Warm Up: If AC ≅ BD, how can you show that AB ≅ CD E Statements Reasons B A C D F Subtraction Postulate: If equal quantities are subtracted from equal quantities, the differences are equal. **We will still need to use the Partition and Substitution Postulates!! 1) AC ≅ BD 2) BC ≅ BC 3) AB + BC = AC, CD + BC = BD 4) AB + BC ≅ CD + BC 5) AB ≅ CD 1 E 1 ~ ABE = 2 A B C D Statements Reasons 1) 1) Given 2) 2) Given 3) AB + BC ≅ AC, DC + BC ≅ DB 4) 3) Partition Postulate 4) Given 5) AB + BC ≅ DC + BC 6) BC ≅ BC ~ ABE = 5) Substitution Postulate 6) Reflexive Property 7) Subtraction Postulate 7) AB ≅ DC 8) DCE DCE 2 F Given: ABCD FA AD AD ED AF ≅ DE AC ≅ BD D A B C E Prove: ABF ≅ CED Statements Reasons 1) 1) Given 2) 2) Given 3) <FAB and <EDC are right angles 3) Perpendicular lines intersect at right angles 4) <FAB ≅ <EDC 4) All right angles are congruent 5) 5) Given 6) Partition Postulate 7) 8) 9) BC ≅ BC 10) AB ≅ DC 11) 7) Given 8) Substitution Postulate 9) Reflexive Property 10) Subtraction Postulate 11) 3 4 Given: Prove: 5 6
© Copyright 2026 Paperzz