Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS Laboratoire CRISMAT A. Pautrat C. Goupil Ecole Normale Supérieure Paris P. Mathieu LEMA Tours A. Ruyter L. Ammor Laboratoire Léon Brillouin A. Brûlet Institut Laue Langevin C. Dewhurst I Introduction to vortex pinning and dynamics II A neutron diffraction study in low Tc materials III The peak effect in NbSe2 IV The surface pinning in Bi-2212 V Conclusions Vortex dynamics E=B. Vff FL V B I Vff V (mV) 3 Nb-Ta 0.3 T 4.2 K 2 0.2 T I c (B) 1 0.1 T 0 0 V= Rff(B,T) (I-Ic(B,T)) 5 10 I (A) 15 20 Typical disordered elastic system with pinning and sliding with the possibility to vary the intensity of the pinning by changing the magnetic field. But from the beginning: problems (shape of the IV, …) Here : Low temperature physics Neutron scattering, very difficult but quite simple to interpret (10 years) Neutron scattering Niobium B Bc2 Normal phase Bc1 Meissner T Nb-Ta Bi-2212 Cubitt, R. et al. Nature 365, 407-411 (1993). B(G) T. Giamarchi and P. Le Doussal, Phys. Rev. Lett. 72, 1530 (1994). and Phys. Rev. B 52, 1242 (1995). T. Klein et al., Nature 413, (2001) 404 Neutrons with current Nb-Ta singlecrystal P. Thorel and al., J. Phys. (Paris) 34, 447 (1973). A. Pautrat, Phys. Rev. Lett. 90, 087002 (2003). Neutrons with current Nb-Ta singlecrystal How flows the current? curl B = m0 J tan (Dw) = by / B = m0Jxe / B neutrons Ic/2 Ibulk=0 Ic/2 w B Ic/2 Ibulk=(I-Ic) Ic/2 A. Pautrat, et al. Phys. Rev. Lett. 90, 087002 (2003) surface pinning (Pb-In) C V(I) 1.2 V(mV) 1 0.8 0.6 Ic 0.4 0.2 0 0 2 4 6 8 I (A) 40 Surface treatments 30 IccI(Amp) (A) Bc2 (4.2 K) 20 10 0 0 0.1 0.2 0.3 B (T) 0.4 0.5 Why surface pinning? Normal rough surface 1000 Å q cr B ic (A/m) = e . sin qcr n Boundary conditions MS length ic lv l (moe/B)1/2 ao P. Mathieu et Y. Simon, Europhys Lett 5, 1988 ~ 0-100 A/cm Quantitative prediction Numerical solution of Ginzburg equations by Guilpin and Simon qcr 0.70 0.10 deg 0.7 0.6 0.5 k = 1Nb film 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 B / BC2 Quantitative analysis of the critical current due to vortex pinning by surface corrugation A. Pautrat, J. Scola, C. Goupil, Ch. Simon, C. Villard, B. Domengès, Y. Simon, B. Phys. Rev. B 69, 224504 (2004) What happens at high current? B 6 V(mV) 0.12 0A 0.1 0.08 4 3 20 A 0.06 V=Rff (I-Ic) 5 2 0.04 1 0.02 0 0 -0.5 0 0.5 1 0 1.5 5 w (deg) 400 300 200 100 0 1 2 3 4 5 6 0.8 0.6 0.4 0.2 I 0 0 2 250 Dw (deg) V (mV) Dw (deg) V (mV) 500 0 Rough surface 200 150 100 50 0 0 5 10 15 0.8 0.6 0.4 0.2 I 6 8 10 12 14 I (Amp) 16 20 1 c 4 15 I(A) Smooth surface 600 10 0 0 5 10 c 15 I (Amp) 20 20 25 30 V (mV) 2000 1500 1000 500 0 0 5 10 15 20 15 20 Inhomogeneous critical current Dw (deg) 0.6 0.5 0.4 0.3 I c min 0.2 0.1 <I > c 0 0 5 10 Ic2 Ic1 < I < Ic2 Ic1 Ic2 The peak effect in NbSe2 400 60 1.5T 2K 0.4T V(mV) V(mV) 40 200 1T 20 ZFC FC 0.3T 0 0 0 2 4 I(Amps) 6 8 10 0 1 2 3 4 5 6 I(Amps) Metastable states of a flux-line lattice studied by transport and small-angle neutron A. Pautrat, J. Scola, Ch. Simon, P. Mathieu, A. Brûlet, C. Goupil, M. J. Higgins, Phys. Rev. B 71, 064517 (2005) NbSe2 250 1/2 Jc=sinac e Bc (1-B/Bc2)/2 K 4.2K NbSe2 200 Jc(A/cm) 150 ac=0.9° 100 ac=9° 50 2 -2 2 Bc2(ac)=Bc2(0)/(cos q+g sin q) 2 tanq=g tana 1/2 g=3 0 0.8 1.0 1.2 1.4 1.6 1.8 B(T) 2.0 2.2 2.4 2.6 Iron doped NbSe2 250 1/2 Jc=sinac e Bc (1-B/Bc2)/2 K 4.2K NbSe2 200 Jc(A/cm) 150 ac=0.9° 100 ac=9° 50 2 -2 2 Bc2(ac)=Bc2(0)/(cos q+g sin q) 2 tanq=g tana 1/2 g=3 0 0.8 1.0 1.2 1.4 1.6 1.8 B(T) 2.0 2.2 2.4 2.6 T. Klein et al., Nature 413, (2001) 404 Bi-2212 Transport in the peak effect Bi-2212 Persistence of an ordered flux line lattice above the second peak in Bi2Sr2CaCu2O8+δ A. Pautrat, Ch. Simon, C. Goupil, P. Mathieu, A. Brûlet, C. D. Dewhurst, and A. I. Rykov Phys. Rev. B 75, 224512 (2007) Bi-2212 with columnar defects Microbridge 50mm 20 mm BF=1T 5K 0.4T Surface vortex depinning in an irradiated single crystal microbridge of Bi2Sr2CaCu2O8+δ : Crossover from individual to collective bulk pinning A. Ruyter, D. Plessis, Ch. Simon, A. Wahl, and L. Ammor Phys. Rev. B 77, 212507 (2008) Do columnar defects product bulk pinning? No, there is no bulk currents Do Columnar Defects Produce Bulk Pinning ? M. V. Indenbom, C. J. van der Beek, M. Konczykowski, and F. Holtzberg Phys. Rev. Lett. 84, 1792 (2000) Reversible magnetization A. Wahl et al., Physica C 250 163(1995) R. J. Drost et al, PRB 58 R615 (1998) Conclusions Very powerful technique Surface currents Peak effect = metastable states What is the limit of this stability? Noise measurements, ac response, Hall effects…
© Copyright 2026 Paperzz