Can we use radar to monitor vegeta1on water status? Susan Steele-‐Dunne Water Resources TU Del< Radar observa1ons are independent of cloud cover Aqua/MODIS Cloud Frac1on – July 2013 Imagery by Reto Stockli, NASA's Earth Observatory, using data provided by the MODIS Atmosphere Science Team, NASA GSFC. Diurnal difference in satellite radar backscaPer 1991-‐2008 ERS1/2 C-‐band 5.3GHz Friesen, J.C., S.C. Steele-‐Dunne and N. van de Giesen (IEEE TGRS, 2012) What drives diurnal varia1on in radar backscaPer? Michigan Microwave Canopy ScaPering (MIMICS) Model DG Direct Ground DC Direct Crown CG crown scattering and ground reflection GC ground reflection and crown scattering GCG ground reflection, crown scattering and ground reflection TG trunk scattering and ground reflection GT ground reflection and trunk scattering Steele-‐Dunne, S.C., J. C. Friesen and N. van de Giesen (IEEE TGRS, 2012) ERS (5.3GHz, VV) Crown is opaque Total backscaPer is dominated by leaf moisture content Direct Crown ERS (5.3GHz, VV) 2nd: Ground reflecJon-‐Trunk scaLering Influenced primarily by leaf moisture, followed by trunk and soil moisture. GT How much does vegeta1on water content vary? What impact does that have on backscaPer? Water Cloud Model σsoil γ2σsoil σveg σ van Emmerik, T.H.M., S. C. Steele-‐Dunne,J. Judge and N. van de Giesen (accepted IEEE TGRS, 2014) [mm d−1] Vegeta1on Water Content varies diurnally (a) Precipitation and irrigation Precipitation Irrigation 50 0 09/16 09/23 Irrigation at SM probes only 09/30 10/07 (b) Soil moisture 10/14 10/21 Depth [m] 0 0.1 0.5 0.05 1 09/16 09/23 09/30 10/07 10/14 0 10/21VSM [−] 10/14 10/21 (c) Surface soil moisture 0.4 0.2 0 09/16 09/23 09/30 10/07 5 E 0 ] E ref −1 [mm d ] (d) Calculated daily evaporation 50 V8 09/16 V9 V10 V11 Tas 09/23 09/30 10/07 (e) Cumulative evaporation deficit E pot T/S 10/14 a Sil 10/21 [mm d−1] Vegeta1on Water Content varies diurnally (a) Precipitation and irrigation Precipitation Irrigation 50 0 09/16 09/23 Irrigation at SM probes only 09/30 10/07 (b) Soil moisture 10/14 10/21 Depth [m] 0 0.1 0.5 0.05 1 09/16 09/23 kg m−2 0 2 AM PM 0 09/16 30/09 23/09 23/09 5 09/23 09/30 10/07 10/14 07/10 30/0914/10daily evaporation 07/10 (d) Calculated 14/10 E ref 23/09 50 Vegetation Water Content 3 V8 V9 V10 kg m−2 0 ] −2 kg m 3 2 1 0 0 10/21VSM [−] 10/14 Vegetation Water Content −1 0 [mm d ] −2 kg m 2 10/07 (c) Surface soil moisture Vegetation Water Content 0.4 0.2 09/30 2 09/16 1 30/09 0 E Vegetation Water Content 30/09 V11 07/10 