JOURNAL OF PETROLOGY VOLUME 40 NUMBER 7 PAGES 1151–1185 1999 Evolution of Mg/Fe Ratios in Late Variscan Plutonic Rocks from the External Crystalline Massifs of the Alps (France, Italy, Switzerland) FRANÇOIS DEBON∗ AND MARIE LEMMET LABORATOIRE DE GÉODYNAMIQUE DES CHAÎNES ALPINES, UPRES-A CNRS 5025, INSTITUT DOLOMIEU, 15 RUE MAURICE-GIGNOUX, 38031 GRENOBLE CEDEX, FRANCE RECEIVED MARCH 18, 1998; REVISED TYPESCRIPT ACCEPTED FEBRUARY 1, 1999 Late Variscan plutonic bodies are widespread in the External Crystalline Massifs of the Alps (Argentera, Pelvoux, Belledonne, Grandes Rousses, Mont Blanc, Aiguilles Rouges, Aar, Gotthard). They can be classified on the basis of their Mg/(Fe + Mg) ratio and mafic mineral content (expressed by the B = Fe + Mg + Ti parameter). Together with available ages of emplacement, this classification highlights the existence of two plutonic suites, one early, Viséan (~330–340 Ma), and highly magnesian, the other later, mainly Stephanian (~295–305 Ma), and more ferriferous. This evolution from a magnesian plutonism to a more ferriferous one, which also occurs in other Variscan massifs (e.g. Corsica), might be accounted for by a combination of factors related to the nature of the source of the magmas, the physical and chemical conditions of melting, and the Late Variscan geodynamic setting. As a basis for these considerations a comprehensive review is presented of all the External Crystalline Massifs and their Late Variscan intrusions. The External Crystalline Massifs of the Alps or ECM belong to the Helvetic domain, bounded to the east by the Frontal Penninic Thrust (von Raumer, 1984; von Raumer et al., 1993; Ménot et al., 1994). From south to north, they are the Argentera, Pelvoux, Belledonne, Grandes Rousses, Mont Blanc and Aiguilles Rouges massifs (Western Alps), and the Aar and Gotthard massifs (Central Alps) (Fig. 1). They appear as dome-like structures of crystalline basement surrounded by a mostly Mesozoic sedimentary cover. As a whole, they define an arcuate structure, possibly inherited from the Variscan orogeny (Bogdanoff et al., 1991). During the Variscan orogeny, the ECM were part of the Helvetic–Moldanubian terrane of the internal zone of the Variscides (von Raumer & Neubauer, 1993). Precambrian metamorphic units and Precambrian to Palaeozoic sediments, interlayered with volcanic and ultramafic rocks, display in most areas a polymetamorphic history and underwent a highly complex pre-Variscan and Variscan evolution. Although they share a number of similarities, the ECM each have also specific characteristics (von Raumer et al., 1993). In addition to orthogneisses deriving from Early Palaeozoic plutonic (and volcanic?) protoliths (Bussy & von Raumer, 1993; Sergeev & Steiger, 1993; Barféty et al., 1999), the ECM are characterized by a widespread group of plutons, mainly emplaced during the Carboniferous associated with Late Variscan strike-slip tectonics (Bonin et al., 1993; von Raumer et al., 1993; Bonin, 1997). Debon et al. (1994, 1998) have suggested the existence of two suites of Late Variscan plutons in the ECM, one early, Viséan (~330 Ma), and highly magnesian, the ∗Corresponding author. Present address: 3, Chemin du Magnit, 38490 Le Passage, France. Telephone: +33-04-74-88-70-44. Oxford University Press 1999 Alps; geochronology; Late Variscan plutonism; major and trace element geochemistry KEY WORDS: INTRODUCTION JOURNAL OF PETROLOGY VOLUME 40 Fig. 1. Variscan basement in Central Europe [modified from von Raumer et al. (1993)]. External Crystalline Massifs: AA, Aar; AG, Argentera; AR, Aiguilles Rouges; BE, Belledonne; GO, Gotthard; GR, Grandes Rousses; MB, Mont Blanc; PE, Pelvoux. Other Variscan massifs: BF, Black Forest; BM, Bohemian massif; CM, French Massif Central; CO, Corsica; MA, Maures–Tanneron; VO, Vosges. other later, mainly Stephanian (~300 Ma), and more iron rich. The aim of this study is better to constrain this hypothesis on the basis of a large set of data taken from the literature and to discuss its petrogenetic and tectonic implications. Accordingly, the main geological, petrographical, geochemical (major and trace elements), and chronological features of up to 68 plutonic bodies are reviewed, allowing a comprehensive and renewed appraisal of the Late Variscan plutonism of the ECM. GEOLOGICAL SETTING, TYPOLOGY AND CHRONOLOGY OF THE LATE VARISCAN PLUTONIC BODIES In the ECM as a whole, Late Variscan plutonic bodies occur as intrusions of various shapes (from roughly elliptical to almost linear) and sizes (from <1 km2 up to 550 km2), displaying sharp contacts and a conformable or a cross-cutting relationship with the country rocks. They mainly consist of massive or foliated, light-coloured, biotite monzo- and syenogranites (Table 1). Intermediate and mafic rocks with biotite and amphibole are subordinate, and pyroxene-bearing types are almost completely absent except in the Argentera massif. Most of the granites enclose mafic igneous enclaves, although these are highly variable in proportion. The average contents of quartz, mafic minerals and feldspars, and the nomenclature of the main rock types making up the studied plutonic bodies are recorded in NUMBER 7 JULY 1999 Table 1. These features were determined from the average chemical compositions (Table 2), using the classification of Debon & Le Fort (1983, 1988). Because they depend on the available chemical analyses, they may be, in some cases, not really representative of the entire plutonic bodies. In addition, the nomenclature thus defined sometimes differs from the name given in current use to an intrusion. To make the discussion clearer, the names ‘adamellite’ and ‘granite’ recommended by Debon & Le Fort (1983) have been replaced by their approximate equivalents, i.e. ‘monzogranite’ and ‘syenogranite’, respectively. Only those plutonic bodies for which chemical data and/or radiometric ages of emplacement are available appear in Tables 1 and 2. Some 900 chemical analyses (major and trace elements) of Late Variscan plutonic rocks from the ECM were compiled from the literature, and are available on the Journal of Petrology Web site. The data include the granites and, in some cases, their mafic igneous enclaves (average compositions in Tables 2 and 4, below). Altogether, these rocks display a wide compositional range, from gabbro to syenogranite, and define a subalkaline [or alkali–calcic (Peacock, 1931)] suite, i.e. intermediate between the calcalkaline and alkaline trends (Fig. 2). This suite clearly differs from typical calc-alkaline series such as that defined by the Late Variscan plutonic rocks of the Pyrenees (Debon & Enrique, 1996). Actually, it is a composite suite comprising also a few peraluminous bodies (some of the Pelvoux plutons; Montenvers, Vallorcine and Cacciola granites). The mg-number–B diagram of Debon & Le Fort (1988) plots the Fe + Mg + Ti parameter (B), proportional to the weight content in mafic minerals (de la Roche, 1964), against the Mg/(Fe + Mg) ratio (mg-number). A ‘critical line’ separates a magnesian igneous domain from a ferriferous one (Fig. 3). The use of this diagram led us to the recognition of three groups of plutonic bodies in the ECM, namely, magnesian (Mg), magnesian–ferriferous (Mg–Fe) and ferriferous (Fe), according to the positions of their plots (average compositions) above, close to and below the ‘critical line’, respectively. Highly ferriferous granites remain, however, almost completely absent in the ECM. The ages of the Late Variscan plutonic bodies of the ECM are recorded in Table 2. Only those results considered to indicate the age of emplacement were selected from the literature, namely, those obtained by U–Pb on zircon, titanite or monazite, lead-evaporation on single zircon, and Rb–Sr whole-rock isochron. Ar–Ar, K–Ar and Rb–Sr mineral ages were discarded because of isotopic disturbances during the Alpine orogenesis (Hunziker et al., 1992; Schaltegger, 1994). In the following sections, the studied plutonic bodies are numbered as in Tables 1 and 2. 