Using Geothermal Energy toComplywith EPA’sClean PowerPlan AStateguideto understandingthe potentialofgeothermal technologytoreduce stateelectricityand energysectoremissions UsingGeothermalEnergy toComplywith EPA’sCleanPowerPlan AStateguidetounderstandingthepotentialof geothermaltechnologytoreducestateelectricity andenergysectoremissions GeothermalResourcesCouncil GeothermalExchangeOrganization GeothermalEnergyAssociation December14,2015 Preparedby: BenjaminMatek,RaniChatrath–GeothermalEnergyAssociation RyanDougherty–GeothermalExchangeOrganization Additionalsupportprovidedby: PaulBrophy,BrianSchmidt,AnnaCarter,AndrewSabin,ElaineSison-Lebrilla,andRandyManion–Geothermal ResourcesCouncil Acknowledgements: SpecialthankyoutoMariaRichardsfromSouthernMethodistUniversity(SMU)forsharingSMU’sdataand researchforthisproject.CoverPhotosCourtesyofNREL.AllmapsinstateguidescourtesyofDr.AnnaCrowell, UniversityofNorthDakota. UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan i ExecutiveSummary OnAugust3,2015,PresidentObamaandEnvironmentalProtectionAgency(EPA)announceda federal Clean Power Plan. The Clean Power Plan (CPP) creates a flexible framework for state control of strategies for reducing carbon pollution -- the largest contributor to global climate change and the cause of an array of public health problems. Under the CPP, geothermal technologies are eligible in a “Best System of Emission Reduction” (BSER) strategy. Where suitable geothermal resources are available, states can build geothermal power plants, and expand direct uses of geothermal heat. And geothermal heat pumps can contribute to demand-sideenergyefficiencyprogramsineverystate. Fossil fuel power plants are the largest source of carbon to our atmosphere. Geothermal resources suitable for generating electricity, primarily found in the Western United States (U.S.),canbeextremelyvaluablesourcesofclean,reliablepower.Geothermalenergyprovides afirmbutflexiblegenerationresourceinapowersupplymarketfloodedwithotherrenewable, butintermittent,generationtechnologies.Inadditiontoprovidingasecureindigenoussupply of electricity, transmission system reliability, and a low-cost fixed price of power, geothermal plantshaveverylowtononexistentcarbonemissions.InCalifornia,forexample,TheGeysers and Imperial County geothermal plants supply baseload electricity while offsetting the emissionsof11.6billionpoundsofcarbondioxideannuallythatwouldotherwisebeemittedby fossilfuelplants.Thatisequivalentingreenhousegasemissionstotakingmorethan1,050,000 carsofftheroad. Direct-uses of heat and hot water from geothermal resources can be used for a number of purposes as demand-side efficiency technologies, including cooking, pasteurizing, space heating,biofuelproduction,soilwarming,heatingandcooling,vegetabledrying,snowmelting anddeicing,lumberorcementdrying,pulpandpaperprocessing,aquaculture,soilsterilization, fabricdrying,refrigerationoricemaking,andgreenhouseheating.Usingdirect-usegeothermal systems for these commercial purposes instead of fossil fuels helps states further reduce emissions. Lastly,geothermalheatpumps(GHPs),alsoknownasground-sourceheatpumps,usethenearconstanttemperaturesandtheinsulatingpropertiesoftheEarthjustafewfeetunderground anddonotrequireaccessingadeepgeothermalreservoir.GHPsareamongthemostefficient and comfortable heating and cooling technologies currently available and their use is burgeoningnationwide.EnergyStar-certifiedgeothermalheatpumpsareover45percentmore energyefficientthantraditionalsystemspoweredbyfossilfuels.GeothermalHeatPumpsare clean,quiet,createnoindoorpollution,anduse25%to50%lesselectricitythanconventional heatingorcoolingsystems. The policy and regulatory structures discussed more fully in this document can speed implementationofthesegeothermaltechnologiestocost-effectivelyachievestateCPPcarbon reductionandotherstatecleanairprogramgoals. UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan ii UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan iii Contents ExecutiveSummary.......................................................................................................................................................ii Introduction..................................................................................................................................................................1 SECTION1:GeothermalElectricity..............................................................................................................................3 Environmental&EmissionBenefits.........................................................................................................................4 Employment&EconomicBenefits...........................................................................................................................5 Firm&FlexiblePowerPotential...............................................................................................................................5 CostofGeothermalPower.......................................................................................................................................6 ProjectCost..........................................................................................................................................................6 PowerPurchaseAgreements...............................................................................................................................7 RecommendedGeothermalStatePolicies&Practices............................................................................................7 Research&RiskReduction..................................................................................................................................7 StateAgencyPolicy&Law...................................................................................................................................7 PublicUtilityCommissions,Contracts&theMarket...........................................................................................7 