A 33P tracing model for quantifying gross P transformation rates in soil Else K. Bünemann1 and Christoph Müller2,3 1 Institute of Agricultural Sciences, ETH Zurich, Eschikon 33, CH-8315 Lindau, Switzerland 2 School of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin, Ireland 3 Department of Plant Ecology (IFZ), Justus-Liebig University Giessen, Germany The challenge SOIL SOLUTION P (Pi + Po) MICROBIAL P (Pi + Po) INORGANIC P (Pi) ORGANIC P (Po) • Soil P dynamics: dominance of physicochemical processes • Main microbial processes: mineralization and immobilization => How can we quantify them? N mineralization and immobilization IMM. Mineral N MIN. t1 t2 MICROBIAL and ORGANIC N For N: • incubation and extraction (t1,t2); dNmin(t1,t2) = net N mineralization • 15N isotopic dilution methods: gross mineralization - gross immobilization = net N mineralization P mineralization and immobilization SOIL SOLUTION P IMM. MICROBIAL MIN. and ORGANIC P INORGANIC P (Pi) For P: • incubation and extraction (t1,t2); no accumulation of soil solution P due to buffering • 33P isotopic dilution technique: - assess gross rates (physicochemical and biological) - derive net organic P mineralization 33P isotopic dilution technique to measure gross and net organic P mineralization soil + H2O (1:10) • 100 min exp, extrapolate specific activity (33P/31P) in the soil solution => extrapolated SA (physicochemical processes) • incubate 33P- labeled soils => measured SA (physicochemical+biological processes) 100 90 80 E-value (mg P kg-1) = 1/SA 33P net 70 60 50 extrapolated E-value extrapolated E-value measured E-value Microbial P immobilization measured E-value + extrapolated E-value gross 40 30 20 10 0 0 10 20 time after labelling (d) 30 Oehl et al. SSSAJ 2001; Bünemann et al. SBB5 2007 Case study on organic P mineralization derived from: -isotopic dilution method -C mineralization Cambisol, pHH2O 5.5, 44% sand, 22% clay Mineral P input Treat- Annual plant P uptake kg P ha-1 yr-1 Microbial P immobilization Net P mineralization Net P mineralization --------- mg P kg-1 d-1 ---------------------- ment NK 0 6.2 b 5.5 a 2.7 a 0.36 ns NPK 17 16.6 a 2.2 b 0.9 b 0.39 ns 45 kg N ha-1 yr-1 83 kg K ha-1 yr-1 Uncertainty due to incomplete extraction of microbial P Bünemann Bünemannetetal. al.SBB SBB2012 2012 A numerical 33P tracing model Pof Pos Mf • Conceptual model with 5 P pools and 9 P transformations Ms Is If Pw Sf • Transformation rates: zero, first or second order (Michaelis Menten) kinetics Ss Df Ds Pif Pis • Initial pool sizes and tracer distribution based on measured values Ti Müller & Bünemann SBB 2014 • Markov Chain Monte Carlo method: «random walk in the parameter space» Entrapment in local minima avoided, e.g. two parameter space: 400 2000 0 D S 4000 Model parameter optimization 4 6 8 400 Ti 4000 Ds 200 2000 200 Müller et al. SBB 2007 Is Mf 0 0 density 1 2 => Probability function for -3 each parameter (mean and stdev) x 10 4000 400 2000 0 0 0.2 0.4 200 Observed vs. modelled values • Simulation of experimental data (31P and 33P in Pw and Pof): good agreement between measured and modeled values • Each pool defined by differential equations for change in 31P and in 33P/31P => transformation rates Müller & Bünemann SBB 2014 Conclusions from the modelling approach =0.77 mg P kg-1 d-1 Pof 0.19 0.27 Mf Pos lower than estimate based on C mineralization Is 0.04 Ms 0.31 If 0.84 Pw 0.0004 Sf Ss 0.44 0.29 Df Ds Pif • Net Po mineralization rate (NK) = 0.46 – 0.35 mg P kg-1 day-1 Pis Ti 0.31 =1.88 mg P kg-1 d-1 • Dominance of microbial immobilization and remineralization over slow mineralization/immobilization • Ratio of microbial to physicochemical processes in this soil (NK): about 1:2.5 Müller & Bünemann SBB 2014 Outlook Modelling approach allows application of isotopic dilution principles to non-steady-state conditions (baseline of extrapolated E-values not needed)
© Copyright 2026 Paperzz