1152 DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS Table 1: Geological setting and petrography of plutonic bodies from the External Crystalline Massifs Plutonic body Approximate Geological Characteristic Quartz Mafic area minerals % minerals spars rock % type setting (km2) Feld% Major Argentera massif 1: Malinvern–Argentera ? sheets, dykes, plugs bi, cpx, am, tit, all metamonzonites 2: Central (or Argentera) granite 50 bi, ms, ± ga pluton 7·6 41·2 51·2 ± 7·8 ± 9·6 ± 1·9 33·6 4·0 62·4 ± 13·4 ± 3·3 ± 16·1 qsy ad Pelvoux massif 3: Bans granite 4: Claphouse granite 4 9 5: Colle Blanche–Moutières granite bi, ± am, all pluton bi, ± ms pluton part of a plutonic complex bi, ± ms 10 6: Colle Blanche–Moutières part of a plutonic complex bi, am, tit quartz monzonite 7: Combe Guyon (or Alfrey) 2 pluton bi, ms granite 8: Combeynot granite < 20 main part of a pluton bi, all, mt (coarse-grained type) 26·3 12·8 60·9 ± 0·2 ± 7·6 ± 7·4 33·1 13·6 53·3 ± 2·3 ± 3·1 ± 2·7 26·1 8·1 65·8 ± 5·1 ± 5·6 ± 6·6 19·2 25·6 55·2 ± 8·2 ± 12·5 ± 11·7 35·1 7·3 57·6 ± 7·3 ± 7·1 ± 10·7 32·7 9·9 57·4 ± 5·6 ± 3·3 ± 8·3 ad gr ad qmz ad gr 9: Graou granite 1 pluton bi 30·2 11·2 58·6 ad 10: Grun de Saint Maurice granite 6 pluton bi, ms 29·7 8·5 61·8 ad ± 3·1 ± 3·7 ± 5·5 4 pluton bi, ms 29·3 6·6 64·1 ± 4·7 ± 3·6 ± 2·8 (porphyritic type) 11: Péou de Saint Maurice granite 12: Quatre Tours granite 13: Riéou Blanc granite 2 8 pluton bi, ms bi, ± ms part of a pluton (coarse-grained type) 14: Riéou Blanc granite 2 part of a pluton bi, ms (fine-grained type) 15: Rochail granite < 34 bi, (± ms), ± tit pluton (dominant type) 16: Bérarde–Promontoire granite 17: Berches granite 18: Bourg granite 19: Cray granite 20: Etages granite 40 4 6 3 30 bi, ± ms pluton pluton bi, ms bi, ± am, all pluton bi, ms, cd, ± ga pluton bi, (± ms), ± ga pluton 31·4 6·7 61·9 ± 5·8 ± 4·9 ± 3·6 30·4 10·9 58·7 ± 5·6 ± 5·4 ± 4·3 30·0 9·5 60·5 ± 5·3 ± 4·1 ± 6·2 27·6 6·9 65·5 ± 3·3 ± 3·1 ± 5·0 34·2 5·3 60·5 ± 4·9 ± 4·6 ± 4·3 34·3 5·6 60·1 ± 2·8 ± 2·8 ± 3·5 26·2 16·5 57·3 ± 2·8 ± 3·5 ± 4·5 35·1 3·5 61·4 ± 3·3 ± 2·0 ± 1·9 34·7 5·9 59·4 ± 4·0 ± 5·2 ± 5·1 ad ad ad gr ad ad gr gr gr gr 21: Gioberney granite 5 pluton bi, ± ms 31·4 6·4 62·2 gr 22: Orgières granite 4 pluton bi, ± am, all 24·4 17·2 58·4 ad ± 5·6 ± 9·6 ± 8·6 20 pluton bi, (± ms) 33·6 8·2 58·2 ± 3·5 ± 3·8 ± 4·4 23: Pelvoux–Pic de Clouzis (or Ailefroide) granite 1153 gr JOURNAL OF PETROLOGY VOLUME 40 NUMBER 7 JULY 1999 Table 1: continued Plutonic body Approximate Geological Characteristic Quartz Mafic area minerals % minerals spars rock % type setting (km2) Feld% Major 24: Pétarel granite 5 pluton bi, ms 37·9 8·3 53·8 gr 25: Pic de Valsenestre granite 6 pluton bi, (± ms) 26·7 15·5 57·8 ad ± 3·5 ± 3·0 ± 2·3 26: Turbat–Lauranoure granite 33 pluton bi, ± ms 32·8 8·0 59·2 ± 5·6 ± 5·7 ± 2·7 gr Belledonne massif 27: Sept Laux granite bi, ± ms pluton 95 28: Sept Laux granite mafic enclaves 29: Saint Colomban granite (porphyritic type) am, bi, tit, all main part of a pluton bi, ± am, ± ms, tit, all < 60 30: Saint Colomban granite mafic enclaves 31: La Lauzière granite am, bi, all, tit part of a pluton bi, (± ms), tit 25 32: La Lauzière quartz syenite part of a pluton bi, am, tit 26·9 6·9 66·2 ± 5·9 ± 4·1 ± 4·1 12·6 52·2 35·2 ± 10·6 ± 32·6 ± 27·6 23·6 14·2 62·2 ± 8·0 ± 6·6 ± 5·5 6·1 40·7 53·2 ± 10·5 ± 22·0 ± 21·5 28·7 7·5 63·8 ± 10·7 ± 7·3 ± 6·1 8·5 29·1 62·4 ± 7·9 ± 17·1 ± 16·5 ad qmz ad mz gr qsy Grandes Rousses massif 33: Alpetta granite 34: Roche Noire–La Fare granite >8 >7 bi, (± ms), ± tit pluton bi, ± ms, ± tit pluton(s) 23·9 13·1 63·0 ± 6·5 ± 10·1 ± 7·4 30·1 6·5 63·4 ± 7·7 ± 7·1 ± 5·3 ad ad Mont Blanc massif 35: Montenvers granite 8 36: Mont Blanc granite pluton bi, ms (?) 32·8 7·2 60·0 ad main part of a pluton bi, (± am), all 30·5 8·0 61·5 ad ± 4·3 ± 1·9 ± 4·4 part of a pluton bi, all 34·3 6·9 58·8 ± 3·9 ± 1·4 ± 3·8 (central type) 37: Mont Blanc granite (border type) < 225 38: Mont Blanc granite mafic enclaves 39: Mont Blanc granite bi, am, all, tit mafic enclaves bi, (± am), all, tit 16·5 33·7 49·8 ± 9·1 ± 15·8 ± 9·7 18·3 22·8 58·9 ± 13·8 ± 14·8 ± 10·0 ad qmzd qmzd Aiguilles Rouges massif 40: Pormenaz monzonite 41: Vallorcine granite 2 < 10 pluton am, bi, tit, mt 13·1 27·1 59·8 qsy main part of a pluton bi, ms, ± (and, sil) 28·9 10·7 60·4 gr ± 7·5 ± 7·0 ± 7·3 (porphyritic type) Aar massif 42: Giuv syenite 43: Punteglias granite 44: Punteglias diorite 45: Tödi granite 46: Brunni granite 47: Düssi diorite 48: Schöllenen diorite 6 10 <1 pluton pluton pluton 3 pluton ? bi, am, tit, all mafic stocks <1 3 bi, am, tit, all am, bi, all, tit bi ?, all plutonic complex am, bi, tit, all mafic enclaves am, bi, tit 1154 8·7 33·5 57·8 ± 7·5 ± 16·4 ± 12·7 24·1 13·7 62·2 ± 9·9 ± 13·9 ± 4·1 11·3 71·2 17·5 ± 8·1 ± 83·5 ± 91·6 28·1 5·1 66·8 ± 18·0 ± 6·0 ± 11·9 5·4 53·3 41·3 ± 15·6 ± 35·4 ± 27·7 16·1 54·7 29·2 qsy gr qmz ad mzd qmzd DEBON AND LEMMET Plutonic body EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS Approximate Geological Characteristic Quartz Mafic area minerals % minerals spars rock % type setting (km2) 49: Voralp granite 10 50: Central Aar granite part of a plutonic complex bi, all, tit part of a plutonic complex bi, all, tit, ± ga (Central granite s.l.) 52: Central Aar granite part of a plutonic complex bi, all, tit (Central granite s.s., main type) 53: Central Aar granite part of a plutonic complex bi, ga (Southern border granite) 54: Central Aar granite <550 % Major pluton (Grimsel granodiorite) 51: Central Aar granite Feld- part of a plutonic complex bi, ga (Central granite s.s., leucocratic 20·7 14·3 65·0 ± 6·3 ± 3·2 ± 3·7 25·9 11·4 62·7 ± 6·8 ± 6·1 ± 4·5 30·2 7·6 62·2 ± 3·0 ± 1·2 ± 4·1 30·9 7·1 62·0 ± 6·2 ± 2·2 ± 4·3 33·6 4·0 62·4 ± 3·8 ± 1·6 ± 2·8 gd gd ad ad ad type) 55: Central Aar granite dykes and stocks bi, flu, ga (Aplite, fine-grained leucogranite) 56: Central Aar granite part of a plutonic complex bi, flu, ga (Northern border granite) 57: Central Aar granite part of a plutonic complex bi, flu, ga (Mittagflue granite) 58: Central Aar granite part of a plutonic complex bi, flu, ga (Kessiturm aplite) 59: Gastern granite 35 pluton 33·9 3·9 62·2 ± 3·0 ± 2·9 ± 3·5 34·3 4·4 61·3 ± 3·7 ± 3·8 ± 3·1 34·1 3·2 62·7 ± 4·6 ± 1·2 ± 5·2 34·7 3·2 62·1 ± 4·1 ± 1·5 ± 3·1 gr ad gr ad bi, tit Gotthard massif 60: Fibbia granite 61: Gamsboden granite 8 pluton 34·7 10·9 54·4 13 pluton 30·7 8·9 60·4 ad part of a plutonic complex 33·1 10·7 56·2 ad 24·7 20·2 55·1 gd 36·7 7·0 56·3 ad 29·9 5·2 64·9 gr 62: Medel granite gr 40 63: Cristallina granodiorite part of a plutonic complex 64: Cacciola granite 2 pluton 65: Rotondo granite 26 pluton 66: Sädelhorn diorite < 0.6 bi, ms, ga 7·4 38·6 54·0 mzd 67: Tremola granite 2 dyke pluton bi, tit, ga 33·3 8·8 57·9 gr 68: Winterhorn granite 1 pluton 31·8 2·5 65·8 ad Characteristic minerals: all, allanite; am, amphibole; and, andalusite; bi, biotite; cd, cordierite; cpx, clinopyroxene; flu, fluorite; ga, garnet; ms, muscovite; mt, magnetite; sil, sillimanite; tit, titanite. Sources of data: 1, Lombardo et al. (1997), B. Lombardo (personal communication, 1997); 2, Faure-Muret (1955); 3–26, Le Fort (1973), Debelmas et al. (1980), Barféty, Pêcher et al. (1984), Boisset (1986), Costarella (1987), Barféty et al. (1989); 27–32, Debon et al. (1998, and references therein); 33–34, Giorgi (1979); 35, F. Bussy (personal communication, 1997); 36–39, Marro (1986), Bussy (1990); 40, Bussy et al. (1998); 41, Poncerry (1981), Brändlein et al. (1994); 42–59, Schaltegger (1989, 1990a, 1993), Schaltegger & von Quadt (1990), Schaltegger et al. (1991), Schaltegger & Corfu (1992, 1995); 60–68, Oberli et al. (1981), Bossart et al. (1986), S. A. Sergeev (personal communication, 1998). Proportions by weight of quartz, mafic minerals and feldspars calculated from the chemical composition of the different plutonic bodies (Table 2; La Roche, 1964; Debon & Le Fort, 1983, 1988). Standard deviations at ±2r. Rock types determined from the average chemical compositions (Table 2) [refer to the classification of Debon & Le Fort (1983, 1988)]. Abbreviations: ad, adamellite (~monzogranite); gd, granodiorite; gr, granite (~syenogranite); mz, monzonite; mzd, monzodiorite; qmz, quartz monzonite; qmzd, quartz monzodiorite; qsy, quartz syenite. Argentera massif The Argentera massif (Fig. 4) is an elongate body extending N 125°E for ~55 km (Faure-Muret, 1955; Bogdanoff et al., 1991, and references therein). It comprises four generally vertical metamorphic units, trending N120–140°E, composed of migmatites, gneisses, orthogneisses (commonly of the augen type), mica schists and amphibolites with eclogitic relics. Migmatites formed in three successive stages, respectively pre-, syn- and postkinematic with regard to the Variscan thrusting phase of 1155 Plutonic n 4 2 2 5 24 17 5 7 1 9 22 10 3 3 16 46 7 27 4 43 1 28 8 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Pelvoux massif 3 1 Argentera massif body 1156 75·00 0·15 0·37 ±0·24 73·58 ±0·26 ±4·61 ±1·58 0·54 0·22 66·01 73·30 0·15 ±0·23 74·35 ±3·31 0·10 ±0·06 75·22 ±2·37 0·54 ±0·13 66·46 ±2·13 0·19 ±0·14 74·18 14·68 12·30 ±1·40 13·15 ±1·10 15·66 13·10 ±1·28 13·08 ±0·35 13·15 ±0·86 15·49 ±0·86 13·29 ±1·58 12·85 ±0·84 15·07 ±0·40 14·80 ±1·14 2·37 ±0·40 1·99 ±1·73 4·07 1·63 ±1·37 1·57 ±0·44 0·99 ±0·72 3·90 ±0·77 1·55 ±1·08 1·41 ±0·56 1·39 ±1·36 2·15 ±0·75 2·44 ±0·97 1·28 ±0·64 1·47 ±0·78 1·96 2·38 ±0·64 2·25 ±1·33 1·56 ±1·63 4·49 ±1·12 1·77 ±0·60 2·85 ±1·53 2·81 ±0·82 1·41 ±1·55 6·63 Fe2O3∗ 0·07 ±0·08 0·04 ±0·03 0·08 0·05 ±0·04 0·04 ±0·03 0·03 ±0·02 0·08 ±0·02 0·03 ±0·05 0·05 ±0·01 0·03 ±0·08 0·04 ±0·05 0·04 ±0·02 0·04 ±0·02 0·04 ±0·02 0·04 0·05 ±0·04 0·02 ±0·03 0·04 ±0·03 0·08 ±0·02 0·04 ±0·07 0·03 ±0·08 0·07 ±0·32 0·15 ±0·02 0·10 MnO 0·59 ±0·63 0·63 ±1·21 1·52 0·49 ±0·45 0·46 ±0·37 0·23 ±0·48 1·45 ±0·26 0·37 ±0·49 0·40 ±0·41 0·74 ±0·14 0·92 ±0·85 1·02 ±0·57 0·75 ±0·57 0·63 ±0·43 0·76 1·15 ±0·40 0·96 ±0·85 0·73 ±1·90 3·18 ±0·67 0·80 ±0·86 1·34 ±1·00 1·25 ±0·27 0·10 ±1·22 5·21 MgO 0·34 ±0·68 0·48 ±1·69 2·36 0·39 ±0·77 0·50 ±0·48 0·22 ±1·12 1·90 ±0·42 0·65 ±0·58 0·43 ±0·63 0·45 ±0·87 0·51 ±0·59 0·60 ±0·80 0·30 ±0·81 0·84 ±0·87 1·29 1·34 ±0·24 0·29 ±1·10 0·55 ±1·07 3·06 ±0·79 0·67 ±0·28 0·47 ±0·45 1·59 ±0·75 0·70 ±1·38 4·63 CaO 3·40 ±0·33 3·66 ±0·47 3·70 3·67 ±0·36 3·39 ±0·12 3·31 ±0·46 3·14 ±0·50 3·22 ±0·45 3·94 ±0·72 4·26 ±0·69 3·83 ±0·50 3·88 ±0·77 4·14 ±0·67 4·08 ±0·59 4·00 3·48 ±0·97 3·68 ±0·91 3·62 ±0·58 3·61 ±0·79 4·54 ±0·17 3·48 ±1·34 3·98 ±2·10 4·28 ±0·50 2·46 Na2O 4·34 ±0·68 4·62 ±1·07 3·92 5·15 ±0·87 4·93 ±0·16 5·33 ±0·88 4·68 ±0·73 5·17 ±0·64 4·49 ±0·57 4·76 ±1·20 4·63 ±0·31 4·28 ±0·96 4·31 ±0·95 4·47 ±0·92 3·92 4·39 ±0·65 4·67 ±0·43 4·33 ±1·20 4·16 ±1·14 4·27 ±0·35 4·28 ±1·33 4·18 ±1·32 4·00 ±0·66 6·42 K2O n.d. n.d. ±0·18 0·31 n.d. n.d. n.d. ±0·08 0·31 n.d. n.d. ±0·13 0·12 n.d. n.d. ±0·16 0·07 ±0·13 0·14 ±0·07 0·08 n.d. ±0·03 0·06 ±0·09 0·13 ±0·25 0·44 ±0·15 0·11 n.d. n.d. ±0·06 0·12 ±0·31 0·96 P2O5 LOI 1·32 ±0·37 1·23 ±0·80 1·45 0·90 ±0·41 0·87 ±0·31 0·78 ±1·08 1·92 ±0·32 0·86 ±0·57 0·74 ±0·49 1·07 ±0·46 1·55 ±0·47 1·50 ±0·58 1·30 ±0·55 1·00 ±0·54 1·16 1·40 ±0·29 1·17 ±0·80 1·21 ±0·95 1·99 ±0·55 1·20 ±0·29 1·73 ±0·03 1·11 ±0·34 0·55 ±0·34 0·98 (or H2O) 99·88 ±1·08 99·75 ±1·03 99·63 98·90 ±1·48 99·33 ±1·87 99·37 ±1·04 99·88 ±1·27 99·51 ±1·28 99·68 ±0·69 99·65 ±0·74 99·71 ±0·91 99·43 ±1·21 99·43 ±0·81 99·86 ±1·05 99·75 98·33 ±0·14 99·74 ±1·82 100·31 ±1·20 99·49 ±1·22 99·55 ±1·03 99·71 ±0·86 99·50 ±0·26 100·08 ±0·37 99·46 Total n.d. n.d. n.d. ±124 575 ±712 1480 n.d. ±423 523 ±104 361 ±195 1229 ±468 449 ±713 539 ±538 1253 ±300 961 ±323 882 ±414 1086 ±514 1160 ±344 1015 639 ±251 417 ±467 1089 ±1139 2169 ±990 1444 ±190 999 1345 Ba n.d. n.d. ±47 155 n.d. n.d. n.d. ±66 206 n.d. n.d. ±40 203 n.d. n.d. ±67 181 ±33 146 ±42 142 n.d. ±100 237 ±30 184 ±63 178 ±71 168 n.d. n.d. ±177 317 ±38 298 Rb n.d. ±100 164 ±275 594 n.d. ±84 100 ±23 83 ±269 453 ±59 75 ±112 65 ±230 465 ±204 371 ±163 434 ±251 337 ±277 550 ±118 415 474 ±41 102 ±265 291 ±493 992 ±330 584 ±239 309 366 ±34 37 ±179 663 Sr ±0·6 0·8 ±1·4 1·5 ±0·7 1·3 ±1·9 1·8 ±0·6 0·8 ±0·5 1·0 ±4·2 7·0 ±2·0 2·2 ±0·3 0·5 ±0·7 0·9 ±55·9 33·3 ±0·2 Sr 1·3 Rb/ 86 87 202 ±16 216 ±31 203 228 ±18 214 ±5 220 ±14 201 ±11 214 ±14 223 ±19 238 ±17 222 ±10 216 ±18 225 ±9 227 ±17 212 205 ±23 218 ±32 209 ±36 205 ±24 237 ±8 203 ±15 217 ±68 223 ±13 216 Na+K 0·46 ±0·05 0·45 ±0·07 0·41 0·48 ±0·06 0·49 ±0·01 0·51 ±0·08 0·49 ±0·07 0·51 ±0·05 0·43 ±0·06 0·42 ±0·10 0·44 ±0·05 0·42 ±0·09 0·41 ±0·09 0·42 ±0·08 0·39 0·45 ±0·10 0·46 ±0·06 0·44 ±0·07 0·43 ±0·09 0·38 ±0·03 0·45 ±0·16 0·41 ±0·18 0·39 ±0·06 0·63 (Na+K) K/ 46 ±21 45 ±53 95 35 ±29 33 ±11 19 ±20 92 ±16 31 ±26 29 ±17 39 ±23 53 ±30 60 ±27 37 ±20 37 ±20 47 62 ±19 55 ±39 40 ±69 142 ±31 45 ±17 75 ±42 71 ±18 22 ±53 229 B 0·61 0·33 ±0·19 0·37 ±0·12 0·41 0·37 ±0·27 0·35 ±0·43 0·27 ±0·08 0·42 ±0·14 0·32 ±0·27 0·33 ±0·11 0·51 ±0·13 0·47 ±0·19 0·44 ±0·12 0·54 ±0·20 0·44 ±0·09 0·43 0·49 ±0·05 0·46 ±0·15 0·47 ±0·08 0·58 ±0·15 0·47 ±0·17 0·48 ±0·07 0·46 ±0·22 0·10 ±0·02 Mg–Fe Mg–Fe Mg–Fe Mg–Fe Mg–Fe Mg–Fe Mg–Fe Mg–Fe Mg–Fe Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Fe Mg group ±11 343 ±7 312 ±? 295 ±8 337 ( Ma) mg-no. Plutonic Age ES, (XRF ) WA, MS XRF UZ UZ RS SZ Analytical methods NUMBER 7 ±2·34 0·12 ±0·22 75·24 ±3·43 0·24 ±0·12 71·53 ±1·49 0·24 ±0·32 71·04 ±2·44 0·36 ±0·21 70·64 ±1·59 14·50 ±1·26 15·02 ±0·93 15·54 13·73 ±1·26 13·85 ±1·83 14·06 ±1·01 15·25 ±0·83 15·63 ±1·11 14·31 ±0·04 15·32 ±1·42 13·39 ±0·66 14·35 Al2O3 VOLUME 40 ±3·03 0·21 ±0·14 72·55 ±2·87 0·22 ±0·14 71·95 ±0·14 ±2·20 ±2·89 0·32 0·31 70·69 70·10 0·24 ±0·10 72·56 ±1·41 0·24 ±0·21 73·86 ±3·82 0·58 ±0·21 62·65 ±4·47 0·25 ±0·15 70·27 ±0·32 ±1·30 ±3·32 0·52 ±0·13 ±1·99 70·70 0·40 68·81 0·15 ±0·27 75·24 ±2·51 1·32 ±0·34 56·40 TiO2 ±5·53 SiO2 Table 2: Average chemical composition and age of plutonic bodies from the External Crystalline Massifs JOURNAL OF PETROLOGY JULY 1999 Plutonic n SiO2 17 26 21 37 10 21 21 28 29 30 31 32 1157 25 15 46 10 28 48 36 37 38 39 10 41 49 4 2 42 43 44 Aar massif 1 40 1·05 ±0·42 50·95 ±7·50 0·43 ±0·44 68·63 ±0·42 ±6·25 ±7·26 0·96 57·95 0·42 ±0·26 70·00 ±3·30 60·01 1·13 0·84 ±0·55 62·91 ±9·27 0·97 ±0·33 59·12 ±7·18 0·22 ±0·06 74·22 ±1·96 0·27 ±0·07 72·45 ±1·96 0·27 ±0·27 ±5·94 73·27 0·24 ±0·20 72·56 ±5·22 67·16 Aiguilles Rouges massif 1 35 Mont Blanc massif 34 33 0·40 1·09 ±0·50 59·40 ±5·94 0·28 ±0·30 72·41 ±5·96 1·04 ±0·55 55·28 ±7·84 0·42 ±0·25 67·09 ±4·95 0·80 ±0·37 56·64 ±0·15 ±2·84 ±6·77 0·23 ±0·30 ±5·03 70·91 0·27 ±0·16 ±2·35 72·73 0·58 TiO2 66·49 Grandes Rousses massif 35 27 Belledonne massif 6 25 Pelvoux massif (continued) body ±9·19 13·65 ±0·50 14·68 ±1·45 15·00 ±1·20 15·33 16·19 ±2·16 15·94 ±1·03 15·86 ±0·84 12·99 ±0·84 13·83 14·21 ±1·87 14·46 ±1·56 16·26 ±2·49 15·80 ±2·26 14·34 ±3·61 15·78 ±1·75 16·12 ±3·02 12·49 ±0·87 15·07 ±1·85 13·61 ±1·48 15·78 Al2O3 ±2·99 8·21 ±2·21 2·68 ±2·33 5·73 ±1·63 2·56 4·99 ±3·68 6·12 ±2·59 6·70 ±0·39 1·96 ±0·45 2·30 2·00 ±1·36 1·32 ±1·42 2·40 ±2·06 4·77 ±1·44 1·60 ±2·95 6·77 ±1·29 2·89 ±1·63 6·00 ±0·72 1·60 ±1·38 2·04 ±0·85 3·89 Fe2O3∗ ±0·00 0·20 n.d. ±0·05 0·10 ±0·02 0·05 0·06 ±0·11 0·14 ±0·10 0·13 ±0·02 0·05 ±0·02 0·05 0·05 ±0·02 0·02 ±0·05 0·04 ±0·12 0·09 ±0·03 0·03 ±0·06 0·11 ±0·03 0·04 ±0·04 0·10 ±0·02 0·02 ±0·02 0·04 ±0·02 0·06 MnO 1·85 CaO 1·23 1·47 5·28 2·32 5·30 0·55 3·26 1·63 0·78 1·31 1·32 1·23 5·12 3·05 1·03 3·02 5·24 1·83 6·60 ±17·39 ±2·55 11·25 ±1·77 ±1·39 1·50 ±2·37 ±2·27 4·11 ±0·66 ±0·81 0·89 2·98 ±1·25 ±2·06 1·59 ±2·19 ±2·53 3·66 ±0·20 ±0·42 0·45 ±0·21 ±0·47 0·48 0·47 ±0·87 ±0·89 0·67 ±1·51 ±1·40 1·52 ±2·60 ±1·91 3·56 ±0·82 ±0·70 0·74 ±3·68 ±2·11 5·17 ±0·78 ±1·55 1·50 ±6·72 ±2·46 8·24 ±0·51 ±0·83 0·62 ±0·52 ±1·53 0·62 ±0·22 ±0·97 1·22 MgO ±3·25 2·35 ±1·02 3·63 ±0·90 2·66 ±0·74 3·39 3·19 ±1·40 4·22 ±0·87 3·41 ±0·40 3·52 ±0·35 3·60 3·50 ±1·06 3·98 ±0·98 3·98 ±1·18 3·54 ±0·53 3·86 ±1·53 4·01 ±0·65 3·98 ±1·17 2·51 ±0·60 4·20 ±0·35 3·28 ±0·45 3·44 Na2O ±0·57 3·10 ±1·41 5·10 ±1·10 5·91 ±0·67 5·02 5·73 ±1·75 3·53 ±1·41 3·10 ±0·91 4·40 ±0·49 4·76 4·51 ±1·55 4·61 ±1·40 4·36 ±1·85 6·11 ±0·97 5·25 ±1·39 3·80 ±0·92 4·02 ±2·31 4·75 ±1·16 4·30 ±0·58 4·76 ±0·79 4·14 K2O ±0·28 0·50 ±0·19 0·28 ±0·49 0·87 ±0·09 0·30 0·47 ±0·26 0·29 ±0·14 0·29 ±0·02 0·06 ±0·03 0·08 0·19 ±0·13 0·08 ±0·38 0·21 ±0·33 0·50 ±0·14 0·10 ±0·54 0·91 ±0·13 0·17 ±0·56 0·85 ±0·13 0·12 0·13 ±0·17 0·30 P2O5 LOI ±0·57 1·70 ±0·16 0·70 ±0·75 1·33 ±0·46 1·03 1·69 ±1·04 1·08 ±0·92 1·44 ±0·28 0·52 ±0·39 0·61 0·66 ±1·01 0·96 ±2·45 1·93 ±0·73 1·23 ±0·58 0·69 ±0·70 1·60 ±0·82 1·19 ±0·73 1·57 ±0·29 0·72 ±0·51 1·01 ±0·76 1·46 (or H2O) ±1·15 99·56 ±0·69 99·43 ±0·88 99·87 ±0·90 100·01 