ValuingGeothermalPower..................................................................................................................................8 SECTION2:GeothermalDirectUse.............................................................................................................................9 ValuesandBenefits................................................................................................................................................10 Economics&Costs.................................................................................................................................................10 CaseStudies...........................................................................................................................................................11 KlamathBasinBrewingCo.................................................................................................................................11 ElkoNevadaDistrictHeatingSystem.................................................................................................................11 Boise,IdahoGeothermalHeatingDistrict.........................................................................................................12 SECTION3:GeothermalHeatPumps........................................................................................................................13 ValuesandBenefits................................................................................................................................................14 RecommendedNewGeothermalStatePolicies&Practices.................................................................................15 GeothermalHeatPumpCosts................................................................................................................................16 CaseStudies...........................................................................................................................................................17 IKEAinKansasCity&DenverArea....................................................................................................................17 DOCUMENTANDFACTSHEETREFERENCES................................................................................................................18 APPENDIXA:IllustrationsofGeothermalPowerTechnologyTypes.........................................................................21 APPENDIXB:State-SpecificGeothermalPotential.....................................................................................................24 Arizona...................................................................................................................................................................24 California................................................................................................................................................................24 Colorado.................................................................................................................................................................24 Idaho......................................................................................................................................................................24 Montana.................................................................................................................................................................24 Nevada...................................................................................................................................................................24 NewMexico...........................................................................................................................................................24 Oregon...................................................................................................................................................................24 Utah........................................................................................................................................................................24 UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan iv Introduction On August 3, 2015, President Obama and the Environmental Protection Agency (EPA) announced the Clean Power Plan. The Clean Power Plan will reduce carbon pollution from power plants, the nation’s largest source of carbon pollution that leads to an array of public healthproblemsandexacerbatesglobalclimatechange.Onthesamedate,theEPAissuedfinal CarbonPollutionStandardsfornew,modified,andreconstructedpowerplantsandproposeda FederalPlanandmodelruletoassiststatesinimplementingtheCleanPowerPlan.Theseare thefirst-evernationalstandardsthataddresscarbonpollutionfrompowerplants. UndertheCleanPowerPlan,statesmustdevelopandimplementplanstocomplywiththese rules to ensure the power plants within their state meet their state-specific goals for carbon pollutionby2030.ThroughouttheU.S.,geothermalenergyisanexcellentwaytocomplywith EPA’scarbonreductiongoals.Tappingintoenergygeneratedfromtheearth’scrustisaclean, emissionfreeandreliablewaytogenerateelectricityateconomicalratesacrosstheU.S.with minimalimpacttotheenvironment. To comply, states may choose between two types of plans. Targets are expressed as either emissionrateormassofCO2reduced. o Emission standards plans include source-specific requirements ensuring all affected powerplantswithinthestatemeettheirrequiredemissionperformance. o Statemeasuresplansincludeamixtureofmeasuresimplementedbythestate,suchas renewableenergystandardsandprogramstoimproveresidentialenergyefficiencythat arenotalreadyincludedasfederallyenforceablecomponentsoftheplan. Inbothplantypes,statescanusegeothermalresourcesoutlinedintheBestSystemofEmission Reduction(BSER)bybuildingpowergenerationfacilitieswheretheseplantsareavailableorby implementingdirectuseandgeothermalheatpumpdemand-sideenergyefficiencyprograms. If states are to choose demand-side efficiency measures, geothermal direct-use and heat pumpsareanexcellentoptionforreducingconsumptionofelectricityforheatingandcooling. Geothermal