetedtotheERwith aKDELsequence,biotinylatesproteinswithintheERlumen.RedB:biotin.RedXs:chemical crosslinksinducedby0.1%Formaldehydetreatment.(B)APEX2,displayedontheER membrane(ERM)byfusingittothetransmembranesegmentofrabbitP450C1,facesthe cytosol.(C)ImagingHRP-KDEL-catalyzedbiotinylation.HEK293Tcellsstablyexpressing HRP-KDELwerelabeledwithBP,fixedandimagedasinFigure1B.DIC,Differential InterferenceContrast.Scalebars,10µm.(D)StreptavidinblotdetectionofresidentER proteinsbiotinylatedbyHRP-KDEL,asinFigure1C.Arrowheadsdenoteendogenously biotinylatedproteins(Chapman-SmithandCronan1999).(E)RT-qPCRanalysis,comparing specificitiesofthelabelingschemesshownin(A–B).Targetandoff-targetgeneswere selectedusingpreviously-reportedfoldenrichmentsattheERmembrane(Jan,Williams, andWeissman2014).Dataarethemeanofthreereplicates,±onestandarddeviation.(F) ScatterplotshowingRNAabundancebeforeandafterstreptavidinenrichment.Datashown areforonereplicate.AdditionalreplicatesinFigureS3B.(G)ClassificationofAPEX-RIP enriched,ER-associatedRNAs.Collectively,non-codingRNAsconstitute11.3%ofenriched genes(335of2970RNAs).(H)Specificityanalysisforprotein-codingmRNAsinourERassociatedRNAlist.95%ofthe2635APEX-RIPER-enrichedmRNAsexhibitsomeformof secretoryannotation(aspredictedbyPhobius,TMHMM,SignalP,orGOCC,seemethods), whereasonly60.3%ofallhumanmRNAsaresimilarlyclassified(left).RNAsinourdataset thatwerenotenrichedbyribosomeprofiling(1802RNAs)werealsopredominantly secretory(90.9%).(I)TargetrecallofERAPEX-RIPexceedsthoseofproximity-restricted ribosomeprofiling(Jan,Williams,andWeissman2014)andbiochemicalfractionation(Reid andNicchitta2012).Seealso:TableS5.(J)ThegenesetenrichedbyERAPEX-RIPlargely recapitulatesthoseenrichedbyalternativemethods.Seealso:FigureS3. 17 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 Figure4.APEX-RIPrevealsRNAswithpotentiallynovellocalization.(A)Many mitochondrialtransmembraneproteinsappeartobetranslatedattheER.mRNAsencoding mitochondrialproteinsdefinedbyGOCCandMitoCarta1.0(Pagliarinietal.2008;Ashburner etal.2000),withpredictedtransmembranehelices(predictedbyTMHMM(Kroghetal. 2001);greendistribution)arepreferentiallyenrichedbyHRP-KDELAPEX-RIP,relativeto mitochondrialmRNAslackingtransmembranedomains(reddistribution)(B)Predicted localizationofmitochondrialproteinsencodedbymRNAsthatwereenrichedinER-and bulkcytosol-APEX-RIPexperiments(leftandmiddle,respectively),andofallGOCCannotatedmitochondrialproteins.OMM:Outermitochondrialmembrane.IMS: Intermembranespace.IMM:Innermitochondrialmembrane.(C)Computationalschemefor identifyingputativelamina-associatedRNAs.SinceHRP-KDEL-enrichedRNAs(left) comprisebothER-andlamina-associatedRNAs,candidatenuclearlamina-localizedRNAs, wereidentifiedastheintersection(right)ofRNAsenrichedbybothAPEX2-NLS(middle) andHRP-KDEL.Red:enrichedRNAs;greenpacmen:isAPEX2orHRPperoxidases.(D)Venn diagramidentifyingputativelamina-associatedRNAs,definedastheoverlapbetweenHRPKDEL-andAPEX2-NLS-enrichedRNAs.Seealso:Table4,tab2.Thesignificanceofoverlap betweenER-associatedRNAsandnuclear-enrichedRNAsbyAPEX-RIPismeasuredby hypergeometrictestusingalltypeofRNAsoronlylncRNAsaspopulation,respectively. 18 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 599 600 19 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 SupportingFigure1.OptimizationofAPEX-RIPprotocolandadditionalmitochondrial APEX-RIPdata(relatedtoFigure1).(A)Top:Alternatelabelingandcrosslinking protocols.InprotocolI.,cellsarecrosslinkedwithformaldehyde(FA)andquenchedwith Glycine(Gly)priortotheintroductionofbiotin-phenol(BP)andtheinitiationofAPEXcatalyzedbiotinylationwithH2O2.InProtocolII.,livecellsareincubatedinBP,andinsitu biotinylationisinitiatedpriortoFAcrosslinking.Inbothcases,celllysis,streptavidin enrichmentandRNApurificationproceedasdescribed(seemethods).Bottom:qRT-PCR analysiscomparingProtocolsIandII.Negativecontrolexperimentsreplacemito-APEXwith mito-GFP,omitBPoromitH2O2.AllconstructswereAPEX1derivatives,transiently expressedinHEK293Tcells.Dataarethemeansofthreereplicates±onestandard deviation.(B)RNA-SeqanalysisofRNAsenrichedbyprotocolI.Althoughall13 mitochondrially-encodedmRNAs(green)wereenriched,thesewereaccompaniedby substantialcontaminatingRNAs,includingXISTandMAN2C1.(C)qRT-PCRanalysis comparingProtocolsI.andII.,includingoff-targetcontrolsdesignedusingtheresultsfrom RNA-Seq.NotethesuperiorenrichmentobtainedusingProtocolII.Cellsinthisexperiment stably-expressedmito-APEX2.Thisprotocolandcelllinewereusedtocollectalldatain (Figure1).Dataarethemeansofthreereplicates±onestandarddeviation.(D) CharacterizationofallAPEX2fusionconstructsusedinthiswork.HEK293Tcellsstably expressingtheindicatedconstructs(right)werelabeledandcrosslinkedviaProtocolII., lysedandanalyzedbySDS-PAGE,blottingwithstreptavidin-HRP,Anti-V5andanti-FLAG.L: ladder;U:untransfectedHEK293Tcells.(E)Datafromadditionalreplicatesofthe mitochondrialAPEX-RIPexperiment,depictedasin(Figure1D).(F)IntheabsenceofH2O2 treatment,mito-APEX-RIPfailstoenrichmitochondrialtargetgenes.Datafromindividual replicatesareshown. 20 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 SupportingFigure2.IdentificationofENCODE-derivednuclearRNAstandards; additionalrepresentationsoftheAPEX-RIPnuclear—cytoplasmicdata.(A)humancell line(NHEK)fractionationdatafromENCODE(Dunhametal.2012),illustratingtherelative enrichmentofgenesduringnuclearandcytosolicfractionation.RNAenrichmentsare calculatedasin(Figure2B)(seemethods).Displayedaretheaveragevaluesofthree replicates,forallgeneswithFPKMpreenrichment≥1.0.Dashedlinedenotesy=xline.(B) Distributionofgenesbynuclearpreferencescore(seemethods).lncRNAs,predictedtobe mostlynuclear,areplottedingreen,andmRNAs,predictedtobemostlycytosolic,are plottedinred.