99·46 ±0·79 99·73 ±0·69 99·80 ±0·56 99·62 ±1·18 99·75 100·45 ±1·45 99·68 ±1·48 99·89 ±1·26 99·35 ±1·13 99·85 ±1·04 99·76 ±1·18 99·74 ±1·07 99·25 ±1·18 99·26 ±1·35 99·72 ±1·08 99·21 Total 841 ±1810 1610 ±806 1813 ±861 2508 n.d. 1971 ±325 386 ±238 591 ±117 401 ±182 505 375 ±491 1286 ±453 1147 ±1277 2425 ±499 497 ±1682 2169 ±602 848 ±1147 1936 ±680 1110 ±469 455 ±253 Ba ±106 153 ±59 257 ±116 340 ±129 254 273 ±220 373 ±184 212 ±60 220 ±69 267 235 ±81 192 ±70 188 ±83 238 ±103 238 ±57 178 ±74 190 ±129 249 ±87 175 213 ±44 162 Rb ±834 555 ±144 574 ±260 641 ±71 115 604 ±104 157 ±97 273 ±31 96 ±34 109 93 ±144 367 ±134 421 ±846 1066 ±314 293 ±836 1063 ±373 400 ±315 534 ±289 517 ±101 99 ±74 217 Sr Rb/ ±0·9 1·0 ±0·3 1·3 ±1·2 1·6 ±6·8 8·1 1·3 ±8·1 7·7 ±3·2 2·5 ±3·0 6·8 ±4·0 7·4 7·3 ±1·3 1·6 ±0·8 1·3 ±0·7 0·8 ±6·5 3·7 ±0·4 0·6 ±2·5 1·8 ±1·4 1·5 ±3·4 1·3 4·5 ±1·0 2·2 Sr 86 87 ±117 142 ±9 225 ±35 211 ±28 216 225 ±38 211 ±32 176 ±14 207 ±14 217 209 ±18 226 ±24 221 ±48 244 ±25 236 ±38 210 ±26 214 ±34 182 ±19 227 ±19 207 ±10 199 Na+K ±0·33 0·50 ±0·14 0·48 ±0·11 0·60 ±0·07 0·49 0·54 ±0·17 0·36 ±0·13 0·37 ±0·07 0·45 ±0·04 0·47 0·46 ±0·14 0·43 ±0·13 0·42 ±0·13 0·53 ±0·06 0·47 ±0·16 0·39 ±0·07 0·40 ±0·21 0·55 ±0·09 0·40 ±0·04 0·49 ±0·08 0·44 (Na+K) K/ 86 ±464 395 ±77 76 ±91 186 ±39 59 151 ±82 127 ±88 187 ±8 38 ±11 44 40 ±40 36 ±56 73 ±95 162 ±40 42 ±122 226 ±37 79 ±181 290 ±23 38 ±32 44 ±17 B ±0·29 0·69 ±0·14 0·50 ±0·06 0·58 ±0·09 0·40 0·54 ±0·08 0·33 ±0·10 0·51 ±0·10 0·31 ±0·06 0·29 0·32 ±0·25 0·46 ±0·11 0·54 ±0·09 0·59 ±0·18 0·46 ±0·12 0·59 ±0·08 0·50 ±0·13 0·71 ±0·13 0·42 ±0·15 0·36 ±0·04 0·38 Mg Mg Mg Mg–Fe Mg Fe Mg–Fe Mg–Fe Fe Mg–Fe Mg Mg Mg Mg Mg Mg Mg Mg Mg–Fe Mg–Fe group ±2·5 334 ±2·5 334 ±2·5 334 ±2 307 ±2 332 ±2 305 + 5/–3 306 ±3 304 + 6/–5 307 ±13 341 ±14 343 ±16 343 ±13 335 ±5 302 ( Ma) mg-no. Plutonic Age XRF XRF XRF XRF, ES ES, XRF ES, (XRF ) UZ UZ UZ UZM UZ UZ UZ UZ UZ LZ LZ LZ LZ UZ Analytical methods DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS 4·39 Na2O 4·64 K2O 0·09 P2O5 0·83 (or H2O) LOI 99·00 Total Ba 770 173 Rb 232 Sr 2·4 Sr 86 Rb/ 87 240 Na+K 0·41 (Na+K) K/ B 28 0·34 group 1158 5 5 9 21 3 2 1 61 62 63 64 65 66 Gotthard massif 60 56·03 75·10 74·19 65·61 72·13 72·75 72·98 2·19 0·37 0·08 0·49 0·31 0·33 0·33 12·61 16·14 12·98 13·87 15·88 14·53 13·69 13·78 ±1·65 0·95 8·14 1·70 2·01 4·78 2·52 2·72 2·76 ±0·44 0·04 0·16 0·06 0·07 0·08 0·03 0·04 0·04 ±0·02 0·05 ±0·02 0·16 3·43 0·11 0·50 1·85 0·96 0·46 0·88 ±0·14 0·18 ±0·14 0·54 5·07 0·67 0·44 3·75 1·62 1·58 1·63 ±0·64 0·63 ±0·25 0·36 ±1·18 4·01 4·55 4·12 3·55 3·49 3·25 3·86 2·82 ±0·28 3·77 ±0·64 3·84 ±0·44 4·96 2·97 5·19 4·16 3·29 4·35 4·25 4·82 ±0·24 4·70 ±1·59 4·83 ±0·48 4·40 ±0·99 0·03 0·36 0·25 0·02 0·15 0·09 0·12 0·25 ±0·02 0·02 ±0·04 0·02 ±0·04 0·02 ±0·05 0·40 ±0·22 0·29 ±0·26 0·38 ±0·25 0·35 ±0·31 98·58 99·04 100·55 98·89 99·37 99·79 99·80 100·29 ±1·22 99·24 ±0·46 98·84 ±1·27 99·38 ±1·61 98·94 ±1·81 318 130 14 437 466 379 318 ±452 204 ±198 145 ±335 164 ±547 435 ±206 156 79 260 259 142 150 199 199 ±102 284 ±101 275 ±107 220 ±100 207 ±55 239 ±72 156 379 51 9 181 114 155 147 ±79 43 ±59 27 ±100 43 ±91 85 ±42 67 ±58 10·3 0·6 14·7 83·3 2·3 3·8 3·7 3·9 ±79·8 43·8 ±33·9 43·7 ±50·5 31·5 ±26·2 12·2 ±8·5 11·4 ±1·7 3·0 ±24·8 210 243 203 182 197 215 193 ±9 221 ±15 226 ±18 223 ±15 221 ±8 222 ±8 216 ±7 224 0·37 0·30 0·45 0·44 0·38 0·47 0·42 0·53 ±0·03 0·45 ±0·11 0·45 ±0·04 0·42 ±0·11 0·48 ±0·03 0·46 ±0·20 0·40 ±0·05 0·41 ±0·09 63 214 29 39 112 59 50 60 ±8 18 ±6 18 ±21 25 ±16 22 ±9 22 ±12 39 ±7 42 ±34 0·36 0·46 0·11 0·33 0·43 0·43 0·25 0·39 ±0·15 0·27 ±0·19 0·24 ±0·21 0·24 ±0·18 0·31 ±0·09 0·25 ±0·10 0·33 ±0·15 0·32 ±0·09 Fe Fe Mg–Fe Mg–Fe Mg–Fe Fe Mg–Fe ? Mg–Fe Fe Fe Mg–Fe Fe Mg–Fe Mg–Fe Mg–Fe 308 + 5/–4 293 ±1·1 294·3 ±11 292 ±20 303 ±1·2 299·4 ±1·2 299·4 ±4 303 ±2·5 296·5 ±7 298 ±2 299 ±2 297 ±2 299 ±2 309 ±3 310 ±2 XRF UZ UZ UZ UZ UZ UZ UZ UZ UZ UZ UZ UT UZ UT UZ UZ NUMBER 7 59 0·09 ±0·04 75·95 ±2·86 1·02 ±0·41 0·25 ±0·40 3·57 ±0·90 0·39 ±0·34 720 ±408 92 ±68 218 ±12 0·34 ±0·04 14 2·38 0·04 ±0·03 0·66 ±0·66 0·03 ±0·02 99·04 ±2·06 212 ±84 2·1 ±2·6 ±18 58 12·51 ±1·86 0·07 ±0·01 75·62 1·38 ±0·86 0·26 ±0·32 4·75 ±0·23 0·53 ±0·64 546 ±129 231 ±152 ±0·05 79 Mg 13 12·69 ±2·12 0·03 ±0·03 3·75 ±0·32 0·08 ±0·03 98·85 ±1·21 141 ±67 ±11 0·33 0·74 Mg 57 0·10 ±0·13 75·59 ±3·04 1·08 ±0·71 0·66 ±0·30 4·04 ±1·99 0·55 ±0·23 912 ±498 ±1·0 221 303 ±0·20 0·63 ±0·15 17 12·73 0·21 ±0·13 4·05 ±1·44 0·07 ±0·01 99·29 ±1·96 ±110 1·4 0·43 ±196 296 ±34 XRF methods Analytical VOLUME 40 ±1·34 0·04 ±0·01 1·33 ±0·52 4·36 ±0·52 0·66 ±0·37 ±35 301 158 ±0·12 0·37 ±0·14 56 0·14 ±0·16 75·07 ±2·47 1·23 ±0·47 0·48 ±0·23 4·09 ±0·31 0·15 ±0·19 ±403 133 0·6 ±54 185 ±47 22 12·41 ±0·77 0·06 ±0·02 0·89 ±0·76 3·80 ±0·94 ±0·66 1111 545 ±0·2 0·5 ±2·5 55 0·13 ±0·04 74·98 ±2·68 1·92 ±0·61 0·50 ±0·30 4·24 ±0·61 ±0·35 98·86 122 ±33 750 ±204 13 13·53 ±1·09 0·07 ±0·03 1·96 ±1·11 ±0·05 0·82 1524 ±61 127 ±28 54 0·26 ±0·12 72·77 ±3·77 2·10 ±0·28 0·85 ±0·61 ±0·57 0·18 99·47 ±1396 1527 ±1172 6 13·40 ±0·23 0·07 ±0·02 ±0·44 3·39 n.d. ±1·67 100·86 ±2·53 53 0·26 ±0·04 72·56 ±1·60 2·95 ±1·42 ±1·31 4·61 0·14 ±1·62 2·37 ±0·38 9 14·82 ±1·76 ±0·22 2·63 3·23 ±0·85 0·71 ±0·03 52 0·44 ±0·24 69·34 ±4·88 ±0·01 0·99 2·77 ±1·89 3·29 ±0·62 39 ±0·91 0·08 6·79 ±0·79 3·57 ±1·85 51 ±1·30 3·80 8·78 ±2·88 6·88 ±0·78 Fe 0·57 ±0·16 66·17 ±3·39 15·61 0·16 ±6·92 7·47 ±0·58 15 6·22 ±0·07 0·16 ±0·07 50 11·66 ±2·40 7·82 ±1·27 ? 0·62 ±3·79 14·08 ±0·83 49 59·10 1·01 ±0·63 53·50 ±9·11 0·16 ±0·25 72·62 ±7·91 ±2 333 ( Ma) mg-no. Plutonic Age 1 0·61 CaO 48 0·39 MgO 3 0·03 MnO 47 1·32 Fe2O3∗ Mg–Fe 13·95 Al2O3 2 TiO2 46 SiO2 ? n 45 (continued) Aar massif body Plutonic Table 2 continued JOURNAL OF PETROLOGY JULY 1999 Plutonic n SiO2 3 68 75·76 74·98 0·02 0·32 TiO2 12·86 12·96 Al2O3 0·73 2·77 Fe2O3∗ 0·08 0·04 MnO 0·17 0·42 MgO 0·26 1·01 CaO 4·55 3·56 Na2O 4·44 4·92 K2O 0·03 0·12 P2O5 LOI (or H2O) 98·90 101·10 Total 15 414 Ba 362 222 Rb 10 81 Sr Sr 86 104·8 7·9 Rb/ 87 241 219 Na+K K/ 0·39 0·48 (Na+K) 14 49 B 0·31 0·23 Mg–Fe Fe group ±1·1 294·3 ( Ma) mg-no. Plutonic Age XRF UZ Analytical methods Average compositions calculated from a set of 866 analyses, representative of the major rock types making up the different plutonic bodies. Standard deviations at ±2r. Raw data available on the Journal of Petrology Web site. Plutonic bodies: (a) Argentera massif: 1, Malinvern–Argentera metamonzonites; 2, Central granite; (b) Pelvoux massif: 3, Bans granite; 4, Claphouse granite; 5, Colle Blanche–Moutières granite; 6, Colle Blanche Moutières quartz monzonite; 7, Combe Guyon (= Alfrey) granite; 8, Combeynot granite (coarse-grained type); 9, Graou granite; 10, Grun de Saint Maurice granite; 11, Péou de Saint Maurice granite; 12, Quatre Tours granite; 13, Riéou Blanc porphyritic granite; 14, Riéou Blanc fine-grained granite; 15, Rochail granite; 16, Bérarde–Promontoire granite; 17, Berches granite; 18, Bourg granite; 19, Cray granite; 20, Etages granite; 21, Gioberney granite; 22, Orgières granite; 23, Pelvoux–Pic de Clouzis granite; 24, Pétarel granite; 25, Pic de Valsenestre granite; 26 Turbat–Lauranoure granite; (c) Belledonne massif: 27, Sept Laux granite; 28, mafic enclaves in 27; 29, Saint Colomban granite (porphyritic type); 30, mafic enclaves in 29; 31, La Lauzière granite; 32, La Lauzière quartz syenite; (d) Grandes Rousses massif: 33, Alpetta granite; 34, Roche Noire–La Fare granite; (e) Mont Blanc massif: 35, Montenvers granite; 36, Mont Blanc granite (central type); 37, Mont Blanc granite (border type); 38 and 39, mafic enclaves in 36 (and 37); (f) Aiguilles Rouges massif: 40, Pormenaz monzonite; 41, Vallorcine granite (porphyritic type); (g) Aar massif: 42, Giuv syenite; 43, Punteglias granite; 44, Punteglias diorite; 45, Tödi granite; 46, Brunni granite; 47, Düssi diorite; 48, Schöllenen diorite; 49, Voralp granite; 50–58, Central Aar granite [50, Grimsel granodiorite; 51, Central granite s.l.; 52, Central granite s.s. (main type); 53, Southern border granite; 54, Central granite s.s. (leucocratic type); 55, Aplite and fine-grained leucogranite; 56, Northern border granite; 57, Mittagflue granite; 58, Kessiturm aplite]; 59, Gastern granite; (h) Gotthard massif: 60, Fibbia granite; 61, Gamsboden granite; 