heat pumps are cost-effective and proven technologies that reduce the need for morecarbon-intensivefuelstocoolorheathomesandbusinesses. Whenlow-temperaturegeothermalresourcesareavailable,geothermaldirect-usetechnology canbeusedforcooking,pasteurizing,spaceheating,biofuelproduction,soilwarming,heating and cooling, vegetable drying, snow melting and deicing, lumber or cement drying, pulp and paperprocessing,aquaculture,soilsterilization,fabricdrying,refrigerationoricemaking,and greenhouseheating. Thenumberofstatesthathavehigh-temperaturegeothermalresourcesateconomicaldepths capable of generating electricity are more limited. In general, there are three types of UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 1 geothermal power conversion technologies, dry steam, flash, and binary (or organic Rankine cycle). DrySteamPlants:Indrysteamplants,naturallyoccurring,high-pressuresteamshootsupfrom thedrysteamreservoirandusedtoruntheturbinesthatpowerthegenerator. Flash Plants: In flash plants, steam is separated from high-pressure and high-temperature geothermal fluids (hot water and steam). The steam is delivered to a turbine that powers a generator. The liquid (condensed from the steam after passing through the turbine) and remaininggeothermalwaterareinjectedbackintothereservoir. BinaryPlants:InbinaryorORC(i.e.,organicRankinecycle)plants,theheatistransferredfrom thehotwatertoanorganicworkingfluidthathasaboilingpointlowerthantheboilingpoint of water. The working fluid is vaporized to run the turbine. The geothermal water is never allowedtoreachtheatmosphere-100%isinjectedbackintothereservoir.Inallsystems,the injectedfluidisneverallowedtomixwiththeshallowgroundwatersystem.Forillustrationsof thesetypesoftechnologiespleaseseeAppendixA. AllofthesegeothermalsystemscanbeincludedaspartofEPA’sCleanPowerPlanandwillbe essentialformeetingcarbonreductiontargetsacrosstheU.S.Geothermalenergyisestimated to currently supply 75,862 terrajoules per year (TJ/yr), or 21,074 gigawatt-hours per year (GWh/yr)ofheatenergyintheU.S.fromdirectheatusesandgeothermal(ground-source)heat pumps. The total low temperature, heat resource capacity of the U.S. is estimated to exceed 17.5gigawattsthermal(GWt).1 Forgeothermalresourcescapableofproducingelectricity,theUnitedStatesGeologicalSurvey (USGS)estimatesthereareover9GWeofidentifiedresources,andover30GWeofunidentified resources across 13 western states.2If Enhanced Geothermal Systems (EGS), co-production, andgeo-pressuredsystemsareincluded,theseestimatesexpandtoanotherdozenstatesand nearly quadruple. In places such as California, geothermal power already contributes substantially to state climate goals. For example, the Geysers and Imperial County, California geothermal plants supply baseload electricity while offsetting the emissions of 11.6 billion poundsofcarbondioxideannuallythatwouldotherwisebeemittedbyfossilfuelplants.That isequivalentingreenhousegasemissionstotakingmorethan1,050,000carsofftheroad.3 Boyd,etal.,2015. Williams,etal.,2008 3 McGuire,etal.,2015. 1 2 UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 2 SECTION1:GeothermalElectricity Section1 Geothermal Electricity UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 3 Environmental&EmissionBenefits Geothermal power generates extremely low emission rates, especially when compared with traditional fossil fuels that involve direct combustion of fuels. Binary power plants, which represent most of the geothermal plants that have come online recently, have near-zero greenhouse gas emissions and minimal particulate matter emissions.4When considering life cycleemissions,ArgonneNationalLaboratoryfoundbinarygeothermalpowerplantstobeone ofthecleanestformsofenergy.5Flashanddrysteamgeothermalpowerplantsalsorepresenta significantimprovementovercoalandnaturalgas,asshowninTable1.6Ingeneral,emissions fromgeothermalplants,whentheydooccur,areseveralordersofmagnitudelessthanthoseof fossilfuelfacilities. WithintheU.S.,geothermalplantsareusuallyfoundinregionsoftectonicandvolcanicactivity andcanbeco-locatedwithnaturalhotspringsandsimilarmanifestationsthatnaturallyrelease greenhouse gases. The naturally occurring emissions from these from these features often exceedsthosefromthegeothermalplants.7 Table1:EstimatedEmissionLevelsbyPollutantandEnergySourceofPowerPlants8 [lbs/MWh] DrySteam* Flash* Binary NaturalGas* Coal* CO2 60 396 0 861 2200 CH4 0 0 0 0.0168 0.2523 PM2.5 0 0 0 0.1100 0.5900 PM10 0 0 0 0.1200 0.7200 SO2 0.0002 0.3500 0 0.0043 18.75 *Note:TheseestimatesareforatypicalCaliforniageothermalpowerplant.Thefossilfuelemissionestimatesareforatypical fossilfuelfiredpowerplantintheU.S. Theemissionmostfrequentlyassociatedwithgeothermalpowerproductionishydrogensulfide (H2S),agasthatoccursnaturallyinvaryingconcentrationsingeothermalsystems.H2Soxidizes into sulfur dioxide and sulfuric acid when released into the atmosphere. Known for its distinctive “rotten egg” smell, hydrogen sulfide is a natural component of many volcanic and geothermal systems. Today, hydrogen sulfide abatement systems, such as LO-CAT and Stretford, are used extensively throughout the industry and have demonstrated a removal efficiency of more than 99.9% 9 . Through such systems, hydrogen sulfide is converted to elementalsulfur,whichcanbeusedasafeedstockforfertilizersorasasoilamendment. Not only are emissions minimal to non-existent but the land footprint is tiny as well. Geothermal power uses very little land compared to other energy sources, particularly when weighed against other renewables. Unlike power generated from solar, wind, and biomass sources,whicharepredicatedupongatheringdiffuseambientenergyoverlargetractsofland, (Matek,2013) (Sullivan&Wang,2013) 6(Matek,2013) 7(Bertani&Thain,2002) 8(Matek,2013) 9(Nagl,2009) 4 5 UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 4 geothermalexploitsaconcentrated,subterraneanresource.Geothermalplantfacilitiesuseless surfaceareaforcomparablelevelsofpower. Arecentpaperestimatestheintensityoflanduseassociatedwithvariousenergysourcesbased on the anticipated state of technology