(C–D)Selectionofnuclear-enrichedRNAstandardsusingENCODE fractionationdata.(C)ROCanalysisappliedtohistogramin(B).Foreachnuclearpreference cutoffvalue,theTruePositiveRate(TPR)–definedasthefractionoflncRNAsabovethe cutoff–wasplottedagainsttheFalsePositiveRate(FPR)–definedasthefractionofmRNAs abovethecutoff.(D).UsingtheoutputofROCanalysis,anuclearpreferencescorecut-off valuewascalculated,definedasthefirstlocalmaximuminthegraphof(TPR-FPR)versus NuclearPreferenceScore.Thisvaluewasappliedtoobtainalistof3056nuclear-enriched standardRNAs.(E)DatafromindividualreplicatesoftheNLS-APEX-RIPexperiment.Genes enrichedbynuclearandcytoplasmicfractionationintheENCODEdatasetarecoloredgreen andred,respectively.(F)DatafromindividualreplicatesoftheNES-APEX-RIPexperiment, depictedasin(E). 21 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 646 647 22 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 SupportingFigure3.FurtheroptimizationoftheAPEX-RIPprotocol;additionalHRPKDELdata(RelatedtoFigure3).(A)AdditionofaradicalquenchingstepbetweenAPEX2 labelingandformaldehydecrosslinkingimprovesthespecificityofRNAcapture.Top: schematicoftherevisedlabeling–crosslinkingworkflow.Bottom:qRT-PCRanalysisofthe ER-APEX-RIPexperimentwithandwithoutthisadditionalquenchingstep,asin(Figure S1C).TheradicalquenchersusedwereTroloxandascorbicacid.(B–D)Qualityassessment forindividualreplicatesoftheER-APEX-RIPexperiment.(B)Datafortwoadditional replicatesoftheHRP-KDELAPEX-RIPexperiment,depictedasin(Figure3F).(C) HistogramsshowingthedistributionofRNAenrichmentvalues–log2([FKPMpost enrichment]/[FKPMpreenrichment])–formRNAsencodingknownsecretoryproteins(top histograms,green),andmRNAsencodingnon-secretoryproteins(bottomhistograms,red). SignificancecutoffsweredeterminedusingROCanalysis(seebelow).Knownsecretoryand non-secretorystandardmRNAswerecatalogedasdescribed(seemethods).(D) Determinationofsignificancethresholdsratiocut-offsbyROCanalysis.Datawere processedasdescribedinFiguresS2D–E,usingTruePositivesecretoryandFalsePositive non-secretorystandardRNAs(seemethods).Giventheseanalyses,andthosein(B–C),only datafromReplicates1and2wereusedtogenerateourfinalER-associatedRNAlist.Todo this,theindividualROC-derivedthresholdswereusedtocalculatesignificantlyenriched genesfromeachdataset,andthefinalER-associatedRNAlistwasdefinedasthe intersectionofthesetwolists.(E)Geneontology(GO)analysisofmRNAsinERdatasets lackingsecretoryannotation.Left:non-secretorymRNAsenrichedbybiochemical fractionation(ReidandNicchitta2012)predominantlyexhibitnuclearandmitochondrial annotation.Right:non-secretorymRNAsenrichedbyER-APEX-RIPhavepredominantly cytosolicannotation.Alltermsshownhavep<0.05,asassessedusingDAVID(Huang, Sherman,andLempicki2009).(F—G)APEX-RIPrecoverslow-abundancetargetswith greaterefficiencythandoconventionalapproaches.Ineachcase,startingabundancesare definedbyENCODE.(F)ComparisonofAPEX-RIPtobiochemicalfractionation.(G) ComparisonofAPEX-RIPtoproximity-restrictedribosomeprofiling. 23 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 ExperimentalProcedures Plasmidsandcloning ThepCDNA3mito-APEXplasmidwaspublishedpreviously(Rheeetal.2013).The Mito-APEX2constructwasclonedfromthisplasmidusingatwo-stepprotocol.First, theA134Pmutation(Lametal.2014)wasintroducedintotheAPEXgeneitself, usingQuikChangemutagenesis(Agilent),andthereaftertheAPEX2genewasmoved tothelentiviralvectorpLX304viaGatewaycloning(Thermofisher),togenerate plasmidpLX304mito-APEX2.OtherAPEX-fusionconstructs(pLX304APEX2-NLS, pLX304APEX2-NES,andplx304ERM-APEX2)wereclonedbyGibsonassembly (NEB),usingPCRtoaddtargetingsequencesandGibsonAssemblyhomologyarms totheAPEX2gene,andjoiningtheresultinginsertintothepLX304vectordigested byBstBIandNheI. ForHRP-KDEL,HRPCpreviouslypublished(Martelletal.2016) wasusedasatemplatetomakeHRP-KDEL-IRES-PuromycinPCRfragment.Thenthe insertwasclonedintoPCDNA3vectordigestedbyNotIandXbaI.Targeting sequencesandrestrictionsitesforallconstructsarelistedin(TableS1). Mammaliancellculture Humanembryonickidney(HEK)293TcellswereobtainedfromATCC,andcultured ingrowthmediaconsistingof1:1DMEM:MEM(Cellgro),supplementedwith10% FetalBovineSerum(FBS),50units/mLpenicillin,and50μg/mLstreptomycin,at37 °Candunder5%CO .Cellswerediscardedat25passages,andwereperiodically testedforMycoplasmacontaminationusingUniversalMycoplasmaDetectionkit (ATCC).Forfluorescencemicroscopyimagingexperiments(Figures1B,2Aand3C), cellsweregrownon7×7-mmglasscoverslipsin48-wellplates.Toimprovecell adherence,coverslipswerepretreatedwith50μg/mLfibronectin(Millipore)for20 minat37°CandwashedoncewithDulbecco’sphosphate-bufferedsaline(DPBS), pH7.4.CellsusedforgeneratinglentivirusweregrownonT25plates,inMEM supplementedasabove,at37°Cunder5%CO2. PreparationofcelllinesstablyexpressingAPEX-fusionconstructs Topreparelentivirus,one~70%confluentT25plateofHEK293Tcells,grownas above,wasco-transfectedwith2.5μgofAPEX2fusionplasmid,alongwith0.25μg and2.25μg,respectively,ofthelentiviruspackagingplasmidsVSV-G,and dR8.91(Pagliarinietal.2008).Transfectionmixesused10μLLipofectamine2000 (Invitrogen)andwerebroughttoafinalvolumeof2mLwithunsupplemented MEM.Thecellsweretransfectedfor3hours,afterwhichmediawasreplacedwith2 mloffreshgrowthmediawithFBS.After48hours,thelentiviralsupernatantwas collectedbyaspirationandfilteredthrougha0.45μmsyringe-mountedfilter.This filteredsupernatantwasimmediatelyusedtoinfectcells.HEK293Tcells,grownin 6-wellplatesasdescribedabove,wereinfectedat~50%confluency,grownfor2 days,followedbyselectioningrowthmediumsupplementedwith8μg/mL blasticidinfor7days,beforefurtheranalysis. ForthecellsstablyexpressingHRP-KDEL,HEK293Tcellsat~60% confluency,grownin6-wellplatesasdescribedabove,weretransfectedwiththe 2 24 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 