62, Medel granite; 63, Cristallina granodiorite; 64, Cacciola granite; 65, Rotondo granite; 66, Sädelhorn diorite; 67, Tremola granite; 68, Winterhorn granite. n, number of analysed samples. For P2O5, Ba, Rb and Sr, n is often less than the given value. Major elements in oxide %, trace elements in ppm. Fe2O3∗, total iron as ferric oxide; LOI, loss on ignition; 87Rb/86Sr = Rb/Sr × 2·8956 (J. Sonet, personal communication, 1985); sum (Na + K) is in gram-atoms × 103 in 100 g of rock; the B (= Fe + Mg + Ti) parameter, also in gram-atoms × 103, is proportional to the amount by weight of mafic minerals (de la Roche, 1964); mg-no. = Mg/(Fe + Mg). Fe, total iron. Plutonic group defined through the mg-number–B diagram (Fig. 3): Mg, magnesian; Mg–Fe, magnesian–ferriferous; Fe, ferriferous. Ages given with 2r errors, apart from those obtained through the lead-evaporation method (1r). In the latter case, errors are calculated using all the measured ratios of all the different steps considered for mean age determination (Cocherie et al., 1992), this leading to wider errors than the 2rm ones (Debon et al., 1998). Age of the Argentera granite (295 Ma) recalculated with k87Rb = 1·42 × 10–11 year–1. Analytical methods: ES, emission spectrometry [±ICP-MS (inductively coupled plasma emission mass spectrometry)]; MS, isotope dilution mass spectrometry; WA, wet chemical analysis; XRF, X-ray fluorescence. Dating methods: LZ, lead-evaporation on single zircon; RS, Rb–Sr whole-rock isochron; SZ, U–Pb SHRIMP microprobe analysis on zircon; UT, U–Pb on titanite; UZ, U–Pb on zircon; UZM, U–Pb on zircon and monazite. Sources of geochemical data: 1, Colombo (1996), B. Lombardo (personal communication, 1997); 2, Faure-Muret (1955), Ferrara & Malaroda (1969); 3–26, Le Fort (1973), Barféty, Pêcher et al. (1984), de Boisset (1986), Barféty et al. (1989), G. Banzet et al. (unpublished data, 1964–1997); 27–32, Gasquet (1979), Siméon (1979), Poncerry (1981), Lacheny (1995), Debon et al. (1998), Barféty et al. (1999), G. Vivier (unpublished data, c. 1975–1985); 33, 34, Giorgi (1979), A. Ploquin & G. Vivier (unpublished data, c. 1975–1985); 35, F. Bussy (personal communication, 1997); 36–39, Marro (1986), Bussy (1990); 40, Bussy et al. (1998); 41, Poncerry (1981); 42–44, 46–48, Schaltegger et al. (1991), U. Schaltegger (personal communication, 1997); 50–58, Schaltegger (1989) [see also Schaltegger (1990a)]; 60–68, S. A. Sergeev (personal communication, 1998). Sources of geochronological data: 1, Lombardo et al. (1997), B. Lombardo (personal communication, 1997); 2, Ferrara & Malaroda (1969); 8, Cannic et al. (1998); 15, 26, Guerrot (1998; personal communication, 1998); 27, 29–31, Debon et al. (1998); 35, Bussy & von Raumer (1993); 36, 38, 39, Bussy (1992); 40, Bussy et al. (1998); 41, Bussy (1995); 42–44, 47–52, 57, Schaltegger & Corfu (1992); 45, Schaltegger & Corfu (1995); 56, Schaltegger & von Quadt (1990); 59, Schaltegger (1993); 60, 61, 65, 67, Sergeev et al. (1995); 62, Grünenfelder (1962); 64, Oberli et al. (1981); 66, Bossart et al. (1986). 4 67 Gotthard massif (continued) body Table 2: continued DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS 1159 TiO2 Al2O3 Fe2O3∗ MnO 61·30 Average + 1r Average – 1r 0·13 15·15 14·17 16·12 ±0·97 2·87 1·04 4·69 ±1·82 0·05 0·01 0·09 ±0·04 0·14 3·38 ±1·62 1·76 MgO 0·22 3·84 ±1·81 2·03 CaO 1160 75·86 68·08 1r Average + 1r Average – 1r 13·87 12·56 15·19 ±1·31 2·26 1·07 3·44 ±1·19 0·05 0·03 0·08 ±0·02 76·15 69·65 1r Average + 1r Average – 1r 13·55 12·35 14·74 ±1·20 2·06 1·14 2·97 ±0·91 0·06 0·02 0·09 ±0·04 0·14 0·71 ±0·29 0·43 0·19 1·22 1·14 0·37 1·94 ±0·78 1·16 0·29 2·00 ±0·86 3·66 3·44 4·31 ±0·43 3·87 3·22 4·11 ±0·44 3·90 5·10 ±0·60 4·50 3·92 5·11 ±0·60 4·51 3·83 5·67 ±0·92 4·75 K2O 0·02 0·13 ±0·06 0·08 0·04 0·30 ±0·13 0·17 0·00 0·62 ±0·32 0·30 P2O5 0·31 0·77 ±0·23 0·54 0·40 1·43 ±0·52 0·92 0·64 1·74 ±0·55 1·19 (or H2O) LOI 99·38 99·54 99·68 Total 216 Rb 191 141 292 249 240 132 153 806 178 302 ±326 ±62 480 267 1147 ±440 ±59 707 716 2205 ±744 ±76 1460 Ba 18 197 ±90 108 6 377 ±186 192 270 831 ±281 551 Sr Rb 0·0 34·9 ±18·9 16·0 0·0 28·5 ±19·6 8·8 0·0 3·2 ±1·6 1·6 /86Sr 87 211 230 ±10 221 202 226 ±12 214 205 240 ±18 223 Na+K K/ 0·38 0·49 ±0·06 0·43 0·39 0·50 ±0·06 0·45 0·37 0·54 ±0·09 0·45 (Na+K) 85 19 60 ±20 39 20 79 ±29 49 19 152 ±66 B 0·50 0·19 0·35 ±0·08 0·27 0·25 0·45 ±0·10 0·35 0·41 0·59 ±0·09 25·8 35·6 ±4·9 30·7 26·3 35·7 ±4·7 31·0 13·8 32·0 ±9·1 22·9 % mg-no. Quartz Feldspars 3·5 10·7 ±3·6 7·1 3·6 14·2 ±5·3 8·9 3·4 27·4 ±12·0 15·4 59·5 64·9 ±2·7 62·2 57·1 63·2 ±3·1 60·1 55·9 67·5 ±5·8 61·7 minerals % % Mafic NUMBER 7 Plutonic bodies (numbered as in Tables 1 and 2) selected for average calculations: Mg group: 1, 3–15, 27, 29, 31–34, 40, 42, 43, 47; Mg–Fe group: 16–26, 35, 37, 41, 46, 51–53, 55, 58, 60, 62–64, 68; Fe group: 2, 36, 50, 54, 56, 57, 61, 65, 67. Enclaves and Sädelhorn ferriferous dyke discarded from calculations. Calculations performed from individual sample compositions, except for the Gotthard plutons. Other explanations as in Tables 1 and 2. 0·08 0·41 0·24 ±0·16 72·90 ±3·25 Average 0·70 ±0·51 3·11 4·44 ±0·67 3·78 Na2O VOLUME 40 Ferriferous (Fe) group (9 plutonic bodies/111 analyses) 0·09 0·48 0·29 ±0·20 71·97 ±3·89 Average Magnesian–ferriferous (Mg–Fe) group (25 plutonic bodies/306 analyses) Low-mg-number suite 73·39 1r 0·81 0·47 ±0·34 67·34 ±6·04 Average Magnesian (Mg) group (24 plutonic bodies/338 analyses) High-mg-number suite SiO2 Table 3: Average chemical and mineralogical compositions of the three plutonic groups of the External Crystalline Massifs JOURNAL OF PETROLOGY JULY 1999 DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS Fig. 2. Plot of Late Variscan plutonic rocks from the ECM on the R1–R2 diagram of de la Roche et al. (1980). Data available on the Journal of Petrology Web site. For comparison, Late Variscan plutonic rocks from the Pyrenees are also shown (Debon et al., 1991). Mafic igneous enclaves included in both compilations. deformation. Several Late Variscan plutonic bodies, very different from each other, occur in this massif. The heterogeneous, biotite and/or amphibole Valmasque granite (~7 km2), loaded with xenoliths of country rocks and mafic or ultramafic enclaves, was interpreted as an anatectic body, linked to the last stage of migmatite formation (Faure-Muret, 1955; Bogdanoff et al., 1991). (1) The Malinvern–Argentera metamonzonites (Lombardo et al., 1997; B. Lombardo, personal communication, 1997) crop out as sub-vertical sheets up to 1 km long, dykes and plugs, emplaced into paragneisses and amphibolites. These porphyritic rocks are variably foliated and recrystallized, and were previously described as pyroxene-bearing porphyritic gneisses or biotite and amphibole augen migmatites. The abundance of pyroxene constitutes a distinctive feature (Table 1). Chemical data show that these rocks are dark, subalkaline and magnesian syenites and quartz syenites. Their dating, through SHRIMP analysis on zircon, yielded an age of 337 ± 8 Ma. (2) The Central (or Argentera) granite (~50 km2) is a homogeneous pluton, the emplacement of which postdates the three migmatitic stages (Faure-Muret, 1955; Bogdanoff et al., 1991). It mainly consists of a massive, coarse-grained, porphyritic in places, garnet-bearing twomica leucocratic monzogranite, which is subalkaline and ferriferous. Fine-grained leucogranites and microgranites occur at its margins. A poorly constrained Rb–Sr wholerock isochron gave an age of 295 Ma (recalculated with new constants) for this Central granite (Ferrara & Malaroda, 1969). Pelvoux massif The Pelvoux massif (Figs 5 and 6) is a roughly circular body, ~40 km in diameter. It comprises a crystalline basement divided into an inner highly migmatitic domain (‘noyau’) and an outer mesozonal domain (‘cortex’) (Le Fort & Pêcher, 1971, 1981; Le Fort, 1973; Barféty, Pêcher et al., 1984). The inner domain mainly consists of gneisses and acidic migmatites including some amphibolites and old blastomylonites, overlain by banded amphibolites and amphibole-bearing augen gneisses. It also includes orthogneissic bodies (e.g. Crupillouse), probably derived from porphyritic granites emplaced in Early Palaeozoic