E pot Tas T/S Leaves(AM) Stalks(AM) 10/14 09/23 09/30 10/07 Leaves(PM) (e) Cumulative evaporation deficit 07/10 14/10 Stalks(PM) 23/09 10/21 14/10 a Sil 10/21 −2 −2increases −2 −2 (4.8Ghz,HH,35 (4.8Ghz,HH,35 [dB],[dB], (4.8Ghz,HH,35 ) ) incidence [dB],[dB], ) Diurnal difference with a(4.8Ghz,HH,35 ngle 21/09 21/09 21/0929/09 29/0907/10 07/1015/10 15/10 21/0929/09 29/0907/10 07/1015/10 15/10 −11 −11 −11 −11 [4.8GHz,HH] ° ° 2 soil soil soil [dB], (4.8Ghz,HH,15°)−12−12 Soil 2 ° ° [dB], (4.8Ghz,HH,15 ) −12 [dB],[dB], (4.8Ghz,HH,15 ) °) (4.8Ghz,HH,15 −12 soil veg veg Veg 2 soil soil ° ° ° [dB],[dB], (4.8Ghz,HH,15 ) °) (4.8Ghz,HH,15 tot tot Total −14−14 −0.5 −0.5 −13−13 −0.5 −13−0.5 −13 −16−16 ° ° −1[dB],[dB], −1 −12 2 [dB],[dB], (4.8Ghz,HH,55 ) °) (4.8Ghz,HH,55 ) ° (4.8Ghz,HH,55 (4.8Ghz,HH,55 15o −1 −14−14 −14−14 soil soil −18 −18 soil soil 21/09 29/09 07/10 15/10 21/09 21/09 29/09 07/10 15/10 21/0929/09 29/0907/10 07/1015/10 15/10 −14−14−1.5 −14 −14 −1.5 −1.5 −1.5 −20−20 −16−16 −2 2 −16 ° ° °−16 −2 [dB],[dB], (4.8Ghz,HH,35 ) °) (4.8Ghz,HH,35 ) °) (4.8Ghz,HH,35 [dB], (4.8Ghz,HH,35 [dB], (4.8Ghz,HH,35°) [dB], (4.8Ghz,HH,35 )−2 −2 tot[dB], veg veg tot soil soil −22−22 21/09 29/09 07/10 15/10 21/09 29/09 07/10 21/09 29/09 07/10 21/09 21/09 29/09 07/1015/10 15/1015/10 −11 21/0929/09 29/0907/10 07/1015/10 15/10 −16 −16 −11 −11 −18−18 −11 −18 −18 r Content −12 35o −14 0 −20−20 −20−20 AM °)−18 [dB], (4.8Ghz,HH,15 [dB], (4.8Ghz,HH,15°) −12−12 −18 −12 tot PM −22−22 −22−22 21/09 29/09 07/10 15/10 21/09 21/09 29/09 07/10 15/10 21/0929/09 29/0907/10 07/1015/10 15/10 −20−20 −0.5 −13−13 −13 veg −1314/10 −16 ° ° ° −1[dB],[dB], (4.8Ghz,HH,55 ) [dB], (4.8Ghz,HH,55 ) °) (4.8Ghz,HH,55 ) [dB], (4.8Ghz,HH,55 [dB], (4.8Ghz,HH,55°) veg tot veg tot soil −18 −22 −14 −22 −14 −14 −14 21/09 21/09 21/0929/09 29/0907/10 07/1015/10 15/1015/10 −14 21/0929/09 29/0907/10 07/1015/10 15/10 21/09 29/09 07/10 15/10 −14 21/09 29/09 07/10 ntent −14 −14 −14 −1.5 −20 Leaves(AM) −16−16 −2 −16−16 −16 Stalks(AM) °) [dB], (4.8Ghz,HH,35 [dB], (4.8Ghz,HH,35°) veg tot −22 Leaves(PM) o 21/09 29/09 07/10 15/10 21/09 29/09 07/10 15/10 −18−18 −18−18 −11 −18 55 −16 14/10 Stalks(PM) 2 −20−20 −20 −18 −22 (Leaves)21/09 29/09 07/10 −12 −22−22 21/0929/09 29/0907/10 07/1015/10 15/10 15/10 21/09 −20−20 −22−22 21/09 21/0929/09 29/0907/10 07/1015/10 15/10 −2 −2increases −2 −2 (4.8Ghz,HH,35 (4.8Ghz,HH,35 [dB],[dB], (4.8Ghz,HH,35 ) ) incidence [dB],[dB], ) Diurnal difference with a(4.8Ghz,HH,35 ngle 21/09 21/09 21/0929/09 29/0907/10 