mixtureof150μgofplasmidand10μLLipofectamine2000(Invitrogen)in unsupplementedMEMfor3hours,afterwhichmediawasprelacedwith2mlof freshgrowthmediawithFBS.After48hours,thecellsweretrypsinizedand replatedinT25flaskingrowthmediumsupplementedwith1μg/mLpuromycinfor 7days,beforefurtheranalysis. Insitubiotinylationandcrosslinking Stable-expressionHEK293Tcellsweregrownto90%confluencyin6-wellplates,as describedabove.Forthecrosslinking–then–BPbiotinylationprotocol(FigureS1A, top),cellswerewashedoncewith5mLPBS,andcrosslinkedin5mL0.1%(v/v) formaldehydeinPBSfor10minatroomtemperature,withgentleagitation.The crosslinkingreactionwasquenchedbyadditionofglycine(1.2M,inPBS)tofinal concentration125mM,andgentleagitationfor5minutesatroomtemperature. CrosslinkedcellswerethenwashedthreetimeswithPBSandincubatedwith500 µMbiotin-phenol(BP)(Rheeetal.2013)inPBSatroomtemperature,for30min. Thereafter,H2O2wasaddedtoafinalconcentration1mM,for1min.Theliquid phasewasthenremovedbyaspiration,andcellswerewashedtwicewith2mL quenchingsolution(5mMTrolox,10mMAscorbate,10mMsodiumazide,inPBS). Crosslinked,labeledcellswerecollectedbyscraping,andpelletedbycentrifugation, andeitherprocessedimmediatelyorflashfrozeninliquidnitrogenandstoredat– 80°Cbeforefurtheranalysis. FortheBP–then–crosslinkingprotocol(FigureS1A,bottom)usedformitoAPEX2experiments(Figure1),cellgrowthmediawasreplacedwithfreshmedia supplementedwith500µMBP.CellswereincubatedinBP-supplementedmediafor 30minutesat37°C,afterwhichH2O2wasaddedtoafinalconcentrationof1mM. After1min,themediawasreplacedwith5mLcrosslink-quenchsolution(0.1% (v/v)formaldehyde,10mMascorbate,and5mMTrolox,inPBS)foroneminute,to simultaneouslyquenchtheAPEX2BPlabelingreactionandinitiateformaldehyde crosslinking.Thereafter,cellswerewashedandincubatedin5mLoffreshcrosslinkquenchfortwoadditional1-minuteincubationsteps,followedbyathird,8-minute wash.Thereafter,crosslinkingwasterminatedbytheadditionofGlycine,andcells wereharvestedasdescribedabove. TheBP–quench–then–crosslinkingprotocol(FigureS3A)usedforallother subcellularcompartmentswasidenticaltotheBP–then–crosslinkingprotocol, exceptthat,followingBP-labling,andpriortotheadditionofcrosslink-quench solution,cellswereincubatedin2mLazide-freequenchingsolution(10mM ascorbateand5mMTrolox,inPBS)foroneminute.Subsequently,cellswere subjectedtoonlytwo(1and9minute)treatmentsincrosslink-quenchsolution. Thereafter,crosslinkingwasterminatedbytheadditionofGlycine,andcellswere harvestedasdescribedabove. Immunofluorescencestainingandmicroscopy Forimmunofluorescenceexperiments(Figures1B,2A,and3C),stableAPEX-or HRP-expressingcellswereBP-labeledandcrosslinked,asabove,andsubsequently fixedwith4%(v/v)paraformaldehydeinPBSatroomtemperaturefor10min.Cells 25 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 werethenwashedwithPBSthreetimesandpermeabilizedwithcoldmethanolat– 20°Cfor5min.Cellswerewashedagainthreetimeswithroom-temperaturePBS andthenincubatedwithprimaryantibodiesinPBS–supplementedwith1%(w/v) BovineSerumAlbumin(BSA)–for1hatroomtemperature.Afterwashingthree timeswithPBS,cellswereincubatedwithsecondaryantibodiesandneutravidinAlexaFluor647(1:1000dilution)inBSA-supplementedPBSfor30min.Cellswere thenwashedthreetimeswithPBSandimagedbyconfocalfluorescencemicroscopy, orinPBSat4°Cinlight-tightcontainerspriortoimaging.Primaryandsecondary antibodiesusedwerelistedinTableS2. FluorescenceconfocalmicroscopywasperformedwithaZeissAxioObserver microscopewith63×oil-immersionobjectives,outfittedwithaYokogawaspinning diskconfocalhead,aCascadeII:512camera,aQuad-bandnotchdichroicmirror (405/488/568/647),405(diode),491(DPSS),561(DPSS)and640nm(diode) lasers(all50mW).AlexaFluor488(491laserexcitation,528/38emission),Alexa Fluor568(561laserexcitation,617/73emission),andAlexaFluor647(640laser excitation,700/75emission)anddifferentialinterferencecontrast(DIC)images wereacquiredthrougha63xoil-immersionlens.Acquisitiontimesrangedfrom100 to1,000ms.Forimagingquantitationandanalysis,weusedtheSlideBook6.0 software(IntelligentImagingInnovations)toprocessandnormalizetheimages. Thedatainthesefigures(Figure1B,2A,and3C)arerepresentativeofthree independentexperimentswith³5fieldsofvieweach. WesternandStreptavidinblotting Forblottingexperiments(Figures1C,3DandS1D),stableAPEX-orHRP-expressing cellsweregrownin6-wellplates.Afterlabeling,thecellswereharvestedby scraped,pelletedbycentrifugationat3,000×gfor10min,andstoredat–80°Cprior touse.ThawedpelletswerelysedbygentlepipettinginRIPAlysisbuffer(50mM Tris,150mMNaCl,0.1%SDS,0.5%sodiumdeoxycholate,1%TritonX-100,5mM EDTA),supplementedwith1×proteasecocktail(SigmaAldrich),1mMPMSF (phenylmethylsulfonylfluoride),for5minat4°C.Lysateswerethenclarifiedby centrifugationat15,000×gfor10minat4°Cbeforeseparationonhomemade8% SDS-PAGEgels.Gelsweretransferredtonitrocellulosemembranes,stainedby PonceauS(0.1%(w/v)PonceauS,5%(v/v)aceticacid,inwater)for10minat roomtemperature,andimaged.Theblotswerethenblockedwithblockingbuffer (3%(w/v)BSA,0.1%(v/v)Tween-20inTris-bufferedsaline)for1hatroom temperature,andincubatedwithprimaryantibodiesinblockingbufferfor1hmore. Thedilutionsoftheantibodiesareasfollowed:Mouseanti-V5antibody(Life Technologies)1:1000dilutionandMouseanti-FLAGantibody(LifeTechnologies) 1:800dilution.Blotswererinsedfourtimesfor5minwithwashbuffer(0.1% Tween-20inTris-bufferedsaline),andthenimmersedinblockingbuffer supplementedwithGoatanti-MouseIgGH+L-HRPConjugate(1:3,000dilution,BioRad),for1hatroomtemperature.Blotswererinsedfourtimesfor5minwithwash buffer,anddevelopedwiththeClarityreagent(Bio-Rad)andimagedonanAlpha Innotechgelimagingsystem.Processingofstreptavidinblotswassimilar. FollowingPonceauimaging,blotswereblockedinblockingbufferfor30minat roomtemperature,immersedinblockingbuffersupplementedwithstreptavidin 