times. At least two migmatitic events occurred, the latter, of the low-pressure–high-temperature type (cordierite), pre-dating (or accompanying; Grandjean et al., 1996) the intrusion of the Late Variscan granites. In addition to detrital formations, the less metamorphic outer domain is composed of carbonaceous mica schists, marbles and leptynitic–amphibolitic formations. The Pelvoux massif displays a net of variously orientated fractures, locally underlined by pinched remnants of the Mesozoic sedimentary cover. Its particular isodiametric shape and complex structure when compared with the other ECM might be accounted for by the importance of Alpine sub-meridian and oblique shortening (Sue et al., 1997). More than 20 Late Variscan plutonic bodies have been distinguished in the Pelvoux massif, covering about onethird of its area (Fig. 6). They occur as intrusions of various sizes (1–40 km2), emplaced into the inner domain or cross-cutting the contact between the inner and the outer domain. Based on data from the literature (Le Fort, 1973, and references therein; Barféty et al., 1976, 1989; Debelmas et al., 1980; Barféty, Pêcher et al., 1984; de Boisset, 1986; Banzet, 1987; Costarella, 1987; G. Banzet, unpublished data, 1985–1991), their main field and petrographic characteristics are summarized hereafter and in Table 1, following our two-fold partition into magnesian 1161 1162 2·25 99·74 Total ±0·14 ±0·29 1·17 ±0·03 0·06 ±0·65 4·67 ±0·97 3·68 ±0·24 0·29 ±0·40 0·96 ±0·04 0·02 ±0·64 (or H2O) LOI 13·85 ±1·26 99·82 1·53 0·14 4·51 4·31 0·93 0·68 0·04 1·29 14·85 0·21 ±0·47 99·93 ±2·26 2·10 ±0·07 0·31 ±0·48 4·66 ±0·71 3·08 ±0·76 2·00 ±0·14 1·39 ±0·01 0·08 ±0·58 3·71 ±0·24 15·42 ±0·04 0·50 ±3·85 66·70 2 18 ±1·02 99·67 ±0·25 1·18 ±0·11 0·29 ±0·44 4·26 ±0·52 3·85 ±1·75 2·95 ±0·37 1·72 ±0·01 0·09 ±1·12 4·43 ±1·58 15·53 ±0·20 0·62 ±2·69 64·77 2 22 99·78 0·78 0·13 4·74 3·17 1·61 0·56 0·03 2·30 14·35 0·26 71·85 1 26 ±0·86 99·33 ±0·27 0·73 ±0·15 0·14 ±0·97 4·51 ±0·50 4·16 ±0·62 1·51 ±0·65 0·78 ±0·02 0·02 ±0·83 1·77 ±0·79 14·91 ±0·21 0·27 ±2·52 70·53 6 27 99·67 1·30 0·17 4·04 3·75 2·65 1·66 0·05 3·30 16·49 0·48 65·78 1 29 ±0·05 99·79 ±0·79 0·74 ±0·06 0·05 ±0·45 5·15 ±0·16 4·09 ±0·23 0·56 ±0·50 0·62 ±0·02 0·01 ±0·55 1·53 ±1·73 14·06 ±0·14 0·23 ±3·93 72·74 3 31 ±1·67 99·44 ±0·17 0·75 ±0·03 0·09 ±0·38 4·92 ±0·15 3·59 ±0·40 1·31 ±0·25 0·56 ±0·02 0·06 ±0·73 2·32 ±0·56 14·01 ±0·09 0·29 ±2·51 71·55 3 36 ±1·36 102·95 ±0·72 1·18 ±0·06 0·31 ±0·62 4·85 ±1·07 3·52 ±1·18 1·03 ±0·77 0·73 ±0·03 0·04 ±4·41 4·21 ±1·46 14·42 ±0·36 0·39 ±5·50 72·28 6 41 ±0·31 99·52 ±0·71 1·60 ±0·23 0·97 ±1·93 5·54 ±0·62 2·14 ±1·27 5·96 ±8·08 10·08 ±0·02 0·10 ±0·95 6·19 ±3·03 11·54 ±0·32 0·87 ±6·08 54·52 7 28 99·28 1·33 0·66 4·84 2·85 4·97 7·02 0·12 6·42 13·09 0·68 57·30 1 30 ±0·41 99·04 ±0·45 1·28 ±0·37 0·50 ±0·81 6·61 ±0·55 3·55 ±1·87 3·04 ±2·38 3·62 ±0·04 0·06 ±2·87 5·10 ±1·22 15·92 ±0·51 1·05 ±7·93 58·33 2 32 ±0·49 100·01 ±1·01 1·64 ±0·14 0·26 ±1·71 3·02 ±0·56 3·30 ±3·00 5·42 ±3·02 3·89 ±0·06 0·11 ±2·68 6·67 ±0·98 15·76 ±0·39 0·95 ±8·84 58·99 6 38 ±1·91 99·36 ±1·08 1·39 ±0·20 0·32 ±2·31 4·19 ±1·87 3·77 ±1·25 2·99 ±1·40 1·62 ±0·12 0·15 ±4·02 6·12 ±1·30 15·74 ±0·63 0·87 ±10·80 62·20 3 39 99·46 1·69 0·47 5·73 3·19 3·02 2·98 0·06 4·99 16·19 1·13 60·01 1 40 ±2·85 99·73 ±0·31 0·72 ±0·11 6·21 ±0·65 2·96 ±1·17 4·59 ±1·28 3·40 ±0·02 0·08 ±1·30 4·62 ±1·62 15·82 ±0·23 0·85 ±4·38 60·49 4 42 NUMBER 7 P2O5 K2O Na2O 0·24 ±0·10 71·33 1 15 Intermediate and mafic rocks VOLUME 40 CaO MgO MnO Fe2O3∗ Al2O3 TiO2 ±1·41 72·56 7 n: SiO2 8 body: Plutonic Felsic rocks Table 4: Average chemical and mineralogical compositions of selected plutonic rocks from the External Crystalline Massifs JOURNAL OF PETROLOGY JULY 1999 417 1163 Zr Y V U Th Ta Sr Rb Ni Nb 4·47 Hf ±38 149 ±11·1 27·8 ±6·8 21·5 ±13·18 6·75 ±25·5 24·6 ±1·72 2·42 ±41 102 ±100 237 ±0·7 1·7 ±5·8 17·3 ±0·78 3·0 Cr ±251 7 n: Ba 8 body: Plutonic 1 101 9·3 25·0 7·51 19·1 437 195 <10 9·6 14·0 1085 15 Felsic rocks 1272 1400 198 ±1·6 25·2 ±14·1 62·0 ±3·28 6·41 ±3·4 22·4 ±337 468 ±55 215 ±2·8 13·0 20·4 295 ±10·1 26·5 ±21·2 81·5 ±4·06 6·12 ±12·5 23·7 ±308 548 ±13 171 ±18·4 16·5 19·5 25·5 ±7·1 20·0 ±492 2 22 ±2·8 ±191 2 18 1 26 158 22·9 20·2 2·95 16·0 1·56 137 213 3·1 10·8 4·76 6·7 563 1124 ±90 146 ±4·1 9·2 ±13·0 21·4 ±9·67 6·07 ±8·8 20·7 ±1·27 1·50 ±140 500 ±54 180 ±11·7 12·7 ±7·4 12·6 ±1·49 3·85 ±28·9 28·9 ±530 6 27 1 29 213 13·1 48·4 8·18 26·7 456 173 12·9 14·0 38·6 944 572 ±82 175 ±3·7 8·2 ±15·9 18·4 ±2·17 9·33 ±10·5 49·3 ±0·07 1·44 ±203 233 ±100 244 ±6·9 12·3 ±2·9 16·9 ±0·24 6·41 ±13·4 23·4 ±566 3 31 511 ±67 187 ±12·0 39·0 ±13·0 27·7 ±0·76 6·73 ±9·8 27·9 ±0·80 2·38 ±30 113 ±125 284 ±1·5 0·8 ±4·6 14·3 ±0·94 5·96 <14 ±145 3 36 477 ±102 144 ±17·8 20·3 ±38·4 28·2 ±5·2 15·5 ±98 107 ±60 256 ±26·7 59·5 ±4·3 14·7 ±10·5 31·8 ±392 6 41 2058 ±167 233 ±4·0 16·8 ±33·1 109·1 ±5·06 9·93 ±19·3 32·5 ±223 477 ±101 249 ±453·4 311·1 ±8·8 20·4 ±648·1 686·4 ±1526 7 28 1 239 18·3 111·0 9·15 48·7 579 185 198·0 18·8 544·0 3684 30 2588 545 84·2 ±177 6 38 ±58 502 ±1·4 21·2 ±54·3 90·8 ±2·15 7·93 ±37·4 47·0 ±0·75 2·15 ±600 953 ±42 246 ±36·3 74·5 ±8·7 25·5 ±0·14 14·05 ±43 212 ±6·0 36·8 ±64·7 129·7 ±2·18 3·43 ±4·7 10·3 ±0·35 1·08 ±98 285 ±92 179 ±45·0 24·2 ±4·9 13·5 ±1·26 5·58 ±96·2 ±104·6 145·0 ±1386 2 32 Intermediate and mafic rocks 519 ±66 301 ±11·1 48·0 ±85·5 98·3 ±2·62 4·80 ±8·8 13·1 ±0·37 1·43 ±33 158 ±171 372 ±12·8 6·7 ±4·0 17·0 ±2·08 7·28 <14 ±668 3 39 1 349 40·0 109·0 9·60 25·9 604 273 39·0 22·0 111·0 1971 40 2528 ±27 320 ±3·8 19·5 ±36·1 126·3 ±9·98 29·75 ±31·3 93·0 ±71 685 ±40 384 ±9·5 28·5 ±38·7 84·0 ±323 4 42 DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS 1164 2·07 ±0·03 0·31 ±0·04 2·03 ±0·14 4·07 ±0·59 41·9 ±11·2 7·75 ±1·95 1·61 ±0·52 5·69 ±1·17 48·7 ±11·6 90·7 ±24·2 18 2 2·07 ±0·71 0·32 ±0·10 2·20 ±0·98 4·56 ±1·94 49·4 ±27·9 9·14 ±5·84 1·85 ±0·79 6·41 ±3·49 57·1 ±26·4 108·8 ±61·6 22 2 0·37 2·25 0·35 2·10 0·91 4·15 0·75 4·78 0·80 6·14 28·9 7·58 67·1 33·3 26 1 29·9 ±12·7 58·0 ±27·4 6·40 ±3·90 23·1 ±14·8 4·03 ±2·54 0·95 ±0·50 2·66 ±1·96 0·35 ±0·25 1·78 ±1·04 0·33 ±0·22 0·85 ±0·42 0·12 ±0·06 0·84 ±0·33 0·13 ±0·03 27 6 0·20 1·11 0·17 1·25 0·56 2·92 0·55 4·57 1·36 5·82 34·6 9·57 85·8 43·9 29 1 39·9 ±15·4 70·8 ±32·7 6·80 ±3·35 22·7 ±13·2 3·47 ±2·30 0·63 ±0·43 2·06 ±0·95 0·27 ±0·17 1·44 ±0·82 0·27 ±0·14 0·76 ±0·35 0·11 ±0·04 0·84 ±0·21 0·14 ±0·03 31 3 26·0 ±18·7 56·1 ±40·2 41 6 4·32 ±0·32 0·73 ±0·06 1·37 ±1·32 0·19 ±0·17 1·54 ±1·47 (28) 26·2 ±(34) ±29·3 6·67 5·01 ±1·47 ±3·32 0·92 0·75 ±0·09 ±0·65 4·19 ±3·06 0·89 ±0·09 3·24 ±2·62 38·5 ±8·3 81·3 ±18·5 36 3 56·4 ±30·7 120·7 ±58·1 15·07 ±7·19 66·0 ±33·4 12·67 ±5·82 2·51 ±0·86 7·32 ±2·88 0·84 ±0·25 3·82 ±0·92 0·63 ±0·14 1·67 ±0·43 0·20 ±0·07 1·33 ±0·40 0·20 ±0·07 28 7 0·23 1·60 0·22 1·64 0·68 3·82 0·78 5·84 1·94 9·15 51·3 12·73 116·3 60·9 30 1 64·8 ±6·3 151·1 ±19·4 18·39 ±0·16 76·1 ±8·9 13·38 ±1·15 2·68 ±1·02 7·04 ±0·96 0·95 ±0·06 4·77 ±0·07 0·80 ±0·04 1·99 ±0·11 0·26 ±0·01 1·72 ±0·45 0·26 ±0·08 32 2 37·3 ±14·3 83·8 ±22·8 39 3 3·20 ±0·63 0·51 ±0·11 0·94 ±0·19 4·10 ±0·53 0·67 ±0·05 1·03 ±0·12 (29) (32) ±(29) ±(9) 6·52 7·87 ±1·68 ±0·31 1·67 1·23 ±0·44 ±0·66 35·9 ±11·9 75·4 ±26·7 38 6 0·45 3·00 0·50 3·00 1·36 6·80 1·50 11·00 3·07 16·40 89·1 23·00 168·0 75·0 40 1 1·13 ±0·19 0·10 ±0·00 3·00 ±1·63 <1 46·5 ±6·0 7·75 ±4·12 2·15 ±0·58 46·8 ±7·5 103·5 ±14·0 42 4 Standard deviations at ±2r. Complete data set available on the Journal of Petrology Web site. Plutonic bodies numbered as in Tables 1 and 2. Sources of data: (a) felsic rocks: 8, Combeynot granite, coarse-grained type [F. Debon, unpublished data, 1997; samples mainly collected by Costarella (1987) but reanalysed]; 15, 18 and 22, Rochail, Bourg and Orgières granites, respectively (G. Banzet, unpublished data, 1985–1986); 26, Turbat–Lauranoure granite ( F. Debon, unpublished data, 1997); 27, 29 and 31, Sept Laux, Saint Colomban and La Lauzière granites, respectively (Debon et al., 1998); 36, Mont Blanc granite, central type (Bussy, 1990); 41, Vallorcine granite, porphyritic type (Brändlein et al., 1994); (b) intermediate and mafic rocks: 28, vaugneritic–durbachitic enclaves from the Sept Laux granite (Lacheny, 1995; Debon et al., 1998); 30, mafic enclave from the Saint Colomban granite (Debon et al., 1998); 32, La Lauzière quartz syenite (Debon et al., 1998); 38 and 39, magnesian–ferriferous and ferriferous enclaves, respectively, from the Mont Blanc granite (Bussy, 1990); 40, Pormenaz monzonite (Bussy et al., 1998); 42, Giuv syenite (Schaltegger et al., 1991). Analytical methods: 8, 15, 18, 22, 26–32: emission spectrometry (ICP ± ICP-MS); 36, 38, 39: XRF and INAA (instrumental neutron activation analysis); 41: XRF and ICP; 40: XRF and ICP-MS; 42: XRF. Other explanations as in Table 2. 