in the year 2030. Assuming 8,766 hours in a year, geothermalpower’sestimateduseof66km2/GWislowerthancoal(85),solarthermal(134), natural gas (163), solar voltaic (323), petroleum (392), hydropower (473), wind (632), and biomass(4,760).10Geothermalresourcesdonotrequiretransportationoffuelslongdistances by pipeline, highway, rail, or across oceans in tankers. They are homegrown resources with powerplantfacilitieslocatedatthereservoirsitesupplyingelectricitytoregionalgrids. Employment&EconomicBenefits • Geothermal plant construction employs about 3.1 person-years per MW; the manufacturingoftheequipmentrequiresanadditional3.3person-yearsperMW. • Geothermalpowerplantsemployabout1.17personsperMWateachoperatingpower plant. These are permanent jobs that last the entire 30-50 year lifetime of the power plant. • Intotal,addinggovernmental,administrative,andtechnicalrelatedjobs,thegeothermal industryemploysabout2.13personsperMW. • Anaverage50MWfacilitywillcreatepermanentemploymentforabouta100people. • In 2013, U.S. geothermal power producers paid $29 million dollars in annual property taxes,including$21milliondollarstotheStateofCaliforniaalone. • Geothermal paid about $26 million in rents and royalties to state, federal and local governmentsnationwidein2014ofwhichonequarterisreturnedtobenefitstateand localcountygovernments. • Overthecourseof30to50yearsanaverage20MWfacilitywillpaynearly$6.3to$11 milliondollarsinpropertytaxes. Firm&FlexiblePowerPotential With well-structured and appropriately priced contracts, geothermal plants can provide both flexible and baseload power production. Although traditionally operated as a source of baseload power, the advancement of power plant and control technology allow geothermal power plants to work in several different modes, such as grid support, regulation, load following, spinning reserve, non-spinning reserve, and replacement or supplemental reserve. Thesemodesarecommonlyreferredtoas“ancillaryservices,”whichareperformedbyentities that generate, control and transmit electricity in support of the basic services of generating capacity,energysupplyandpowerdelivery.Thefutureelectricitygrid,dominatedbyvariable energyresources(primarilywindandsolar),willneedtechnologiesthatcanbebothbaseload andflexible. 10 (McDonald,Fargione,Kiesecker,Miller,&Powell,2009) UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 5 While most geothermal plants generate baseload electricity, flexible geothermal operations havebeendemonstratedatseveralprojects,includingthePunaGeothermalVentureplantin Hawaii which generates 38 MW, and has contracted 16 MW of flexible capacity. This plant provides ancillary services for grid support that are identical to those of the existing oil-fired peakgeneratingresourcesontheBigIsland.Thisplantisconsideredafirst-of-its-kindandcould be expanded to other facilities given the right contracts and retrofits. 11 Additionally, geothermal plants at the world’s largest geothermal field – The Geysers, located in northern California – have operated in various modes, including traditional baseload, peaking and load following.Theflexiblemodeswereofferedasanappropriateresponsetotheneedsofoneof theutilitiespurchasinggeothermalpowerfromTheGeysers.Flexibleoperationsceasedinthe early1990sinresponsetoacombinationoflowdemandandlowercostsofgenerationwithin theutility’ssystemfromhydro,coal,andnaturalgaspowerplants.12 In general, it’s currently more economical for geothermal developers to operate geothermal plantsunderbaseloadpowerpurchaseagreementsfortheirplants.However,somesuggestions inthegeothermalindustryonhowtorespondtoutilitiesrecentcallforgeothermalpowerto besuppliedinmoreflexiblecontractsincludethefollowing: • Utilitiescouldbuycapacityfromageothermalplantandthenpurchaseenergyasthey regulate its output, within the plant’s technical limits. Flexible contracts with pricing structuresthataccountforgeothermalenergy’suniquecapitalstructurewouldenable flexiblegeothermalpowertocompetewithnaturalgas. • Utilizingstoragetechnologiesforgeothermalpowerplantstostorepowerandrelease theelectricityasneeded,insteadofconstantlyexportingelectricitydirectlytothegrid.13 • Ancillaryservicesinthepasthavetraditionallybeenprovidedbyfossilfuelsourcessuch asnaturalgas.Inmanycasesthesecontractsareveryhighlypricedduetospotmarket gaspurchases.Renewablescanofferamoreeconomicalalternative,sincethereisno volatilityinfuelpricing. CostofGeothermalPower ProjectCost Thecostofatypicalgeothermalpowerprojectishighlydependentonseveralfactorsincluding drilling depth, geology, temperature and project size. However, a typical 50-MW greenfield projectinageothermalfieldwithwellsofaround2km(6500ft)indepthwillcostbetween2.8- 5.5millionUS$/MW.Thisincludesthecostofeverythingfrompreliminarysurveystoturbine construction.14Atypicalnew25-35MWprojectintheU.S.costsbetween$125-150million. Acommonpracticeistobuildexistingprojectsincrementally,eitherbyaddingmorewellsand more turbine generator modules to an existing (brownfield) power project, or adding a “bottoming cycle” unit to the plant using existing wells. The advantage of this development (Nordquist,etal.,2013) (Cooley,1996) 13 (McGrail,2015) 14 (Gehringer&Loksha,2012) 11 12 UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 6 approachisthatitimprovesthesustainabilityofthereservoirandisoftenalowercostwayof building geothermal projects. If built in this manner, projects fall on the lower end of the spectrumoftenrangingfrom1.5-4millionUS$/MW.15 PowerPurchaseAgreements Data collected by GEA and the US DOE Geothermal Technology Office (DOE) shows that projectsintheU.S.havesignedpowerpurchaseagreements(PPAs)withutilitiesinthelastten yearstypicallyrangingbetween$17.76-$101.95perMWh.Thesepowerpurchaseagreements arenormallyforbase-loadpowercontracts.Thelow-endpricewasforanolder,existingfacility andislikelybasedonCalifornia’sShortRunAvoidedCost.Thehigh-endpricesarefornewer binaryprojectsthatwerebuiltonlower-temperatureresourcesthatweresmallerinsize. RecommendedGeothermalStatePolicies&Practices ForanystateutilizinggeothermalenergyordirectusetocomplywithEPA’s111(d)CleanPower