Equations of Lines Slope of a line

AP Calculus AB
Prerequisite Chapter
Assignments
Date
Topics
8/26 •Identify the library of functions
8/27 •Evaluate and graph functions and
their transformations
•Find and graph equations of lines,
including parallel and
perpendicular lines, using the
concept of slope.
8/28 •Find trigonometric values and
graph trigonometric functions
Assignment
WS #1
WS #2
WS#3
WS #1
Complete the following chart.
NAME
EQUATION
f(x) =
DOMAIN
RANGE
Linear Function
D:
R:
Constant
Function
with a y=int of 2
D:
R:
Square Function
D:
R:
Cube Function
D:
R:
Absolute Value
Function
D:
R:
NAME
Logarithmic
Function
EQUATION
f(x) =
DOMAIN
RANGE
y  ln x
D:
R:
Exponential
Function
y  ex
D:
R:
Reciprocal
Function
D:
R:
Square Root
Function
D:
R:
Reciprocal
Function
Squared
D:
R:
Day 2 Notes
Learning Target
•Evaluate and graph functions and their transformations
•Find and graph equations of lines, including parallel and perpendicular lines, using the
concept of slope.
𝑦 = 𝑎 ∙ 𝑓(𝑥 − ℎ) + 𝑘 or 𝑦 = 𝑓(𝑎(𝑥 − ℎ)) + 𝑘
Transformation
How does the
equation change?
Give an example using
the function f ( x)  x
(Shift up 2 units)
Vertical Shift (Up)
y = f(x) + k
(Shift down 2 units)
Vertical Shift (Down)
y = f(x) – k
(Shift right 2 units)
Horizontal Shift
(Right)
y = f(x - h)
(Shift left 2 units)
Horizontal Shift
(Left)
y = f(x +h)
Reflection about the
x-axis
y = - f(x)
Reflection about the
y-axis
y = f(- x)
Sketch the change in
the function from
the parent function.
Equations of Lines
Slope of a line (Rate of change)
m
y2  y1
x2  x1
Point-Slope Form of a Line
Slope Intercept Form of a Line
y  y1  m  x  x1 
y  mx  b
Horizontal Lines
Vertical Lines
yc
xc
Parallel Lines
Perpendicular Lines (Normal Line)
- Same slope
- Opposite reciprocal slope
WS #2 (no calculator allowed)
1. Find the slope of the line passing through the points (-2, 3) and (6, -1).
2. Find the slope and y-intercept of the line
6x  2y  8 .
3. Find an equation of the line that passes through the points (1, 2) and (3, 8).
4. Write an equation of the line containing the point (4, 1) that is:
a. parallel to y  2x  3
b. perpendicular to
c. vertical
d. horizontal
y  2x  3
Graph the following translations (without a calculator).
3
5. y  x 2  3
6. y  x  2
7. y    x  4   1
8. y   x  2
9. y  2 x
10. y  3 x  1
Day 3 Notes
Trig Review
Learning Targets:
•Find trigonometric values and graph trigonometric functions
Complete the following table:
Degrees
0
30
45
60
90
180
270
360
Radians
Label the sides of the triangles:
45°
30°
60°
Label the Quadrantals:
45°
Sketch the following graphs. Label critical points.
y = sin x
y = cos x
y = tan x
y = csc x
y = sec x
y = cot x
Find the following without a calculator:
5
3
2.
3
2
1.
cos
4.
Find all values of  in the interval 0, 2  for cos  
tan
3.
sec

6
2
.
2
Identify the amplitude, period, phase shift, and vertical shift and then graph each of the
following. Label critical values.
5.


y  sin  x    1
2

A=
VS=
PS=
P=
s=
e=
6.
A=
VS=
PS=
P=
s=
e=
1
y   cos  x   1
2
WS #3
Find the value of each of the following without using a calculator.

1.
sin
4.
sin
7.
cos3
10.
sin
3

2
7
6
2.
tan

4
3.
sec

6
5.
tan
2
3
6.
cos
5
6
8.
sin
4
3
9.
cot
5
4
11.
sec
11
6
12.
csc
5
3
Find all values of  in the interval 0, 2  for each of the following.
13.
sin  
2
2
14.
cos   
16.
csc  1
17.
sec  2
1
2
15.
tan   0
18.
cot   
1
3
19.
sin   0
20.
cos  1
21.
tan    3
22.
csc  2
23.
sec   undef .
24.
cot   0
Graph the following. Identify the amplitude, period, phase shift, and vertical shift.
25.
1 
y  3sin  x 
2 
A=
VS=
PS=
P=
s=
e=
27.
A=
VS=
PS=
P=
s=
e=
26.
y  tan 3x
A=
VS=
PS=
P=
s=
e=


y  2sin  x  
4

28.
A=
VS=
PS=
P=
s=
e=
y   cos 2 x  1