0·07 0·74 0·70 1·49 1·95 0·65 2·69 14·1 29·9 16·6 15 1 NUMBER 7 Lu Yb Tm 29·3 ±12·8 63·1 ±27·2 6·23 ±2·14 22·5 ±7·4 4·68 ±0·98 0·53 ±0·21 4·05 ±0·50 0·67 ±0·14 4·12 ±1·34 0·88 ±0·36 2·65 ±1·00 0·45 ±0·22 3·20 ±1·62 0·53 ±0·27 8 7 Intermediate and mafic rocks VOLUME 40 Er Ho Dy Tb Gd Eu Sm Nd Pr Ce La Plutonic body: n: Felsic rocks Table 4: continued JOURNAL OF PETROLOGY JULY 1999 DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS Fig. 3. Plot of Late Variscan plutonic bodies (average compositions) from the ECM on the mg-number–B diagram of Debon & Le Fort (1988). Data from Table 2. Numbering of the plutonic bodies as in Tables 1 and 2. The B parameter, expressed in gram-atoms × 103 in 100 g of rock, is proportional to the weight content in mafic minerals (de la Roche, 1964). This content, in weight percent, is calculated by dividing B by 5·55. Fe is total iron. For comparison, the two fields defined by the Pelvoux plutons are shown in the different diagrams. Reference system of mean compositions: ad, adamellite (~monzogranite); gd, granodiorite; go, gabbro; gr, granite (~syenogranite); qd, quartz diorite; to, tonalite. The ‘critical line’ passing through the gr, ad, gd, to, qd and go reference points is used to distinguish between magnesian (Mg), magnesian–ferriferous (Mg–Fe) and ferriferous (Fe) plutonic rocks (according to the positions of their plots above, close to and below this line, respectively). 1165 JOURNAL OF PETROLOGY VOLUME 40 Fig. 4. Geological sketch map of the Argentera massif [modified from Bogdanoff et al. (1991) and von Raumer et al. (1993)]. (See Table 2 for chronological data.) NUMBER 7 JULY 1999 and magnesian–ferriferous bodies (Figs 3 and 6; Table 2). Apart from the Colle Blanche–Moutières quartz monzonite, the Mg group clusters around a B value of 52 gatoms × 103 (i.e. 9·3% of mafic minerals), whereas the Mg–Fe group displays a bimodal distribution around B values of 94 and 35 g-atoms × 103 (i.e. 17% and 6·3% of mafic minerals), and includes the most leucocratic plutons. In addition to predominant subalkaline plutonic bodies, at times with alkaline affinity (Combeynot; Costarella, 1987), each group contains some peraluminous plutons (Berches, Claphouse, Cray, Grun de Saint Maurice, Pétarel, Riéou Blanc). The Mg/Fe typology thus defined reveals a crude concentrically zoned arrangement of the two groups, with the magnesian plutons located at the periphery of the massif (Fig. 6). However, because the overall geometry was disturbed by important Alpine sub-meridian and oblique shortening (Sue et al., 1997), caution is urged in interpreting such a zonation (Bonin et al., 1993). Because of Alpine tectonic and metamorphic events, the alteration of biotite and plagioclase to chlorite and sericite is common in the Pelvoux granites. Except in some plutons [Combe Guyon, Grun and Péou de Saint Maurice, Quatre Tours, Riéou Blanc (fine-grained type), Berches, Cray, Pétarel], muscovite is rare or completely absent and the distinction between primary and secondary muscovite often uncertain. Mafic igneous enclaves occur in most of the granites, although these are highly variable in proportion. On the whole, their abundance is greater in the magnesian granites. Vaugnerite–durbachite enclaves are restricted to some magnesian plutons, specifically Colle Blanche– Moutières, Péou de Saint Maurice, Quatre Tours and Rochail (Banzet, 1987; Barféty et al., 1989). Magnesian plutonic bodies Fig. 5. Sketch map of the Pelvoux, Belledonne, Grandes Rousses, Mont Blanc and Aiguilles Rouges massifs [after Vivier et al. (1987)]. The average compositions of these plutonic bodies plot in the magnesian field of the mg-number–B diagram, markedly above the ‘critical line’ (Fig. 3). (3) Bans granite (~4 km2): a medium-grained, weakly foliated, dark monzogranite with biotite ± amphibole, rich in mafic igneous enclaves. (4) Claphouse granite (~9 km2): a fine-grained, cataclastic, dark syenogranite with biotite ± muscovite, highly chloritized and sericitized. (5, 6) Colle Blanche–Moutières granite and quartz monzonite (~10 km2): a complex made up of two similar, extremely heterogeneous intrusions, separated by a screen of gneisses and migmatites. Two types of rock occur: a fine-grained, foliated, biotite ± muscovite monzogranite (5), mainly located at the margins of the intrusions, and a dominant complex of mafic and intermediate rocks (6), massive or foliated, mainly composed of medium-grained quartz monzonite with biotite and amphibole. Both types 1166 DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS Fig. 6. Geological sketch map of the Pelvoux massif [modified from Le Fort & Pêcher (1971, 1981), Barféty, Pêcher et al. (1984) and G. Banzet (unpublished data, 1985–1991)]. (See Table 2 for chronological data.) enclose mafic enclaves (especially of the vaugnerite type). (7) Combe Guyon (or Alfrey) granite (~2 km2): a coarse-grained, quartz-rich, two-mica monzogranite, with a porphyritic tendency. (8) Combeynot granite (~20 km2): a roughly concentrically zoned subvolcanic complex comprising two granitic units affected by a strong brittle deformation. The inner unit forms the main part of the complex. It is composed of a massive, homogeneous, coarse-grained and porphyritic, alkali-feldspar syenogranite, with highly chloritized biotite (Costarella, 1987). As shown by seven new analyses, this granite is magnesian, although with some alkaline affinities. Its recent U–Pb zircon dating yielded an upper intercept age of 312 ± 7 Ma (Cannic et al., 1998). Pb loss and inherited components hampered precise age determination. This age agrees with those obtained by the total-lead zircon method (310 ± 14 Ma, 320 ± 13 Ma; Barbieri, 1970). In addition to the finegrained leucocratic syenogranite making up the outer unit, sheets and dykes of rhyolites and microgranites occur outside the complex. These highly differentiated rocks are ferriferous. (9) Graou granite (~1 km2): a porphyritic biotite monzogranite with K-feldspar megacrysts up to 10 cm. (10) Grun de Saint Maurice granite (~6 km2): is composed of several bodies of porphyritic, two-mica monzogranite, strongly deformed in many places. (11) Péou de Saint Maurice granite (~4 km2): a medium- and fine-grained, generally foliated, two-mica monzogranite, rich in mafic enclaves (vaugnerites, etc.). (12) Quatre Tours granite (~2 km2): a fine-grained, light-coloured, two-mica monzogranite, enclosing mafic enclaves (durbachites, etc.). (13, 14) Riéou Blanc granite (~10 km2): this is composed of two granitic units. The main unit, a coarse-grained, generally porphyritic, weakly foliated, biotite ± muscovite monzogranite (13), is cross-cut by a fine-grained, locally microgranular, two-mica syenogranite (14). (15) Rochail granite (~34 km2): comprises two types of granites. The dominant type is a medium-grained, weakly foliated, biotite ± rare muscovite monzogranite. To the north, this merges into a coarser and darker foliated biotite monzogranite with a porphyritic tendency. Both monzogranites enclose mafic igneous enclaves, especially of the durbachite type (the so-called ‘syénite du Lauvitel’) (de Boisset, 1986; Banzet, 1987). A recent U–Pb zircon dating has yielded an age of 343 ± 11 Ma for the dominant type (Guerrot, 1998, and personal communication, 1998; C. Guerrot & F. Debon, in preparation), whereas an age of 331 ± 32 Ma (2r) was ascribed to the northern type from a questionable Rb–Sr whole-rock isochron (initial 87Sr/86Sr ratio of 0·7047 ± 0·0013) (Demeulemeester, 1982). 