26 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 HRP(1:3,000dilution,ThermoFisherScientific)atroomtemperaturefor15min, rinsedwithblockingbufferfivetimesfor5mineach,developedandimagedusing theClarityreagentandanAlphaInnotechgelimagingsystem. Thedataintheseexperiments(Figures1C,3DandS1D)werealso reproducedforqualitycontrolpriortoquantitativePCRandsequencing. StreptavidinbeadenrichmentofbiotinylatedmaterialandRNAisolation Unlessotherwisenoted,allbuffersusedduringRNAisolationweresupplementedto 0.1U/µLRNaseOUT(ThermoFisher),1×EDTA-freeproteinaseinhibitorcocktail (ThermoFisher)and0.5mMDTT,final.APEX-orHRP-expressingstablecellswere grown,labeled,crosslinkedandharvestedasdescribedabove.Labeledcellpellets werelysedbyincubationin1mLice-coldRIPAbuffer,supplementedwith10mM ascorbateand5mMTrolox,for5minat4°Cwithend-over-endagitation.Samples werethenshearedasdescribedpreviously(Hendricksonetal.2016)usinga BransonDigitalSonifier250(EmersonIndustrialAutomation)at10%amplitudefor three30-sintervals(0.7son+1.3soff),with30-srestingstepsbetweenintervals. Sampleswereheldinice-coldmetalthermalblocksthroughoutsonication.Lysates werethenclarifiedbycentrifugationat15,000×gfor5minat4°C,movedtofresh tubesanddilutedwith1mLNativelysisbuffer(NLB:25mMTrispH7.4,150mM KCl,0.5%NP-40,5mMEDTA),supplementedwithascorbateandtrolox),each.For eachsample,20%wasremovedas“input;”totheremainderwasadded50µLof streptavidin-coatedmagneticbeadslurry(Pierce)thathadbeenequilibratedbytwo washesin1:1RIPA:NLB.Sampleswereincubatedfor2hat4°Cwithend-over-end agitation.Beadsweresubsequentlywashedwiththefollowingseriesofbuffers(1 mLeach,5minperwash,4°C,withgentleend-over-endagitation):(1)RIPAbuffer, supplementedwithtroloxandascorbate,(2)RIPAbufferwithoutradicalquenchers, (3)highsaltbuffer(1MKCl,50mMTris,pH8.0,5mMEDTA),(4)ureabuffer(2M Urea,50mMTris,pH8.0,5mMEDTA),(5)RIPABuffer,(6)1:1RIPA:NLB,(7)NLB, and(8)TE(10mMTris,pH7.4,1mMEDTA). EnrichedRNAswerereleasedfromthebeadsbyproteolysisin100µLof ElutionBuffer(2%N-laurylsarcoside,10mMEDTA,5mMDTT,in1XPBS, supplementedwith200µgproteinaseK(Ambion)and4URNaseOUT)at42°Cfor 1h,followedby55°Cfor1h,aspreviouslydescribed(Hendricksonetal.2016). ElutedsampleswerecleanedupusingAgencourtRNACleanXPmagneticbeads (BeckmanCoulter),followingthemanufacturer’s1.5mLtubeformatprotocol,and elutedinto85µLH2O.Thereafter,contaminatingDNAwasremovedbydigestion with5URQ1RNase-freeDNaseI(Promega)in100µLofthemanufacturer’s suppliedbuffer(1Xfinalconcentration)at37°Cfor30min.PurifiedRNAswere againcleanedupusingAgencourtRNACleanXPmagneticbeads,asabove,and elutedinto30µLH2O.Theconcentrationandintegrityofallsampleswasmeasured usinganAgilent2100Bioanalyzer,followingthe“RNANano”or“RNAPico” protocols,whereappropriate.Sampleswerenotheat-cooledpriortoloading Bioanalyzerchips. QuantitativeRT–PCR 27 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 ForquantitativeRT–PCR(qRT–PCR,FiguresS1A,S1C,3E,andS3A)RNAsamples werereversetranscribedusingtheSuperScriptIIIReverseTranscriptasekit (ThermoFisherScientific),primingwithrandomhexamers(ThermoFisher Scientific)accordingtothemanufacturer’sprotocol.Samplesweredilutedwith water,mixedwithgenespecificprimers(TableS3),andRox-normalizedFastStart UniversalSYBRGreenMasterMix(Roche),andaliquottedinto384-wellplates.qRT–PCRwasperformedonanAppliedBiosystems7900HTFastrealtimePCR instrument,inquadruplicate.Allthresholdcycles(Ct,calculatedperwell)and efficiencies(ε,calculatedperprimerpair),werecalculatedfrom“clipped”data, usingRealtimeqPCRMiner(ZhaoandFernald2005).RawCtvalueswerecorrected toaccountforthedifferencesinsamplevolume,andpercentyieldswerecalculated viatheDCtmethod: 𝑦𝑖𝑒𝑙𝑑 = 100×(1 + 𝜀)∆/0 …wherein,∆𝐶2 = 89::𝐶234560 − 89::𝐶2<=> Experimentaluncertaintieswerecalculatedasdescribedpreviously(Shechneretal. 2015).GivenD=A–B,uncertainlywascalculatedusingtheformula: 𝜎@ = (𝜎A )B + (𝜎C )B …whereinsAandsBarethemeasurementerrorsofAandB,respectively.ForP,the productorquotientofvaluesAandB,uncertaintywascalculatedusingtheformula: 𝜎A B 𝜎C B + 𝐴 𝐵 Theuncertaintiesofotherfunctions,f(x),werecalculatedusingthefirstderivative approximation: 𝜎H(I) = 𝜎I ×𝑓′(𝑥) Samplesizesweredeterminedinaccordancewithstandardpracticesusedinsimilar experimentsintheliterature;nosample-sizeestimateswereperformedtoensure adequatepowertodetectaprespecifiedeffectsize.Experimentswereneither randomizednorblindedtoexperimentalconditions.Eachsamplescontainedfour replicatesandnosampleswereexcludedfromanalysis. TheexperimentsforFiguresS1A,S1C,3E,andS3Awereperformedonce.For statisticalanalysisonFigure3E,percentyieldof6targetgeneswerecompared againstpercentyieldof6non-targetgenesusingpairedt-testforbothHRP-KDEL andERM-APEX2.ForcomparisonbetweenERM-APEX2andAPEX2-NES,12target andnon-targetgeneswerecomparedagainsteachotherusingpairedt-test. Librarypreparation,sequencing,andquantification 𝜎D = 𝑃× 28 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 PurifiedRNAsamplesweredepletedofribosomalRNAusingtheRibo-ZeroGold rRNAremovalkit(Illumina),using1µLor2µLofRibo-ZerorRNARemovalSolution forsampleswith≤16ngor≥50ngtotalinputRNAmass,respectively,in20µLfinal reactionvolume.ElutedRNAwascleanedupwithAgencourtRNACleanXPbeads andelutedwith19.5µLofElute,Prime,FragmentmixfromtheTruSeqRNAsample preparationkit,v2(Illumina).Thereafter,librarieswerepreparedusingtheTruSeq RNAsamplepreparationkit,accordingtothemanufacturer’sinstructions,starting from“IncubateRFP”step.Eachlibrarywasgivenauniqueindexduringsynthesis. LibraryconcentrationandqualitywereconfirmedonanAgilent2100Bioanalyzer, using“DNAHighSensitivity”kits. Indexedlibrarieswerepooledinequimolarconcentrations,withnomore thantenlibrariesperpool,andsubjectedto50cyclesofpairedendsequencing, followedindexing,ontwolanesofIlluminaHiSeq2500flowcells,runinrapidmode (GenomicsCore,BroadInstituteofHarvardandMIT). Ingeneral,theexperimentsforeachconstructwereperformedinthree biologicalreplicates.Themito-APEXexperimentinFigureS1Bandthemito-APEX2 negativecontrolexperiment(omitH2O2)inFigureS1Fwasperformedintwo biologicalreplicates. QuantificationofRNAAbundancesandFoldsEnrichment;AssemblyofTrue positiveandFalsepositivelists Deepsequencingreadsweremappedtohumangenomeassemblyhg19andUCSC knowngenesusingTopHat2,settodefaultoptions(Kimetal.2013).Transcript-and gene-levelabundanceswerequantifiedandCuffdiff2,settodefaultoptions(Trapnell etal.2013),and0.01wasaddedtoallquantifiedvaluesforENCODEdata. Enrichmentanalysis(e.g.Figures1D,3F,S1B,E,F,S2E,F,andS3B),wasrestrictedto RNAswithFPKMs≥1.0followingstreptavidinpulldown.Foldenrichmentswere calculatedasfollows: 𝐹𝑃𝐾𝑀D9Z2Z2:[\2]^_`_a[a:_8bc[a2 𝐹𝑜𝑙𝑑𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 = 𝑙𝑜𝑔B [ ] 𝐹𝑃𝐾𝑀D:[Z2:[\2]^_`_a[a:_8bc[a2 Tocallsignificantlyenrichedgenesfromourdata,ENCODEdata(Dunhamet al.2012),andER-fractionationdata(ReidandNicchitta2012),thresholdcutoffs weredeterminedusingReceiverOperatorCharacteristic(ROC)analysis(Fawcett 2006),employingsetsoftrue-positiveandfalse-positivegenesidentifiedas describedbelow.Ateachfoldenrichmentvalueofthedata,truepositiverate(TPR– fractionofdetectedtruepositivegenesabovethefoldenrichmentvalue)andfalse positiverate(FPR–fractionofdetectedfalsepositivegenesabovethefold enrichmentvalue)arecalculated.ThefoldenrichmentvaluethatmaximizesTPRFPRischosenasthefoldenrichmentcutoff.InmitochondrialandER-associated APEX-RIPexperiments,ROCanalysiswasbasedonfoldenrichmentvalues;inthe nuclear-cytoplasmicpartitioningexperiment,itwasbasedoncalculatednuclear preferencescores. 29 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 Nuclearpreferencescoreswerecalculatedasfollows.Toeachgene,i,we assignedcoordinates,(x,y)=(log2Ni,log2Ci),whereNiandCidenotetothefoldenrichmentsfromnuclear-(NLS)andcytosolic-(NES)APEX-RIP,respectively.In thisspace,theliney=x(orrather,log2N=log2C)correspondstoallgenesthatwere equallyenrichedinbothnuclearandcytosolicAPEX-RIP,andhencedonot preferentiallyresideineithercompartment.Thenuclearpreferencescoreforgenei (NPSi),isthereforedefinedastheminimumdistancebetweenitscoordinatesand thelinelog2N=log2C.Thisisequivalenttocalculatingthedistancebetweenpoints (x1,y1)=(log2Ni,log2Ci)and(x2,y2)=(0.5(log2Ni+log2Ci),0.5(log2Ni+log2Ci)).Hence: 𝑁𝑃𝑆_ = (𝑙𝑜𝑔B 𝑁_ − 0.5(𝑙𝑜𝑔B 𝑁_ + 𝑙𝑜𝑔B 𝐶_ ))B + (𝑙𝑜𝑔B 𝐶_ − 0.5(𝑙𝑜𝑔B 𝑁_ + 𝑙𝑜𝑔B 𝐶_ ))B …whichreducesto: 1 𝑁𝑃𝑆_ = ( )(𝑙𝑜𝑔B 𝑁_ − 𝑙𝑜𝑔B 𝐶_ ) 2 ThetrueandfalsepositivegenesetsneededforROCanalysisweredefinedas follows: (1)FormitochondrialAPEX-RIP,truepositivescorrespondedtothethirteen mitochondrial-encodedmRNAs;falsepositiveRNAscorrespondedtonuclearencodedlongnon-codingRNAs. (2)Forthenuclearandcytosolicpartitioningexperiment,trueandfalse positivegenelistswerecompiledusingavailableENCODEhumancellline(NHEKNormalHumanEpidermalKeratinocytes)nuclear–cytoplasmicfractionation data(Dunhametal.2012).Wecalculatedfold-enrichmentsforRNAsineach compartment(scaledrelativetothewholecellRNA,FigureS2A),andusedthese valuestoderiveNuclearPreferenceScores,asdescribedabove.Truepositiveand truenegativenuclearRNAswerethendefinedasthe1000transcriptswiththe highestandlowestNPSs,respectively(Figure2B;TableS2tab4).Usingthesegene liststoperformROCanalysisontheoriginalENCODEdataproducedasignificance thresholdcutoffatanNPSof1.107(FigureS2B–D),andlistsofthe5467and10130 RNAscalledasbeingenrichedinthenucleusandcytoplasm,respectively(TableS2, tabs4and5). (3)ForER-APEX-RIP,mosttruepositivegenesweredefinedusingdatafrom ER-localizedproximity-dependentribosomeprofiling(Jan,Williams,andWeissman 2014),correspondingtoallRNAswithinputRPKM≥5.0,inputcount≥12,and log2(foldenrichment)≥0.904(TableS3tab4).Additionaltruepositivegeneswere predictedbyPhobiusashavingsecretorysignals,andwereabsentin MitoCarta(Pagliarinietal.2008).(Rheeetal.2013)FalsepositiveRNAsincludedall geneslackingsecretorysignals,aspredictedbyPhobius,SignalP,andTMHMM. CoverageandSpecificityanalysisofnuclear,cytosolic,andER-proximalRNAs Toestimatethecoverage(recall)andspecificityofAPEX-RIPateachsubcellular compartment,weassembledlistsofestablishedtargetandoff-targetgenestailored forthatcompartment. 30 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 Foranalysisofthenuclear–cytosolicdatasets(Figure2F),ourreference nucleargenelistcomprised827lncRNAswithaverageRNApre-enrichment abundancesof1.0orgreater.Ourreferenceoff-targetlistcomprisedthesetof1260 ER-proximalRNAsdefinedusingproximity-restrictedribosomeprofiling(Jan, Williams,andWeissman2014). ForanalysisoftheER-proximaldataset(Figure3I–J),ourreferencegenelist comprised71mRNAsencodingER-residentproteins(TableS3tab5).Ourreference off-targetlistcomprised(7589)RNAslackingsecretoryannotation,asassessed usingPhobius(Käll,Krogh,andSonnhammer2004),TMHMM(Kroghetal.2001), SignalP(Petersenetal.2011),andwhichlackedtheGOCCterms“Endoplasmic reticulum,”“Golgi,”“membrane,”and“extracellular”(Ashburneretal.2000). ForanalysisofcontaminantsinERdatasets(FigureS3E),theRNAsthat encodeproteinswithnopredictedsecretoryannotationbyPhobius,TMHMM,and SignalPandlackedGOCCterms“Endoplasmicreticulum,”“Golgi,”“membrane,”and “extracellular”weresubmittedtoDAVIDBioinformaticsanalysis(Huang,Sherman, andLempicki2009)tofindGeneontologytermenrichmentagainsthuman background.Onlytermswithp-valueslessthan0.05wereshown. 