CIVET stage 9. nlfit 10. mask_classify Kwon, hun ki Stages 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. nuc_t1_native skull_masking_native stx_register stx_tal_to_7 stx_tal_to_6 tal_t1 nuc_inorm_t1 skull_removal nlfit mask_classify pve_curvature pve reclassify segment cls_volumes cortical_masking segment_volumes surface_classify artefact 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. create_wm_hemispheres segment_mask expand_from_white_left expand_from_white_right slide_left_hemi_obj_back flip_right_hemi_obj_back slide_right_hemi_obj_back calibrate_left_white calibrate_right_white laplace_field gray_surface_left gray_surface_right mid_surface_left mid_surface_right surface_fit_error verify_image_nlfit gyrification_index_left verify_brain_mask classify_qc 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. dataterm_left_surface brain_mask_qc gyrification_index_right dataterm_right_surface surface_registration_left surface_registration_right mean_curvature_20mm_left mean_curvature_20mm_right thickness_tlink_20mm_right thickness_tlink_20mm_left resample_left_mean_curvature resample_right_mean_curvature resample_right_thickness resample_left_thickness lobe_area_right lobe_area_left verify_clasp verify_image 9.nlfit • • • • • Label: "creation of nonlinear transform" 실행명령: /progs/best1stepnlreg.pl(s) [options] source.mnc target.mnc output.xfm [output.mnc] mincresample inormalize minccalc mincblur Input : mni_icbm_00340_t1_final.mnc Output : mni_icbm_00340_t1_nlfit_lt.xfm best1stepnlreg.pl does hierachial non-linear fitting between two files you will have to edit the script itself to modify the fitting levels themselves 9.nlfit nlfit.log 9.nlfit Results T1_final icbm152 T1_to_icbm (nonlinear) T1_to_icbm on T1_final 10. mask_classify • Label: “tissue classification” • 실행명령: classify_clean transform_tags classify Clean_tag • Input : mni_icbm_00340_t1_final.mnc mni_icbm_00340_skull_mask.mnc • Output : mni_icbm_00340_clean.mnc • 의존성 : nlfit Steps involved: 1. call classify -min_dist to compute initial classification 2. correct standard tag file with min_dist classification 3. call classify -ann to compute final classification 10. mask_classify classify_clean [options] <in.mnc> [<in.mnc> ...] <classified.mnc> classify_clean -clobber -clean_tags -mask_classified -mask_tag -mask mni_icbm_00340_skull_mask.mnc -tag_transform mni_icbm_00340_t1_nlfit_lt.xfm mni_icbm_00340_t1_final.mnc mni_icbm_00340_clean.mnc <option> – – – – – – -clean_tags : clean tag file using mindist pre-classification [default is -noclean_tags] -mask_classified apply mask to intermediate and final classified volumes [default: nomask_classified] -mask <mask.mnc> : specify a mask volume -maskbinvalue : value of mask foreground [default: assume a binary mask] -mask_tag : apply mask to foreground tags prior to classification(s) [default: -nomask_tag] -tag_transform : non-linear transformation to map the tags from stereotaxic space to subject 10. mask_classify Results Sub-routine transform_tags Usage: transform_tags input.tag input.xfm [output.tag] [invert] transform_tags ntags_1000_prob_90_nobg.tag mni_icbm_00340_nlfit_It.xfm output.tag invert – Transforms the input tags by the input transform. If a fourth argument is present, then the inverse of the transform is used. The transformed tags are written to output.tag if specified, otherwise input.tag is overwritten. Sub-routine input.tag & output.tag Result Sub-routine clean_tag cleantag -oldtag /out_tag.tag -newtag /masked_standard.tag -mask /mni_icbm_00340_skull_mask.mnc -maskbinvalue 1 < Option > – oldtag : Specify the tag file to be cleaned – newtag : Specify the file name of the clean set of tag points – mask : Specify a mask to apply to the tag points – maskbinvalue : Value of mask foreground Default value: 1 Sub-routine masked_standard.tag Result Sub-routine classify Usage: classify <options> <infile1> [infile2] ... <outfile> classify -verbose -clobber -mask mni_icbm_00340_skull_mask.mnc -user_mask_value 0.5 -min -tagfile masked_standard.tag -fuzzy all mni_icbm_00340_t1_final.mnc mni_icbm_00340_t1_final_fuzzy.mnc < Option > – min : Use the 'Minimum Distance' classifier. – user_mask_value: Specify the mask value. (If the mask is a classified volume) Default value: 1 – tagfile: Input training points as tag file (.tag) – Fuzzy : Specify a string ex. '011...' to indicate classes for fuzzy classification. Sub-routine Results Sub-routine Results Sub-routine clean_tag Usage: cleantag [options] <fuzzy_class.mnc> <class_id> [<fuzzy_class.mnc> <class_id> ...] cleantag -oldtag /masked_standard.tag –newtag mni_icbm_00340_t1_final_fuzzy_cleaned.tag -mode 110 -threshold 0.7 -difference 0.3 -comment '-mode 110 -threshold 0.7 -difference 0.3' /mni_icbm_00340_t1_final_fuzzy_1.mnc 1 /mni_icbm_00340_t1_final_fuzzy_2.mnc 2 /mni_icbm_00340_t1_final_fuzzy_3.mnc 3 < Option > – oldtag : Specify the tag file to be cleaned – newtag : Specify the file name of the clean set of tag points – Mode : Specify a quoted string 'xyz' to denote tag rejection mode. – Each of x,y,z being 0 or 1, effects are additive. – – – – – x = 1, if tag class label <> voxel class (highest fuzzy voxel class), y = 1, if fuzzy voxel class < threshold, z = 1, if diff. between 2 highest fuzzy voxel classes < diff. threshold, Threshold : Set the fuzzy threshold rejection criterion Difference : Set the difference threshold rejection criterion Sub-routine Results Sub-routine cleantag -oldtag mni_icbm_00340_t1_final_fuzzy_cleaned.tag -newtag /masked_custom.tag -mask mni_icbm_00340_skull_mask.mnc maskbinvalue 1 Sub-routine Results Sub-routine classify -verbose -clobber -mask mni_icbm_00340_skull_mask.mnc -user_mask_value 0.5 -ann –tagfile masked_custom.tag %%%mni_icbm_00340_t1_final_fuzzy_custom.tag mni_icbm_00340_t1_final.mnc mni_icbm_00340_cls_clean.mnc < Option > -ann: Use the 'Artificial Neural Network' classifier. Sub-routine Results
© Copyright 2026 Paperzz