07/1015/10 15/10 21/0929/09 29/0907/10 07/1015/10 15/10 −11 −11 −11 −11 [4.8GHz,HH] ° ° 2 soil soil 2 °° [dB], [dB],(4.8Ghz,HH,15 (4.8Ghz,HH,15)−12 ) −12 A6enuated Soil soil soil 2 ° ° [dB], (4.8Ghz,HH,15 ) −12 [dB],[dB], (4.8Ghz,HH,15 ) °) (4.8Ghz,HH,15 −12 soil veg veg Veg 2 soil soil ° ° ° [dB],[dB], (4.8Ghz,HH,15 ) °) (4.8Ghz,HH,15 tot tot Total −14−14 −0.5 −0.5 −13−13 −0.5 −13−0.5 −13 −16−16 ° ° −1[dB],[dB], −1 −12 2 [dB],[dB], (4.8Ghz,HH,55 ) °) (4.8Ghz,HH,55 ) ° (4.8Ghz,HH,55 (4.8Ghz,HH,55 15o −1 −14−14 −14−14 soil soil −18 −18 soil soil 21/09 29/09 07/10 15/10 21/09 21/09 29/09 07/10 15/10 21/0929/09 29/0907/10 07/1015/10 15/10 −14−14−1.5 −14 −14 −1.5 −1.5 −1.5 −20−20 ° ° °°−16−16 −2 2 °−16 −2 2 [dB], −2−16 −2 [dB],[dB], [dB],[dB], (4.8Ghz,HH,35 ) °) (4.8Ghz,HH,35 ) °) (4.8Ghz,HH,35 (4.8Ghz,HH,35 [dB], (4.8Ghz,HH,35 ) (4.8Ghz,HH,35 ) [dB], (4.8Ghz,HH,35 ) veg tot veg tot soil soil soil −22−22 21/09 29/09 07/10 21/09 29/09 07/10 15/10 21/09 29/09 07/10 21/09 21/09 29/09 07/1015/10 15/1015/10 −11 21/0929/09 29/0907/10 07/1015/10 15/10 −16 −16 −11 −11 −11 −18−18 −11 −18 −18 r Content −20−20 −20−20 AM °°))−18 [dB], (4.8Ghz,HH,15 (4.8Ghz,HH,15 [dB], (4.8Ghz,HH,15°) −12−12 [dB], −18 −12 −12 −12 veg tot tot PM 35o −14 −22−22 −22−22 21/09 29/09 07/10 15/10 21/09 21/09 29/09 07/10 15/10 21/0929/09 29/0907/10 07/1015/10 15/10 −0.5 −20−20 −0.5 −13−13 0 −1314/10 −13 −13 −16 ° 2 °° 2 (4.8Ghz,HH,55°) ° ° −1 −1[dB],[dB], [dB], (4.8Ghz,HH,55 ) °) (4.8Ghz,HH,55 ) [dB], (4.8Ghz,HH,55 [dB],(4.8Ghz,HH,55 (4.8Ghz,HH,55 ) [dB], ) [dB], (4.8Ghz,HH,55 ) veg tot veg tot soil −18 −22 −14 −22 −14 soil soil −14 −14 −14 21/09 29/09 21/09 21/09 29/0907/10 07/1015/10 15/1015/10 −14 21/0929/09 29/0907/10 07/1015/10 15/10 21/09 29/09 29/09 07/10 07/10 15/10 15/10 −14 21/09 29/09 07/10 21/09 ntent −1.5 −14 −14 −14 −14 −14 −1.5 −20 Leaves(AM) −16−16 −16 −16−16 −16 −16 −2 −2 Stalks(AM) °)°) [dB],(4.8Ghz,HH,35 (4.8Ghz,HH,35 [dB], (4.8Ghz,HH,35°) [dB], veg tot tot −22 Leaves(PM) o 21/09 29/09 07/10 15/10 21/09 29/09 07/10 15/10 −18−18 −16 −11 −18−18 −18 −18 −18 55 −11 14/10 Stalks(PM) −20−20 −20 −12 −20 −20 −18 −12 −22 −22 (Leaves) 21/09 21/09 29/09 29/09 07/10 07/10 −20−20 −22−22 −22 −22−22 29/09 07/10 15/10 21/09 29/09 07/10 15/10 21/0929/09 29/0907/10 07/1015/10 15/10 15/10 21/09 15/10 21/09 29/09 07/10 15/10 21/09 At L-‐band, diurnal difference up to 4dB −15−15 −20−20 −20−20 21/0929/09 29/0907/10 07/1015/10 15/10 21/09 ontent −10 t −15−15 ° [dB], (1.275Ghz,HH,35 ) soil 21/0929/09 