31 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1007 SupplementaryTableS1:Geneticconstructsusedinthisstudy Name Mito-V5-APEX Features NotI-mito-BamHIV5-APEX-XhoI Promoter/Vector CMV/pCDNA3 mito-V5APEX2 Mito-GFP mito-BamHI-V5APEX2-NheI NotI-mito-BamHIBFP-XhoI NotI-V5-APEX2EcoRI-3xNLS-NheI BstBI-FLAGAPEX2-NES-XhoI NotI-IgK-HRP-V5KDEL-IRESpuromycin-XbaI CMV/pLX304 Details Mitoisa24-aminoacid mitochondrialtargeting sequence(MTS)derivedfrom COX4. V5:GKPIPNPLLGLDST CMV/pCDNA3 V5-APEX2-NLS FLAG-APEX2NES HRP-V5-KDEL ERM-APEX2V5 1008 1009 BstBI-ERM-APEX2V5-NheI CMV/pLX304 CMV CMV/pLX304 NLS:DPKKKRKV NES:LQLPPLERLTLD IgKisN-terminalsignaling sequencethatbringsprotein toER (METDTLLLWVLLLWVPGSTG D). KDELisER-retainingsequence ERMisERmembrane targetingsequencederived fromN-terminal27amino acidsofrabbitP450C1 (MDPVVVLGLCLSCLLLLSLWK QSYGGG) SupplementaryTable2.Antibodiesusedforimmunofluorescence Antibody Source Company Catalog number Dilution AssociatedFigure AntiV5 Mouse R960-25 1:1000 Figure1B,2A,and3A 1:500 1:1000 Figure2A Figure1B,2A,and3A AntiFLAG Mouse AntiMouseGoat AlexaFluor488 1010 CMV Life Technologies Agilent Life Technologies 200472 A-11029 32 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1011 SupplementaryTable3.qRT-PCRprimersusedinthisstudy Primer/probename Sequence(5’-3’) MT-ND1forward MT-ND1reverse MT-ND2forward MT-ND2reverse MT-ND3forward MT-ND3reverse MT-ND4forward MT-ND4reverse MT-ND4Lforward MT-ND4Lreverse MT-ND5forward MT-ND5reverse MT-ND6forward MT-ND6reverse MT-CYTBforward MT-CYTBreverse MT-COX1forward MT-COX1reverse MT-COX2forward MT-COX2reverse MT-COX3forward MT-COX3reverse MT-ATP6forward MT-ATP6reverse MT-ATP8forward MT-ATP8reverse MT-RNR1forward MT-RNR1reverse MT-RNR2forward MT-RNR2reverse GAPDHforward GAPDHreverse XISTforward XISTreverse EMC10forward EMC10reverse PCSK1Nforward PCSK1Nreverse SSR2forward SSR2reverse TMX1forward TMX1reverse SFT2D2forward SFT2D2reverse EPT1forward EPT1reverse DRAP1forward DRAP1reverse FAUforward FAUreverse CACCTCTAGCCTAGCCGTTT CCGATCAGGGCGTAGTTTGA CTTAAACTCCAGCACCACGAC AGCTTGTTTCAGGTGCGAGA CCGCGTCCCTTTCTCCATAA AGGGCTCATGGTAGGGGTAA ACAACACAATGGGGCTCACT CCGGTAATGATGTCGGGGTT TCGCTCACACCTCATATCCTC AGGCGGCAAAGACTAGTATGG TCCATTGTCGCATCCACCTT GGTTGTTTGGGTTGTGGCTC GGGTTGAGGTCTTGGTGAGT ACCAATCCTACCTCCATCGC TCTTGCACGAAACGGGATCA CGAGGGCGTCTTTGATTGTG TCCTTATTCGAGCCGAGCTG ACAAATGCATGGGCTGTGAC AACCAAACCACTTTCACCGC CGATGGGCATGAAACTGTGG CTAATGACCTCCGGCCTAGC AGGCCTAGTATGAGGAGCGT TTCGCTTCATTCATTGCCCC GGGTGGTGATTAGTCGGTTGT ACTACCACCTACCTCCCTCAC GGCAATGAATGAAGCGAACAGA CATCCCCGTTCCAGTGAGTT TGGCTAGGCTAAGCGTTTTGA CAGCCGCTATTAAAGGTTCGT AAGGCGCTTTGTGAAGTAGG TTCGACAGTCAGCCGCATCTTCTT GCCCAATACGACCAAATCCGTTGA CCCTACTAGCTCCTCGGACA ACACATGCAGCGTGGTATCT TTCATTGAGCGCCTGGAGAT TTCATTGAGCGCCTGGAGAT GAGACACCCGACGTGGAC AATCCGTCCCAGCAAGTACC GTTTGGGATGCCAACGATGAG CTCCACGGCGTATCTGTTCA ACGGACGAGAACTGGAGAGA ATTTTGACAAGCAGGGCACC CCATCTTCCTCATGGGACCAG GCAGAACACAGGGTAAGTGC TGGCTTTCTGCTGGTCGTAT AATCCAAACCCAGTCAGGCA ACATCCCACCTGAAGCAGTG GATGCCACCAGGTCCTTCAA TCCTAAGGTGGCCAAACAGG GTGGGCACAACGTTGACAAA 33 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. SUB1forward SUB1reverse LSM6forward LSM6reverse COPS2forward COPS2reverse CGGBP1forward CGGBP1reverse BCA53forward BCA53reverse CEP128forward CEP128reverse MAD1L1forward MAD1L1reverse RAD51Bforward RAD51Breverse RBPMSforward RBPMSreverse TCF7forward TCF7reverse HOOK2forward HOOK2reverse MAN2C1forward MAN2C1reverse 1012 CGTCACTTCCGGTTCTCTGT TGATTTAGGCATCGCTTCGC CGGACGACCAGTTGTGGTAA CCAGGACCCCTCGATAATCC AGGAGGACTACGACCTGGAAT GCCGCTTTTGGGTCATCTTC GCCTCGTCCACTTTCCCTAA TCATGCCTTTACGTAGGATCGAG TCTTGCCTGCTCCACAGTTT CAAACACCAAGGAGGGGTCT TACAGTAATGGACAGGCGGG TCCGGAGTTGGTCGATTGAT CGAGTCTGCCATCGTCCAA GCACTCTCCACCTGCTTCTT TTTGGACGAAGCCCTGCAT CACAACCTGGTGGACCTGTA ACAGTCGCTCAGAAGCAGAG CGAAGCGGATGCCATTCAAA TCAACAGCCCACATCCCAC AGAGGCCTGTGAACTTGCTT TTTGCTGAAAAGGAAGCTGGA GCAACTCCAGATCTGCCTCA ATGAGGCCCACAAGTTCCTG TCTCATAGGTGGCCTGGGAA 34 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 References Alán,Lukáš,JaroslavZelenka,JanJežek,AndreaDlasková,andPetrJežek.2010. “FluorescentinSituHybridizationofMitochondrialDNAandRNA.”Acta BiochimicaPolonica57(4):403–8. http://www.ncbi.nlm.nih.gov/pubmed/21125028. Ashburner,Michael,CatherineA.Ball,JudithA.Blake,DavidBotstein,Heather Butler,J.MichaelCherry,AllanP.Davis,etal.2000.“GeneOntology:Toolforthe UnificationofBiology.”NatureGenetics25(1):25–29.doi:10.1038/75556. BaharHalpern,Keren,InbalCaspi,DoronLemze,MaayanLevy,ShanieLanden,Eran Elinav,IgorUlitsky,andShalevItzkovitz.2015.“NuclearRetentionofmRNAin MammalianTissues.”CellReports13(12):2653–62. doi:10.1016/j.celrep.2015.11.036. Batish,Mona,ArjunRaj,andSanjayTyagi.2011.“SingleMoleculeImagingofRNAIn Situ.”InRNADetectionandVisualization,3–13.doi:10.1007/978-1-61779-0058_1. Cabili,MoranN,MargaretCDunagin,PatrickDMcClanahan,AndrewBiaesch,Olivia Padovan-Merhar,AvivRegev,JohnLRinn,andArjunRaj.2015.“Localization andAbundanceAnalysisofHumanlncRNAsatSingle-CellandSingle-Molecule Resolution.”GenomeBiology16(1):20.doi:10.1186/s13059-015-0586-4. Chapman-Smith,A,andJECronan.1999.“MolecularBiologyofBiotinAttachmentto Proteins.”TheJournalofNutrition129(2SSuppl):477S–484S. http://www.ncbi.nlm.nih.gov/pubmed/10064313. Chen,Chun-Kan,MarioBlanco,ConstanzaJackson,ErikAznauryan,NoahOllikainen, ChristineSurka,AmyChow,AndreaCerase,PatrickMcDonel,andMitchell Guttman.2016.“XistRecruitstheXChromosometotheNuclearLaminato EnableChromosome-WideSilencing.”Science(NewYork,N.Y.),August. doi:10.1126/science.aae0047. Chen,K.H.,A.N.Boettiger,J.R.Moffitt,S.Wang,andX.Zhuang.2015.“Spatially Resolved,HighlyMultiplexedRNAProfilinginSingleCells.”Science348(6233): aaa6090-aaa6090.doi:10.1126/science.aaa6090. Chi,SungWook,JulieB.Zang,AldoMele,andRobertB.Darnell.2009.“Argonaute HITS-CLIPDecodesmicroRNA–mRNAInteractionMaps.”Nature,June. doi:10.1038/nature08170. Csordás,György,ChristianRenken,PéterVárnai,LudivineWalter,DavidWeaver, KarolynF.Buttle,TamásBalla,CarmenA.Mannella,andGyörgyHajnóczky. 