Plan, the GEA recommends the following practices be implemented to ensure smooth and expedientdevelopmentofthetechnology. Research&RiskReduction • Publishpublicexplorationdatainthepublicdomainforcompaniestouseandverify. • Initiateactiontodevelopresourceinformation,eitherasdonorsorgovernments. • Donorsandgovernments(bothnationalandlocal)mayneedtoparticipateindrillingrisk. • Support research in energy storage schemes to further enhance grid stability while creatingagoodeconomicenvironmentforgeothermalandotherrenewables. StateAgencyPolicy&Law • Coordinateinstitutionsintowhatiseffectivelyonebodygoverninggeothermalresource development. • Minimize the number of agencies or institutions involved with regulation—“one-stop shopping”istheidealmodel. • Developinstitutionalcapacityandcapability. • Develop laws and regulations that create an investment environment where risk and returnarematchedforgeothermaldevelopment. • Developers who make significant investments or resource discoveries on state lands underexplorationpermitsshouldhavearighttoanegotiatedlease,orrightofmatching highbidsunderpublicauctions. • Developers of public lands should have a limited time to act on permits, or leases can terminate. PublicUtilityCommissions,Contracts&theMarket • Take the current electricity market into account. There must be a market for the electricity.Generationgrowthmustbeaccompaniedbygridgrowth. 15 UnpublishedGEA&DOEdata. UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 7 • Promotetheuseofdemand-side(electricalequivalent)geothermalsolutions(geothermal heatpumpsanddirectusesofthermalwaters)todisplaceelectricitygenerationsources thatemitlotsofcarbondioxide. • WorkwiththestatePublicUtilityCommissionstoensurethatutilitiessolicitgeothermal power and offer PPAs that attract geothermal developers. These contracts should recognizealltheuniquevaluesgeothermalpowercanprovideanelectricitygridsystem, includingancillaryservice,firmandflexiblepower,reliabilityandreductionoflinelosses neartheendsofthelines. • Understand that geothermal is traditionally and most efficiently operated as base-load power (providing grid stability for states with intermittent renewables), but also can operateinflexiblemodes(forloadfollowing). ValuingGeothermalPower • Whengeothermalplantsareintendedtobeoperatedinaflexible,load-followingmode, contracts should be negotiated to include payment schedules that define the price of powerinresponsetoadispatchsignaltransmittedbytheindependentsystemoperator orotherload-servingentity. • To increase the ability of geothermal plants for frequency regulation (i.e., ramping generation assets up or down over a period of a few minutes), power pricing in future contractsshouldbenegotiatedtoincludepaymentsspecificallyforfrequencyregulation services. • When comparing geothermal power to other renewables during procurement, it’s important to consider all the values of geothermal power, such as: ancillary services, geothermal’s minimal integration cost, environmental attributes, and economic benefits thatdistinguishitfromtheintermittentrenewablesandfromcarbonemittingresources. UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 8 SECTION2:GeothermalDirectUse Section2 Geothermal DirectUse UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 9 ValuesandBenefits Geothermalresourceshavebeenuseddirectly,fortheirheatforcenturies.Themostfamous examplesmightbetheRomanbathhousesofEuropebuiltthroughouttheRomanEmpire.In modern direct-use systems, a well is drilled into a geothermal reservoir to provide a steady streamofhotwater.Thehotwaterisbroughttothesurface,andamechanicalsystem—piping, aheatexchanger,andcontrols—deliverstheheatdirectlyforitsintendeduse.Projectscanbe scaled to any size, and can range from an individual home, to a single greenhouse or aquaculturepond,toalargedistrictheatingsystem. These applications decrease electricity demand by using an already hot and sustainable resource rather than converting electricity or fossil fuels into heat. The use of low- to moderatetemperature fluids, typically 380C (1000F) to 1500C (3020F) are used for direct use projects. Approximately 85% of identified resources in the U.S. are below 930C. These resources are more likely to be located near potential users than traditional power resources since they are more widespread, often discovered during conventional water well drilling, and are designed with Ball State Central GHP. Photo courtesy of Geothermal Exchange Organization conventional equipment. off-the-shelf The main uses of direct-use technology is industrial applications, agricultural drying, district heating,spaceheating,greenhouses,aquaculture,resortsandspas,snowmelting,andcooling. Currently in the U.S. there are 19 geothermal district heating systems with several additional under construction, over 2000 individual heated buildings, 7 industrial and agricultural drying stations, 45 greenhouse complexes, 51 aquaculture operations, 242 resorts and spas, and 6 snowmeltingprojectstheusegeothermaldirect-usetechnology.16 Economics&Costs Everygeothermaldirect-useprojectisuniqueandshouldbecustomengineered.However,that doesnotaddsubstantiallytotheircost.Thesesystemsareoftennotthatcomplicatedandcan bebuiltwithoff-the-shelfcomponentsandequipmentcommonlyavailable.Itisthereforehard 16 (ToniBoyd,2015) UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 10 to generally apply standard costs for all systems as can be done for electricity or fossil fuel systems. The economics of a project often depend on the user’s needs, geothermal fluid temperaturesandflowrates,priceoftheequivalentfossilfuelheatingsources,andavailability ofgovernmentincentives.Generally,thelargerthesystemneeded,thehigherthepricewillbe foranalternativefossilfuelsystemforthesamepurpose.Furthermore,thebetterthequality ofthegeothermalresourcesnearby,themoreeconomicthesesystemsbecome. Table2:TypicalCostsofExampleGeothermalDirect-UseSystemsbyType17 Application ResidentialSpace Heating* SpaceHeating* DistrictHeating GreenhouseHeating AquaculturePond Heating