29/0907/10 07/1015/10 15/10 21/09 ° 2 [dB], (1.275Ghz,HH,35 ) °) [dB], (1.275Ghz,HH,35 ) [dB], (1.275Ghz,HH,35 veg veg soil ° ° ° [dB], (1.275Ghz,HH,35 [dB], (1.275Ghz,HH,35 ) ) tot tot −10−10 −10 −10−10 −15 14/10 −15−15 −15 −15−15 −20 −20−20 −20 −20−20 AM PM 21/09 4/10 −10 29/09 07/10 15/10 Leaves(AM) Stalks(AM) ° [dB], (1.275Ghz,HH,35 Leaves(PM) ) veg Stalks(PM) aves) −15 −20 4/10 21/09 21/09 29/09 07/10 15/10 21/09 29/09 07/10 15/10 21/09 29/09 07/10 15/10 [dB], (1.275Ghz,HH,35°) tot −10 −15 Leaves(AM) Leaves(PM) 29/09 07/10 15/10 −20 21/09 29/09 07/10 15/10 21/0929/09 29/0907/10 07/1015/10 15/10 21/09 At L-‐band, diurnal difference up to 4dB −15−15 −20−20 −20−20 21/0929/09 29/0907/10 07/1015/10 15/10 21/09 2 ontent −10 t −15−15 °° [dB], [dB], (1.275Ghz,HH,35 (1.275Ghz,HH,35 )) soil soil 21/0929/09 29/0907/10 07/1015/10 15/10 21/09 ° 2 [dB], (1.275Ghz,HH,35 ) °) [dB], (1.275Ghz,HH,35 ) [dB], (1.275Ghz,HH,35 veg veg soil ° ° ° [dB], (1.275Ghz,HH,35 [dB], (1.275Ghz,HH,35 ) ) tot tot −10−10 −10 −10−10 −15 14/10 −15−15 −15 −15−15 −20 −20−20 −20 −20−20 AM PM 21/09 4/10 −10 29/09 07/10 15/10 Leaves(AM) Stalks(AM) °° [dB], [dB], (1.275Ghz,HH,35 (1.275Ghz,HH,35 Leaves(PM) )) veg tot Stalks(PM) aves) −15 −20 4/10 21/09 21/09 29/09 07/10 15/10 21/09 29/09 07/10 15/10 21/09 29/09 07/10 15/10 [dB], (1.275Ghz,HH,35°) tot −10 −15 Leaves(AM) Leaves(PM) 29/09 07/10 15/10 −20 21/09 29/09 07/10 15/10 21/0929/09 29/0907/10 07/1015/10 15/10 21/09 23/09 30/09 07/10 Leaf water content changes are 14/10 significant 0 Vegetation Water Content AM Vegetation Water Content (Leaves) Vegetation Water Content PM egetation Water Content 3 1 30/09 2 0.5 107/10 kg m−2 kg m 07/10 2 2 ° ° [dB], [dB], (8.6Ghz,VV,50 (8.6Ghz,VV,50 ) ) soil soil −2 14/10 −18 −18 −18 −18 Vegetation Water Content 0 −20 −20 −20 −20 Leaves(AM) 23/09 30/09 07/10 14/10 ation Water Content Stalks(AM) −22 −22 −22 −22 Leaves(PM) Leaves(AM) 3/09 30/09 07/10 14/10 Stalks(PM) Stalks(AM) Vegetation Water Content (Leaves) −24 −24 −24 −24 Leaves(PM) 07/101 14/10 21/09 21/09 29/09 29/09 07/10 07/10 15/10 15/10 21/09 21/09 29/09 29/09 07/10 07/10 15/10 15/10 Stalks(PM) kg m 09 −2 23/09 AM ° ° [dB], [dB], (8.6Ghz,VV,50 (8.6Ghz,VV,50 ) ) 14/10 PM soil soil Vegetation Water Content (Leaves) °° 0.52 [dB], [dB],(8.6Ghz,VV,50 (8.6Ghz,VV,50 )) soil soil Water Content (Leaves) 0 −18 3/09 30/0923/0907/10 −20 07/10 14/10 −22 ° ° ° ° 2 ° [dB], [dB], (8.6Ghz,VV,50 (8.6Ghz,VV,50 ) ) [dB], [dB], (8.6Ghz,VV,50 (8.6Ghz,VV,50 ) ) [dB], (8.6Ghz,VV,50 ) veg veg soil tot tot Leaves(AM) −8 −8 −8 −8 Leaves(PM) −18 30/09 07/10 14/10 −10 −10 −10 −10 14/10 Leaves(AM) Leaves(PM) −12 −12 −20 −12 −12 −24 21/09 29/09 07/10 −14 −14 −22 −14 −14 −16 −16 −16 −16 −24 −18 −18 −18 −18 21/09 29/09 29/09 07/10 07/10 15/10 15/10 21/09 29/09 29/09 07/10 07/10 15/10 15/10 15/10 21/09 21/09 29/09 07/10 15/10 21/09 ° [dB], [dB], (8.6Ghz,VV,50 (8.6Ghz,VV,50°)) [dB], (8.6Ghz,VV,50°) 23/09 30/09 07/10 Leaf water content changes are 14/10 significant 0 Vegetation Water Content AM Vegetation Water Content PM (Leaves) egetation Water Content 1 kg m 09 −2 23/09 30/09 AM ° ° [dB], [dB], (8.6Ghz,VV,50 (8.6Ghz,VV,50 ) ) 14/10 PM soil soil 07/10 0.507/10 14/10 −18 −18 Vegetation Water Content 0 −20 −20 Leaves(AM) 23/09 30/09 07/10 ation Water Content Stalks(AM) −22 −22 Leaves(PM) Leaves(AM) 3/09 30/09 07/10 14/10Stalks(AM) Stalks(PM) −24 −24 Leaves(PM) 07/10 14/10 21/09 21/09 29/09 29/09 07/10 07/10 15/10 15/10 Stalks(PM) 2 −18 −18 −20 −20 14/10 −22 −22 −24 −24 21/09 21/09 29/09 29/09 07/10 07/10 15/10 15/10 Vegetation Water Content (Leaves) 2 °° [dB],(8.6Ghz,VV,50 (8.6Ghz,VV,50 [dB], )) soil soil Water Content (Leaves) −18 3/09 30/09 07/10 −20 07/10 14/10 −22 ° ° 2 ° [dB], [dB], (8.6Ghz,VV,50 (8.6Ghz,VV,50 ) ) [dB], (8.6Ghz,VV,50 ) veg veg soil Leaves(AM) −8 −8 −8 −8 Leaves(PM) −18 −10 −10 −10 −10 14/10 Leaves(AM) Leaves(PM) −12 −12 −20 −12 −12 −24 21/09 29/09 07/10 −14 −14 −22 −14 −14 −16 −16 −16 −16 −24 2 ° ° [dB], [dB], (8.6Ghz,VV,50 (8.6Ghz,VV,50 ) ) soil soil ° ° [dB], [dB], (8.6Ghz,VV,50 (8.6Ghz,VV,50 ) ) tot tot −18 −18 −18 −18 21/09 29/09 29/09 07/10 07/10 15/10 15/10 21/09 29/09 29/09 07/10 07/10 15/10 15/10 15/10 21/09 21/09 29/09 07/10 15/10 21/09 ° [dB], [dB], (8.6Ghz,VV,50 (8.6Ghz,VV,50°)) [dB], (8.6Ghz,VV,50°) SnowScat, Flevoland 2013 Ver1cal distribu1on of moisture SnowScat Flevoland 2013 −2 Leaf VWC Profile (kg m ) 250 0.2 Height(cm) 200 0.15 150 0.1 100 0.05 50 0 14/07 21/07 28/07 04/08 11/08 18/08 25/08 01/09 08/09 0 Heigth(cm) Stem VWC Content (kg m−2) 250 0.5 200 0.4 150 0.3 100 0.2 50 0.1 0 14/07 21/07 28/07 04/08 11/08 18/08 25/08 01/09 08/09 18/08 25/08 01/09 08/09 Contributions to total VWC kg m−2 6 4 2 0 14/07 21/07 28/07 04/08 Stem 11/08 Leaf Ear2 Ear1 Steele-‐Dunne et al. (IEEE TGRS, in preparaHon) Conclusions Radar can provide Jmely & reliable observaJons Combine frequencies and polarizaJons to target consJtuents ROVE 2.0? Canopy Water Dynamics Dynamic Scattering Medium Radar Backscatter
© Copyright 2025 Paperzz