Textbook: Phillps & Nagle Digital Control System Analysis & Design References: 1. B.C. Kuo : Digital Control System 2. Ogata : Discrete – time Control System 3. Katz : Digital Control Using Microprocessors(松崗) 4. Haykin : Adaptive Filter Analog Digital Discrete-time Continuous Discrete Sampled-data (Deterministic) (Probabilistic) Brief introduction Digital Computer – 1946 – (Vacuum Tube) Chapter 2 Discrete time systems & the Z-Transform dy yx dt dy yk yk 1 dt t y yk 1 RC k yk xk t t 1 yk yk 1 RC xk t t 1 1 RC RC a0 xk b1 yk 1 RC R y x Let a0 0.1 , b1 0.9 , y ( 1) 0 xk a0 yk b0 D yk 1 discrete-time approximation continuous-time - y=1-e t RC Amortization y (k ) --- the money owed after the kth payment u (k ) --- the amount of the kth payment r --- interest rate u (k ) P , k 1, 2,....N y (0) is the initial debt assume y (0) d moreover u (1) P y (1) (1 r ) y (0) u (1) or y (1) (1 r )d P y(2) (1 r ) y(1) P (1 r) (1 r)d P P (1 r) 2 d (1 r) P P …………… (1 k ) k 1 y (k ) (1 r ) d P r k kN y( N ) 0 (1 k ) N 1 (1 r ) d P r N N r (1 r ) ∴ P d N (1 r ) 1 If d 100000 r 0.01 (1%) N 10 P 10570 ,k 1, 2,...., N Cadzon , Discrete Time system Model of Rabbit Papulation y (k ) y (k 1) y (k 2) y (k ) --- No of pairs of rabbit present at the end of Kth month e (t ) A/D Digital Computer D/A m(t ) sensor e (t ) e(kt ) X (k 1)T (k 1)T kT t (k 1)T Plant t m(t ) K P e(t ) K I e(t )dt 0 x(kT ) x (k 1)T Te(kT ) PI controller x is the approximation of the integral of e(t) t kT m(kT ) K P e(kT ) K I x(kT ) K P e(kT ) K I x (k 1)t K I Te(kT ) ( K P K I T )e(kT ) K I x (k 1)T Difference Equations V.S. Differential Equations x(k ) bn e(k ) bn 1e(k 1) ... b0e(k n) an 1 x(k 1) ... a0 x( k n) d n e(t ) y (t ) k ... 0 e(t ) n dt d n e(t ) dy (t ) n ... 1 dt n dt Digital compensator design: two approaches • Design an analog compensator, then convert it into a digital one • Design digital compensator with exact methods Control Engineers need to • Determine T, the sampling period; • Determine n, the order of the difference equation; • Determine ai and bi . The design of digital compensator also have the following problems • Computer wordlength • Round off e* (t ) e(0) (t ) e(T ) (t T ) e(2T ) (t 2T ) ... E * ( S ) e(0) e(T )e ST e(2T )e 2 ST ... Let Z e ST E ( Z ) Z e(kT ) e(0) e(1) Z 1 e(2) Z 2 ... e( k ) Z k k 0 e (t ) e (t ) t e* (t ) Fundamentals of z transform • Will work on the board 2.5 Solution of Difference Equation EX2.8 m(k ) e(k ) e(k 1) m(k 1), k 0 1, k even e( k ) 0, k odd k 0 , m(0) e(0) e( 1) m( 1) k 1 , m(1) e(1) e(0) m(0) • A MATLAB program segment like the following • Can do the job. m(k ) an 1m(k 1) ... a0 m(k n) bn e(k ) bn 1e(k 1) ... b0e(k n) 1 1 M ( Z ) an 1Z M ( Z ) ... a0 Z M ( Z ) 1 1 bn E ( Z ) bn 1Z E ( Z ) ... b0 Z E ( Z ) bn bn 1Z 1 ... bn Z n E (Z ) M (Z ) n 1 1 an 1Z ... an Z • By long division, will work on the board. What do initial conditions here mean?
© Copyright 2025 Paperzz