Capital $/kW Cost/year $/kWyr O&M $/kWyr Total $/kWyr TypicalCapacity Factor UnitCost cents/kWh 800 71.1 7.1 78.2 0.29 3.08 500 650 250 44.4 57.7 22.2 4.4 5.8 2.2 48.8 63.5 24.4 0.25 0.30 0.25 2.23 2.42 1.11 200 17.8 1.8 19.6 0.69 0.32 Note:Basedon30-yearlifeat8.0%interestandO&Mat10%ofcapitalcost.Theabovecostsincludeashallowwell(<984ftor300m)and noretrofitcosts;however,costcanvarybyasmuchas100%dependingonthelocalgeology,hydrology,buildingconstruction,and infrastructure. *Assumesoneproductionandoneinjectionwellforasinglebuilding **Heatpumpfiguresareconsideredonlyfortheheatingmodeandthecapacityfactorisanation-wideaverage. CaseStudies KlamathBasinBrewingCo. The Klamath Basin Brewing Co utilizes a local geothermal district heating system in Klamath Falls,Oregon.Onpeak,thecompanyusesabout1,700thermsofgeothermalenergyamonthat acostof$1,360.ThissystemsavesKlamathBasinBrewingabout$1,190amonthduringtheonpeakseason.Duringtheoff-peakseason,thecompanysavesabout$300amonth,comparedto generatingthesameheatwithfossilfuels.18 ElkoNevadaDistrictHeatingSystem ThesysteminElko,Nevada,firstbeganconstructionin1982.Itcurrentlyservices19residential andcommercialcustomersincludingacommerciallaundry,asewagetreatmentplant,andan industrialpark.Thesystemcostabout$1.4million.Thecustomersarechargedabout$1.50per 1000gallonsofwaterusepumpedthroughthesystem.Thesechargesequatetoabout30%of thecostofnaturalgas.19 (Lund,2015) (Lund,2015b) 19 (Lund,2015a) 17 18 UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 11 Boise,IdahoGeothermalHeatingDistrict BoisePublicWorksDepartmentadministersBoise’sGeothermalHeatingDistrict.Thissystemis thelargestandoldestdirect-usesystemintheU.S.Fourindependentheatingdistrictssupply energy-efficientheattoover65businessesinthedowntowncorearea.Thecostofextending thesupplyandreturnlinesisabout$50,000-$85,000percityblockinBoise.20 20 (Neely,Galinato,&Johnson,2006) UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 12 Section3 SECTION3:GeothermalHeatPumps Geothermal HeatPumps UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 13 ValuesandBenefits According to the Department of Energy, buildings are the largest single sector of total U.S. energy consumption. The buildings sector accounted for over 40% of primary energy use in 2010 and consumes approximately one third more energy than either the industrial or transportation sectors.21 Some 60% of the energy used in buildings is for “thermal loads.” Thermalloadsaretheamountofenergyneededtobeaddedorremovedfromaspacebythe heating,ventilationandairconditioning(HVAC)systemtokeeptheoccupantscomfortable.A thirdofthatU.S.thermalloadenergy–over3quadrillionBTUs–issatisfiedwithelectricity. Given the high proportion of energy and electricity used by buildings in the U.S., Geothermal Heat Pumps (GHPs) offer a unique and highly efficient renewable energy technology for heating and cooling. GHPs use the natural insulating properties underground, the latent solar energystoredintheearthand, below20ft,geothermalenergy tomeetthethermalneedsofabuildingthroughaprocesscalled“geothermalexchange.”By drawing on this stored and ever-regenerating solar and geothermal energy the space conditioning requirements of a building can be met with a fraction of the energy normally requiredbyconventionalHVACequipment.Theearthiswarmerinwinterthanistheair,and coolerthantheairinsummer. MostGHPsworkbycirculatingwaterinaclosedsystemthrougha“loopfield”ofdurable,highdensity polyethylene pipe installed horizontally in the ground adjacent to or even vertically beneathabuilding.ThereareothertypesofGHPsystemsthatusealoopfieldplacedinwater wellsorabodyofwatertoachievethesamegeothermalexchange.AnotherexampleofaGHP isa“directexchange”system,whichusesasmallerloopfieldofcopperpipethroughwhicha refrigerantinsteadofwateriscirculated.AllofthesedifferenttypesofGHPsystemsaresimilar inthattheyutilizethestabletemperatureoftheearthtomeettheheatingandcoolingneeds ofabuilding.Inthewinter,storedthermalenergyisdrawnoutoftheearthandusedtomeet thebuilding’sheatingneedsandinthesummer,thatprocessisreversedandbuildingheatis rejectedtotheearth. According to the U.S. Environmental Protection Agency (EPA), “Geothermal heat pumps are amongthemostefficientandcomfortableheatingandcoolingtechnologiescurrentlyavailable . . . Energy Star-certified geothermal heat pumps are over 45 percent more energy efficient 21 (U.S.Dept.ofEnergy,2012) UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 14 thanstandardoptions.”22AndaccordingtoDOE,“ThebiggestbenefitofGHPsisthattheyuse 25%to50%lesselectricitythanconventionalheatingorcoolingsystems.Thistranslatesintoa GHPusingoneunitofelectricitytomovethreeunitsofheatfromtheearth.”23 Byusingtheearth’sfreerenewablethermalenergy,GHPscanhelplessentheloadonelectrical grids. This fact is especially true on hot summer days when consumer demand for air conditioningspikesandpowergenerationresourcesarestrained.GHPsflattenpeakdemand and reduce peak-load generation capacity that must be installed adding stability to the grid. Peakenergyloadsarethemostexpensive. Inadditiontotheeffectsontheelectricalgrid,GHPssignificantlyreducecarbonemissions.A 2010studyfromOakRidgeNationalLaboratoryshowedthataggressiveretrofittingofallsinglefamily homes across the country withGHPswouldavoidtheneedto build up to 48% of new electric generation capacity projected nationwide by 2030. 