2006.“StructuralandFunctionalFeaturesandSignificanceofthePhysical LinkagebetweenERandMitochondria.”TheJournalofCellBiology174(7): 915–21.doi:10.1083/jcb.200604016. Damas,NkeroremaDjodji,MichelaMarcatti,ChristopheCôme,LiseLotte Christensen,MortenMuhligNielsen,RolandBaumgartner,HeleneMaria Gylling,etal.2016.“SNHG5PromotesColorectalCancerCellSurvivalby CounteractingSTAU1-MediatedmRNADestabilization.”Nature Communications7(December):13875.doi:10.1038/ncomms13875. Derrien,T.,R.Johnson,G.Bussotti,A.Tanzer,S.Djebali,H.Tilgner,G.Guernec,etal. 2012.“TheGENCODEv7CatalogofHumanLongNoncodingRNAs:Analysisof TheirGeneStructure,Evolution,andExpression.”GenomeResearch22(9): 35 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1775–89.doi:10.1101/gr.132159.111. Dunham,Ian,AnshulKundaje,ShelleyF.Aldred,PatrickJ.Collins,CarrieA.Davis, FrancisDoyle,CharlesB.Epstein,etal.2012.“AnIntegratedEncyclopediaof DNAElementsintheHumanGenome.”Nature489(7414):57–74. doi:10.1038/nature11247. Engreitz,JesseM.,NoahOllikainen,andMitchellGuttman.2016.“LongNon-Coding RNAs:SpatialAmplifiersThatControlNuclearStructureandGeneExpression.” NatureReviewsMolecularCellBiology17(12):756–70. doi:10.1038/nrm.2016.126. Fawcett,Tom.2006.“AnIntroductiontoROCAnalysis.”PatternRecognitionLetters 27(8):861–74.doi:10.1016/j.patrec.2005.10.010. Fox,CH,FBJohnson,JWhiting,andPPRoller.1985.“FormaldehydeFixation.” JournalofHistochemistry&Cytochemistry33(8):845–53. doi:10.1177/33.8.3894502. Gilbert,Chris,andJesperQSvejstrup.2006.“RNAImmunoprecipitationfor DeterminingRNA-ProteinAssociationsinVivo.”CurrentProtocolsinMolecular Biology/EditedbyFrederickM.Ausubel...[etAl.]Chapter27(August):Unit 27.4.doi:10.1002/0471142727.mb2704s75. Gilbert,Christopher,ArnoldKristjuhan,GSebastiaanWinkler,andJesperQ Svejstrup.2004.“ElongatorInteractionswithNascentmRNARevealedbyRNA Immunoprecipitation.”MolecularCell14(4):457–64. http://www.ncbi.nlm.nih.gov/pubmed/15149595. Han,Shuo,NamrataDUdeshi,ThomasJDeerinck,TanyaSvinkina,MarkHEllisman, StevenACarr,andAliceYTing.2017.“ProximityBiotinylationasaMethodfor MappingProteinsAssociatedwithmtDNAinLivingCells.”CellChemicalBiology 24(3):404–14.doi:10.1016/j.chembiol.2017.02.002. Hendrickson,DavidG,DavidRKelley,DanielleTenen,BradleyBernstein,andJohnL Rinn.2016.“WidespreadRNABindingbyChromatin-AssociatedProteins.” GenomeBiology17(February):28.doi:10.1186/s13059-016-0878-3. Hocine,Sami,PascalRaymond,DanielZenklusen,JeffreyAChao,andRobertH Singer.2013.“Single-MoleculeAnalysisofGeneExpressionUsingTwo-Color RNALabelinginLiveYeast.”NatureMethods10(2):119–21. doi:10.1038/nmeth.2305. Huang,DaWei,BradTSherman,andRichardALempicki.2009.“Systematicand IntegrativeAnalysisofLargeGeneListsUsingDAVIDBioinformatics Resources.”NatureProtocols4(1):44–57.doi:10.1038/nprot.2008.211. Hung,Victoria,StephanieSLam,NamrataDUdeshi,TanyaSvinkina,GaelenGuzman, VamsiKMootha,StevenACarr,andAliceYTing.2017.“ProteomicMappingof Cytosol-FacingOuterMitochondrialandERMembranesinLivingHumanCells byProximityBiotinylation.”eLife6(April).doi:10.7554/eLife.24463. Hung,Victoria,PengZou,Hyun-WooRhee,NamrataD.Udeshi,ValentinCracan, TanyaSvinkina,StevenA.Carr,VamsiK.Mootha,andAliceY.Ting.2014. “ProteomicMappingoftheHumanMitochondrialIntermembraneSpaceinLive CellsviaRatiometricAPEXTagging.”MolecularCell55(2):332–41. doi:10.1016/j.molcel.2014.06.003. Ingolia,NicholasT,SinaGhaemmaghami,JohnRSNewman,andJonathanS 36 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 Weissman.2009.“Genome-WideAnalysisinVivoofTranslationwith NucleotideResolutionUsingRibosomeProfiling.”Science(NewYork,N.Y.)324 (5924):218–23.doi:10.1126/science.1168978. Jan,CalvinH,ChristopherCWilliams,andJonathanSWeissman.2014.“Principlesof ERCotranslationalTranslocationRevealedbyProximity-SpecificRibosome Profiling.”Science(NewYork,N.Y.)346(6210):1257521. doi:10.1126/science.1257521. Jung,Hosung,ChristosG.Gkogkas,NahumSonenberg,andChristineE.Holt.2014. “RemoteControlofGeneFunctionbyLocalTranslation.”Cell157(1):26–40. doi:10.1016/j.cell.2014.03.005. Käll,Lukas,AndersKrogh,andErikLLSonnhammer.2004.“ACombined TransmembraneTopologyandSignalPeptidePredictionMethod.”Journalof MolecularBiology338(5):1027–36.doi:10.1016/j.jmb.2004.03.016. Kim,Daehwan,GeoPertea,ColeTrapnell,HaroldPimentel,RyanKelley,andSteven LSalzberg.2013.“TopHat2:AccurateAlignmentofTranscriptomesinthe PresenceofInsertions,DeletionsandGeneFusions.”GenomeBiology14(4): R36.doi:10.1186/gb-2013-14-4-r36. Kind,Jop,andBasvanSteensel.2010.“Genome–nuclearLaminaInteractionsand GeneRegulation.”CurrentOpinioninCellBiology22(3):320–25. doi:10.1016/j.ceb.2010.04.002. Krogh,A,BLarsson,GvonHeijne,andELSonnhammer.2001.“Predicting TransmembraneProteinTopologywithaHiddenMarkovModel:Applicationto CompleteGenomes.”JournalofMolecularBiology305(3):567–80. doi:10.1006/jmbi.2000.4315. Lam,StephanieS,JeffreyDMartell,KimberliJKamer,ThomasJDeerinck,MarkH Ellisman,VamsiKMootha,andAliceYTing.2014.“DirectedEvolutionofAPEX2 forElectronMicroscopyandProximityLabeling.”NatureMethods12(1):51– 54.doi:10.1038/nmeth.3179. Lee,JeHyuk,EvanRDaugharthy,JonathanScheiman,RezaKalhor,RyojiAmamoto, DerekTPeters,BrianMTurczyk,etal.2014.“HighlyMultiplexedSubcellular RNASequencinginSitu.”Science(NewYork,N.Y.)343(March):1360–63. doi:10.1126/science.1250212. Lesnik,Chen,AdiGolani-Armon,andYoavArava.2015.“LocalizedTranslationnear theMitochondrialOuterMembrane:AnUpdate.”RNABiology12(8):801–9. doi:10.1080/15476286.2015.1058686. Lobingier,BradenT.,RuthHüttenhain,KelsieEichel,KennethB.Miller,AliceY.Ting, MarkvonZastrow,andNevanJ.Krogan.2017.