24 Such a deployment of GHPs would save $38 billion annually on consumer utility bills and slash projected CO2 emissions by 45%. The Oak Ridge study found that one ton (12,000 BTU/hr) of GHP capacity over a 20 year operating cycle avoids 21 metric tons of CO2 emissions. The significant emissions reduction capability of GHPs makes them a technology type uniquely suited to meetthegoalsofstatesseekingpoliciestocomplywithEPA’s111(d)CleanpowerPlan. RecommendedNewGeothermalStatePolicies&Practices States have a number of options available for compliance with the EPA’s 111(d) Clean Power Plan.GHPsareoneofthemostapplicabletechnologiesforcomplianceastheyareademandsideefficiencytechnologythatcanbedeployedinall50states,andhaveaproventrackrecord asthemostefficientandrenewableheatingandcoolingtechnology.Thefederalgovernment recentlyrecognizedthethermalenergyutilizedbyaGHPasasourceofrenewableenergyand instructed government agencies to consider their use a method of meeting energy savings goals. StateswishingtoincorporateGHPtechnologyintotheirplanforCPPcomplianceshouldadopt thefollowingrecommendations: (EnergyStar,2015) (USDept.ofEnergy,2015) 24 (XiaobingLiu,2010) 22 23 UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 15 • AmendstateRenewableEnergyPortfolioStandardstorecognizetherenewablethermal energyproducedbyGHPsandcreateprogramstomeasureandcalculatetheaggregate ofthisrenewableenergyforallcommercialandresidentialinstallations.Instateswhere GHPsarenotincludedintheEnergyEfficiencyPortfolioStandard,thestandardshouldbe amendedtoincludeGHPs.ByaddingGHPstothesestandards,statesareabletomore easilymeettheirsRPSgoalsaswellasCPPtargets. • RecognizetheuniqueabilityofGHPstosignificantlylowerelectricutilitypeakdemand. Byderivingthebulkoftherequiredthermalenergyforheatingfromthelatentsolarand geothermal energy stored in the earth, GHPs reduce the burden on power generation facilities.Andinthecoolingmode,GHPsrejectabuilding’sheattothegroundinsteadof outside air, cutting consumption and decreasing demand on strained generation facilities.OnerecentDOEstudyshowedthatahomewithaGHPsystemgets75%ofits heatingenergyfromtheearth. • RecognizethecarbonemissionsreductionattributabletoGHPs.TheDOEhasperformed studies that verify the unique ability of GHP technology to reduce greenhouse gas emissions. Widespread GHP adoption can dramatically diminish the level of carbon releasedintotheatmosphere. • Encourage public utilities to support GHP deployment through on-bill financing programs, special rate designs, and homeowner rebates. With focused incentives, utilitiesareabletodeliverrealandlastingsavingstohomeownersandbusinesseswhile meetingtheirowndemandreductiontargets. • RecognizethelargepercentageofenergythatisdevotedtoHVACapplicationsandseek toimplementthemostefficient/renewablesolutionsavailable. GeothermalHeatPumpCosts Geothermal heating system prices can vary depending on the type of ground heat exchanger (usually vertical or horizontal), geographic location and on-site geological conditions. On average,atypicalhomeof2000squarefeetwillrequire4tonsofheatingandcoolingcapacity withanaveragesysteminstallationcostbetween$5,000and$7,500perton. Anotherwaytoexpresscostwouldbebythetypeofheatpumpsysteminstalled.Geothermal heatpumpcostsfora4-tonunit: • Closedloopwatertowater= $34,000($8,500/ton) • Openloopwatertowater= $28,000($7,000/ton) • Closedloopwatertoair= $28,800($7,200/ton) • Openloopwatertoair= $22,000($5,500/ton) • Directgeoexchange= $16,000($4,000/ton) These are average numbers and will vary depending upon local drilling or excavation costs. WatertowaterGHPinstallationcostsincluderadiantflooring.Closedloopwatertoairisthe mostfrequenttypeofinstallation(costshownincludesductwork).Openloopwatertoairisa typical “pump and dump” system. Direct geoexchange uses copper pipe underground, but excavation/drillingcostsarelower. UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 16 Ingeneralfourfactorsdeterminethecostofaheatpumpinstallationinahomeorcommercial building.25 1. SizeoftheHome/Building–Thelargertheareacovered,themoreheatingandcooling thebuildingwilldemand. 2. Size of the Heat Pump - Based on the size of the home, insulation, and climate the amountofheatingandcoolingneedediscalculated,whichinturnenablesacontractor tocalculatethesizeoftheheatpump. 3. Size of the Loop Field-Thesizeofthesystem(3-ton,4-ton,etc.)alongwiththelocal climatewilldictatetheamountofpipethatneedstobeinsertedintotheearth. 4. Usability of Current Ductwork - In most cases, existing ductwork requires little to no adjustment to be suitable for geothermal heating and cooling. However, if existing ductworkisnotinplace,thanthehomeownerorbusinessownerwillneedtoincurthe fullexpenseofinstallingit. CaseStudies IKEAinKansasCity&DenverArea IKEA globally by January 2015, installed more than 300,000 solar panels, owns/operates approximately137windturbinesinEurope,andhasgeothermalsystemsatapproximately50 locations.AttheDenverlocationinCentennial,Colorado,IKEAdrilled130boreholestoadepth of500feet.Thecentralplantincludesten,35-tonwater-waterheatpumpsthatdriveavariable airvolumesystemformostofstoreandnine1,500gallonicestoragetanks.AttheKansasCity location in Merriam, Kansas, 180 boreholes were drilledto a depth of 600 fet. The system in Kansas City is the building’s primary source of heating and cooling. These two systems are a great demonstration of the economic viability of installing and operating geothermal heat pumpsystemsonalargecommercialscale,intwoverydifferentstates,insteadofusingfossil fuelsforthesamepurpose. 25 (GeothermalGenius,2015) UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 17 DOCUMENTANDFACTSHEETREFERENCES Bertani,R.,&Thain,I.(2002)."GeothermalPowerGeneratingPlantC02EmissionsSurvey."IGA News,(49),1–3. Boyd,Toni.(2015).OverviewofDirect-UseintheUS.Colorado.Retrievedfrom http://energy.gov/sites/prod/files/2015/07/f24/01-Direct-Uses-In-the-US--Toni-Boyd_0.pdf Boyd,TonyaL.,AlexSifford,&JohnW.Lund.(2015).TheUnitedStatesofAmericaCountry Update2015.InCountryUpdates.Melbourne,Australia:InternationalGeothermalAssociation. Retrievedfromhttp://www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/01009.pdf? Cooley,D.(1996)."AreportoncyclingoperationsattheGeysersPowerPlant."InGeothermal developmentinthePacificrim(Vol.20).Retrievedfrom http://www.osti.gov/geothermal/biblio/494426 EnergyInformationAdministration.(2015a).TableC9.ElectricPowerSectorConsumption Estimates,2013.RetrievedOctober23,2015,from http://www.eia.gov/state/seds/data.cfm?incfile=/state/seds/sep_sum/html/sum_btu_eu.html &sid=CO EnergyInformationAdministration.(2015b).AppendixA:BritishThermalUnitConversion Factors.EnergyInforationAdministration.Retrievedfrom http://www.eia.gov/totalenergy/data/monthly/pdf/sec13_1.pdf EnergyInformationAdministration.