“AnApproachto SpatiotemporallyResolveProteinInteractionNetworksinLivingCells.”Cell 169(2):350–360.e12.doi:10.1016/j.cell.2017.03.022. Loh,KenH.,PhilippS.Stawski,AustinS.Draycott,NamrataD.Udeshi,EmilyK. Lehrman,DanielK.Wilton,TanyaSvinkina,etal.2016.“ProteomicAnalysisof UnboundedCellularCompartments:SynapticClefts.”Cell166(5):1295–1307. doi:10.1016/j.cell.2016.07.041. Martell,JeffreyD,ThomasJDeerinck,YaseminSancak,ThomasLPoulos,VamsiK Mootha,GinaESosinsky,MarkHEllisman,andAliceYTing.2012.“Engineered AscorbatePeroxidaseasaGeneticallyEncodedReporterforElectron 37 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 Microscopy.”NatureBiotechnology30(11).NaturePublishingGroup:1143–48. doi:10.1038/nbt.2375. Martell,JeffreyD,MasahitoYamagata,ThomasJDeerinck,SébastienPhan,CarolynG Kwa,MarkHEllisman,JoshuaRSanes,andAliceYTing.2016.“ASplit HorseradishPeroxidasefortheDetectionofIntercellularProtein–protein InteractionsandSensitiveVisualizationofSynapses.”NatureBiotechnology34 (7):774–80.doi:10.1038/nbt.3563. Mercer,TimR,ShaneNeph,MarcelEDinger,JoannaCrawford,MartinaSmith, Anne-MarieJShearwood,EricHaugen,etal.2011.“TheHumanMitochondrial Transcriptome.”Cell146(4).ElsevierInc.:645–58. doi:10.1016/j.cell.2011.06.051. Mick,DavidU,RachelBRodrigues,RyanDLeib,ChristopherMAdams,AllisSChien, StevenPGygi,andMaxenceVNachury.2015.“ProteomicsofPrimaryCiliaby ProximityLabeling.”DevelopmentalCell35(4):497–512. doi:10.1016/j.devcel.2015.10.015. Motamedi,MohammadR,AndréVerdel,SerafinUColmenares,ScottAGerber, StevenPGygi,andDaneshMoazed.2004.“TwoRNAiComplexes,RITSand RDRC,PhysicallyInteractandLocalizetoNoncodingCentromericRNAs.”Cell 119(6):789–802.doi:10.1016/j.cell.2004.11.034. Nagao,Asuteka,NarumiHino-Shigi,andTsutomuSuzuki.2008.“Chapter23 MeasuringmRNADecayinHumanMitochondria.”In,489–99. doi:10.1016/S0076-6879(08)02223-4. Nelles,DavidA,MarkYFang,MitchellRO’Connell,JiaLXu,SebastianJMarkmiller, JenniferADoudna,andGeneWYeo.2016.“ProgrammableRNATrackingin LiveCellswithCRISPR/Cas9.”Cell165(2):488–96. doi:10.1016/j.cell.2016.02.054. Paek,Jaeho,MarianKalocsay,DeanP.Staus,LauraWingler,RobertaPascolutti,Joao A.Paulo,StevenP.Gygi,andAndrewC.Kruse.2017.“Multidimensional TrackingofGPCRSignalingviaPeroxidase-CatalyzedProximityLabeling.”Cell 169(2):338–349.e11.doi:10.1016/j.cell.2017.03.028. Pagliarini,DavidJ.,SarahE.Calvo,BettyChang,SunilA.Sheth,ScottB.Vafai,Shao-En Ong,GeoffreyA.Walford,etal.2008.“AMitochondrialProteinCompendium ElucidatesComplexIDiseaseBiology.”Cell134(1):112–23. doi:10.1016/j.cell.2008.06.016. Paige,J.S.,K.Y.Wu,andS.R.Jaffrey.2011.“RNAMimicsofGreenFluorescent Protein.”Science333(6042):642–46.doi:10.1126/science.1207339. Petersen,ThomasNordahl,SørenBrunak,GunnarvonHeijne,andHenrikNielsen. 2011.“SignalP4.0:DiscriminatingSignalPeptidesfromTransmembrane Regions.”NatureMethods8(10):785–86.doi:10.1038/nmeth.1701. Piechota,Janusz,RafałTomecki,KamilGewartowski,RomanSzczesny,Aleksandra Dmochowska,MarekKudła,LienDybczyńska,PiotrPStepien,andEwaBartnik. 2006.“DifferentialStabilityofMitochondrialmRNAinHeLaCells.”Acta BiochimicaPolonica53(1):157–68. Reid,DavidW,andChristopherVNicchitta.2012.“PrimaryRoleforEndoplasmic Reticulum-BoundRibosomesinCellularTranslationIdentifiedbyRibosome Profiling.”TheJournalofBiologicalChemistry287(8):5518–27. 38 bioRxiv preprint first posted online Jun. 21, 2017; doi: http://dx.doi.org/10.1101/153098. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 doi:10.1074/jbc.M111.312280. Rhee,Hyun-Woo,PengZou,NamrataDUdeshi,JeffreyDMartell,VamsiKMootha, StevenaCarr,andAliceYTing.2013.“ProteomicMappingofMitochondriain LivingCellsviaSpatiallyRestrictedEnzymaticTagging.”Science(NewYork, N.Y.)339(6125):1328–31.doi:10.1126/science.1230593. Rinn,J.,andM.Guttman.2014.“RNAandDynamicNuclearOrganization.”Science 345(6202):1240–41.doi:10.1126/science.1252966. Ro,Seungil,Hsiu-YenMa,ChanjaePark,NicoleOrtogero,RuiSong,GrantWHennig, HuiliZheng,etal.2013.“TheMitochondrialGenomeEncodesAbundantSmall NoncodingRNAs.”CellResearch23(6):759–74.doi:10.1038/cr.2013.37. Roux,KyleJ,DaeInKim,ManfredRaida,andBrianBurke.2012.“APromiscuous BiotinLigaseFusionProteinIdentifiesProximalandInteractingProteinsin MammalianCells.”TheJournalofCellBiology196(6):801–10. doi:10.1083/jcb.201112098. Shechner,DavidM,EzgiHacisuleyman,ScottTYounger,andJohnLRinn.2015. “Multiplexable,Locus-SpecificTargetingofLongRNAswithCRISPR-Display.” NatureMethods12(7):664–70.doi:10.1038/nmeth.3433. Sterne-Weiler,T.,R.T.Martinez-Nunez,J.M.Howard,I.Cvitovik,S.Katzman,M.A. Tariq,N.Pourmand,andJ.R.Sanford.2013.“Frac-SeqRevealsIsoform-Specific RecruitmenttoPolyribosomes.”GenomeResearch23(10):1615–23. doi:10.1101/gr.148585.112. Trapnell,Cole,DavidGHendrickson,MartinSauvageau,LoyalGoff,JohnLRinn,and LiorPachter.2013.“DifferentialAnalysisofGeneRegulationatTranscript ResolutionwithRNA-Seq.”NatureBiotechnology31(1):46–53. doi:10.1038/nbt.2450. Ule,Jernej,KirkBJensen,MatteoRuggiu,AldoMele,AljazUle,andRobertBDarnell. 2003.“CLIPIdentifiesNova-RegulatedRNANetworksintheBrain.”Science (NewYork,N.Y.)302(5648):1212–15.doi:10.1126/science.1090095. Wilk,Ronit,JackHu,DmitryBlotsky,andHenryMKrause.2016.“Diverseand PervasiveSubcellularDistributionsforBothCodingandLongNoncoding RNAs.”Genes&Development30(5):594–609.doi:10.1101/gad.276931.115. Williams,ChristopherC,CalvinHJan,andJonathanSWeissman.2014.“Targeting andPlasticityofMitochondrialProteinsRevealedbyProximity-Specific RibosomeProfiling.”Science(NewYork,N.Y.)346(6210):748–51. doi:10.1126/science.1257522. Wishart,JF,andBSMadhavaRao.2010.RecentTrendsinRadiationChemistry. Singapore:WorldScientific. Zhao,Sheng,andRussellDFernald.2005.“ComprehensiveAlgorithmfor QuantitativeReal-TimePolymeraseChainReaction.”JournalofComputational Biology :AJournalofComputationalMolecularCellBiology12(8):1047–64. doi:10.1089/cmb.2005.12.1047. 39
© Copyright 2026 Paperzz