(2015c).ElectricPowerDetailedStateData.Retrieved October7,2015,fromhttp://www.eia.gov/electricity/data/state/ EnergyInformationAdministration.(2015d).AverageResidentialPrice.RetrievedOctober23, 2015,fromhttp://www.eia.gov/dnav/ng/ng_pri_sum_a_epg0_prs_dmcf_m.htm EnergyInformationAdministration.(2015e).ResidentialPropaneWeeklyHeatingOiland PropanePrices(October-March).RetrievedOctober23,2015,from http://www.eia.gov/dnav/pet/pet_pri_wfr_a_EPLLPA_PRS_dpgal_w.htm EnergyStar.(2015).HeatPumps,Geothermal|Products[GovernmentWebsite].Retrieved October23,2015,from https://www.energystar.gov/products/heating_cooling/heat_pumps_geothermal ESRI.(2014).WhatisthecorrectwaytociteanArcGISOnlinebasemap?RetrievedOctober26, 2015,fromhttp://support.esri.com/de/knowledgebase/techarticles/detail/42495 Gehringer,Magnus&VictorLoksha.(2012).GeothermalHandbook:PlanningandFinancing PowerGeneration.EnergySectorManagementAssistanceProgram(ESMAP).Retrievedfrom https://www.esmap.org/sites/esmap.org/files/DocumentLibrary/FINAL_Geothermal%20Handb ook_TR002-12_Reduced.pdf GeothermalGenius.(2015).AverageCostofaGeothermalHeatPumpInstallation|NoRuleof Thumb.RetrievedOctober23,2015,fromhttp://www.geothermalgenius.org/thinking-ofbuying/average-cost-of-geothermal-heat-pump-installation.html UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 18 Kagel,A.(2008).TheStateofGeothermalTechnologyGeothermalTechnology-PartIISurface Technology.WashingtonDC:GeothermalEnergyAssociation.Retrievedfromhttp://geoenergy.org/reports/Geothermal%20Technology%20-%20Part%20II%20(Surface).pdf Liu,Xiaobing.(2010).AssessmentofNationalBenefitsfromRetrofittingExistingSingle-Family HomeswithGroundSourceHeatPumpSystems(No.ORNL/TM-2010/122).OakRidgeNational Laboratory.Retrievedfromhttp://www.energy.ca.gov/2013_energypolicy/documents/201303-21_workshop/background/Liu_GSHP_Report_8-30-2010.pdf Lund,JohnW.(2015a).GeothermalDistrictHeating.Retrievedfrom http://energy.gov/sites/prod/files/2015/07/f24/10-District-Heating---J-Lund_0.pdf Lund,JohnW.(2015b).IndustrialUsesofGeothermalEnergyintheUSA.Retrievedfrom http://energy.gov/sites/prod/files/2015/07/f24/11-Industrial-Uses-Geothermal-J-Lund.pdf Lund,JohnW.(2015c).TypicalCostofGeothermalDirect-UseSystemsbyType[Phone Conversation]. Matek,Ben.(2013).PromotingGeothermalEnergy:AirEmissionsComparisonandExternality Analysis.WashingtonDC:GeothermalEnergyAssociation.Retrievedfromhttp://geoenergy.org/reports/Air%20Emissions%20Comparison%20and%20Externality%20Analysis_Public ation%20May%202013.pdf McDonald,R.I.,J.Fargione,J.Kiesecker,W.M.Miller,&J.Powell.(2009).EnergySprawlor EnergyEfficiency:ClimatePolicyImpactsonNaturalHabitatfortheUnitedStatesofAmerica. PLoSONE,4(8),e6802.http://doi.org/10.1371/journal.pone.0006802 McGrail,Pete.(2015).Geothermal-CoupledCompressedAirEnergyStorage.Denver,Colorado. Retrievedfrom http://energy.gov/sites/prod/files/2015/06/f23/Track1_LowTemp_2.3_GTCAESMcGrail_et_al.pdf Meldrum,J.,Nettles-Anderson,S.,Heath,G.,&Macknick,J.(2013).Lifecyclewaterusefor electricitygeneration:areviewandharmonizationofliteratureestimates.Environmental ResearchLetters.Retrievedfromhttp://iopscience.iop.org/article/10.1088/17489326/8/1/015031/pdf Nagl,GaryJ.(2009).15YearsofSuccessfulH2SEmissionsAbatement.GeothermalResources CouncilTransactions,19–24. NationalRenewableEnergyLaboratory.(2015).TheGeothermalProspector.RetrievedOctober 26,2015,fromhttps://maps.nrel.gov/geothermalprospector/#/?aL=QP75SN%255Bv%255D%3Dt&bL=groad&cE=0&lR=0&mC=40.178873314346 96%2C-91.58203125&zL=4 Neely,K.,Galinato,G.,&Johnson,K.(2006).CityofBoiseGeothermalDistrictHeatingSystem. GRCTransactions,30,229–234. Nordquist,Josh,TomBuchanan,&MichaelKaleikini.(2013).AutomaticGenerationControland AncillaryServices.GeothermalResourcesCouncilTransactions,37,761–766. UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 19 Sullivan,J.L.,&Wang,M.Q.(2013).Lifecyclegreenhousegasemissionsfromgeothermal electricityproduction.JournalofRenewableandSustainableEnergy,5(6),063122. http://doi.org/10.1063/1.4841235 U.S.Dept.ofEnergy.(2012).BuildingsEnergyDataBook.RetrievedOctober23,2015,from http://buildingsdatabook.eren.doe.gov/ChapterIntro1.aspx USDept.ofEnergy.(2015).ChoosingandInstallingGeothermalHeatPumps[Government Website].RetrievedOctober23,2015,fromhttp://energy.gov/energysaver/choosing-andinstalling-geothermal-heat-pumps USEPA,O.(2015,August).CleanPowerPlanState-SpecificFactSheets[Overviewsand Factsheets].RetrievedOctober23,2015,from http://www2.epa.gov/cleanpowerplantoolbox/clean-power-plan-state-specific-fact-sheets Williams,C.,Reed,M.,Mariner,R.,DeAngelo,J.,&Galanis,P.(2008).AssessmentofModerate- andHigh-TemperatureGeothermalResourcesoftheUnitedStates(No.2008-3082)(pp.1–4). U.S.GeologicalSurvey.Retrievedfromhttp://pubs.usgs.gov/fs/2008/3082/pdf/fs20083082.pdf UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 20 AppendixA APPENDIXA:IllustrationsofGeothermalPowerTechnologyTypes Illustrationsof GeothermalPower TechnologyTypes UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 21 Figure1:DrySteamPowerPlantConfiguration26 Figure2:SingleFlashSteamConfiguration27 26(Kagel,2008) 27Ibid. UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 22 Figure3:BinaryPowerPlantConfiguration28 28Ibid. UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 23 AppendixB APPENDIXB:State-SpecificGeothermalPotential Arizona California Colorado Idaho Montana Nevada NewMexico State-Specific Geothermal Potential Oregon Utah FactsheetSources:ElectricityandDirectUse (EnergyInformationAdministration,2015c) (Williams,Reed,Mariner,DeAngelo,&Galanis, 2008) (EnergyInformationAdministration,2015a) (EnergyInformationAdministration,2015c) (USEPA,2015) (NationalRenewableEnergyLaboratory,2015) (ESRI,2014) (Meldrum,Nettles-Anderson,Heath,&Macknick, 2013)–Forlifecyclewaterchartsinapplicable states FactsheetSources:HeatPumps (EnergyInformationAdministration,2015c) (EnergyInformationAdministration,2015e) (EnergyInformationAdministration,2015b) (EnergyInformationAdministration,2015d) UsingGeothermalTechnologytoComplywithEPA’sCleanPowerPlan 24
© Copyright 2026 Paperzz