1167 JOURNAL OF PETROLOGY VOLUME 40 NUMBER 7 JULY 1999 Magnesian–ferriferous plutonic bodies The average compositions of these plutonic bodies plot close to or slightly above the ‘critical line’ of the mgnumber–B diagram (Fig. 3). (16) Bérarde–Promontoire granite (~40 km2): a fineto coarse-grained, massive, light monzogranite with biotite ± muscovite. (17) Berches granite (~4 km2): a fine-grained (aplitic), two-mica syenogranite. (18) Bourg granite (~6 km2): a fine-grained, homogeneous, variably altered, biotite ± amphibole monzogranite, rich in mafic minerals. Small microgranular enclaves lie locally along the foliation. (19) Cray granite (~3 km2): a leucocratic, fine-grained syenogranite, with muscovite, biotite, cordierite, ± garnet. (20) Etages granite (~30 km2): a coarse-grained, variably porphyritic, foliated, biotite ± rare muscovite syenogranite. Fine-grained mafic enclaves occur locally. (21) Gioberney granite (~5 km2): coarse-grained, porphyritic in places, strongly deformed, biotite ± muscovite syenogranite. (22) Orgières granite (~4 km2): fine-grained, weakly foliated, biotite ± amphibole monzogranite, rich in mafic minerals, enclosing a variety of enclaves. (23) Pelvoux–Pic de Clouzis (or Ailefroide) granite (~20 km2): a coarse-grained, biotite ± rare muscovite syenogranite. (24) Pétarel granite (~5 km2): a medium-grained, porphyritic, weakly foliated, quartz-rich, two-mica syenogranite. (25) Pic de Valsenestre (~6 km2): a porphyritic, commonly deformed and altered, biotite ± rare muscovite monzogranite, rich in mafic minerals. (26) Turbat–Lauranoure granite (~33 km2): a coarsegrained, variably porphyritic and foliated, biotite ± muscovite syenogranite, enclosing rare microgranular enclaves, and recently dated at 302 ± 5 Ma by U–Pb on zircon (Guerrot, 1998, and personal communication, 1998; C. Guerrot & F. Debon, in preparation). Belledonne massif The Belledonne massif (Fig. 5) is an elongate composite body extending N 30°E for ~100 km. It comprises three domains (terranes) with distinct lithological, metamorphic, tectonic and magmatic features: an outer domain and two inner domains, namely, a southwestern inner domain and a northeastern one. These domains were juxtaposed during Early Carboniferous times as a result of late-orogenic strike-slip faulting (Ménot, 1988a, 1988b). Late Variscan granites are restricted to the northeastern inner domain (Fig. 7). They intrude a gneissic, Fig. 7. Geological sketch map of the northeastern domain of the Belledonne massif [modified from Vivier et al. (1987)]. (See Table 2 for chronological data.) amphibolitic and migmatitic basement displaying a polyphase metamorphic evolution and including lenses of Early Palaeozoic orthogneisses (~490 Ma; Barféty et al., 1999). Green and black schists associated with metavolcanic rocks of uncertain age also occur in this domain (Vivier et al., 1987). The Late Variscan granites form three almost linear intrusions (Vivier et al., 1987; Debon et al., 1998, and references therein). From west to east, they are the Sept Laux, Saint Colomban and La Lauzière plutons. The three plutons are subalkaline, with either calc-alkaline (Saint Colomban) or alkaline (La Lauzière) affinities, and magnesian. Their dating, through lead-evaporation on single zircon, yielded ages of 335 ± 13 Ma (Sept Laux granite), 343 ± 16 Ma (Saint Colomban granite), 343 ± 14 Ma (mafic enclave of the Saint Colomban granite), and 341 ± 13 Ma (La Lauzière granite) (Debon et al., 1998). Previously (Demeulemeester, 1982), an age of 322 ± 43 Ma (2r) was obtained for the Sept Laux granite from an Rb–Sr whole-rock isochron (initial 87Sr/86Sr ratio of 0·7066 ± 0·0005). (27, 28) Sept Laux granite (~95 km2): a concentrically zoned pluton, made up of fine- and medium-grained, porphyritic in places, foliated, biotite ± muscovite granites (27), mainly of the light monzogranitic composition (Table 1). Mafic igneous enclaves (vaugnerites, durbachites, etc.) (28), with amphibole and biotite, are locally abundant in the outer zone. The average composition 1168 DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS corresponds to a quartz monzonite, rich in mafic minerals. (29, 30) Saint Colomban granite (~60 km2): the main rock type (29) is a medium-grained, porphyritic, often strongly foliated and partly recrystallized (‘orthogneissic’), dark-coloured monzogranite, with biotite ± rare amphibole or muscovite. Mafic igneous enclaves (30), with amphibole and biotite, are locally abundant in its southern part. The average composition corresponds to a monzonite, rich in mafic minerals. (31, 32) La Lauzière granite and quartz syenite (~25 km2): a heterogeneous pluton comprising two groups of medium- to coarse-grained, massive or foliated rocks. The dominant group consists of biotite ± secondary muscovite syenogranites (31). Quartz syenites rich in biotite and amphibole predominate in the other group (32). Grandes Rousses massif The small Grandes Rousses massif (Figs 5 and 8) extends N 20°E for some 25 km. It comprises a crystalline basement composed of gneisses, locally migmatitic or of the augen-type, mica schists, schists and rare amphibolites (Giorgi, 1979; Bogdanoff et al., 1991). In addition to these formations of highly variable metamorphic grade, Late Carboniferous sediments also occur. Late Variscan intrusions (Alpetta, Roche Noire–La Fare) are common in the western part of the massif (Giorgi, 1979; Bogdanoff et al., 1991). They are subalkaline and magnesian. Because the Alpetta intrusion is probably part of the Saint Colomban pluton (see Belledonne massif; Bogdanoff et al., 1991), it would be ~340 my old. (33) Alpetta granite (>~8 km2): a medium-grained, porphyritic, strongly foliated and partly recrystallized, dark monzogranite with biotite ± rare muscovite. Intercalations of amphibole and biotite ‘gneisses’ probably represent deformed mafic igneous enclaves. (34) Roche Noire–La Fare granite (> ~7 km2): a composite complex cross-cutting the Alpetta pluton, made up of two elongate intrusions. Roche Noire consists of medium-grained, foliated, locally porphyritic, lightcoloured monzogranites, with biotite ± rare muscovite. Mafic igneous enclaves are common. The La Fare monzogranite differs from Roche Noire by less biotite and the presence of microgranular textures. It is a subvolcanic body that merges upwards into a metavolcanic complex (Fig. 8). Mont Blanc massif The Mont Blanc massif (Figs 5 and 9), extending N 40°E for 55 km, comprises three main formations (von Raumer, Fig. 8. Geological sketch map of the Grandes Rousses massif [modified from 1:50 000 geological maps of France, and Giorgi (1979)]. 1987; Bussy, 1990; Bogdanoff et al., 1991, and references therein): (i) a N 20–25°E-trending subvertical crystalline basement, mainly composed of gneisses, migmatites, mica schists with intercalations of eclogites, orthogneisses dated at 453 ± 3 Ma and locally remelted at 317 ± 2 Ma (Bussy & von Raumer, 1993), and Devonian–Dinantian(?) cordierite migmatites; (ii) a Late Variscan rhyolitic formation, dated at 307 ± 2 Ma (Bussy & von Raumer, 1993); (iii) two Late Variscan plutonic bodies (Montenvers, Mont Blanc). (35) The Montenvers granite (~8 km2) is an elongate body, composed of foliated two-mica(?) monzogranites enclosing microgranular enclaves (Bussy, 1990). It is a peraluminous body (Bussy & von Raumer, 1993), magnesian–ferriferous (according to only one analysis), dated at 307 + 6/– 5 Ma by U–Pb on zircon (Bussy & von Raumer, 1993). (36–39) The large Mont Blanc granite (~225 km2) is mainly made up of a medium- to coarse-grained, porphyritic, generally foliated, biotite monzogranite, with relics of amphibole in places (central type; 36) (Marro, 1986; Bussy, 1990). Outwards, the central type merges locally into an even-grained, quartz-rich, light monzogranite (border type; 37), up to 3–4 km wide. In addition, 1169 JOURNAL OF PETROLOGY VOLUME 40 NUMBER 7 JULY 1999 age of 304 ± 3 Ma for the central monzogranite, and of 306 + 5/– 3 Ma and 305 ± 2 Ma for the mafic enclaves (Bussy, 1992; Bussy & von Raumer, 1993). Aiguilles Rouges massif The Aiguilles Rouges massif (Figs 5 and 9) extends for ~45 km, parallel to the Mont Blanc massif. It is separated from the latter by the ‘Chamonix–Martigny zone’ made up of deformed Mesozoic formations. Following Bogdanoff et al. (1991, and references therein), the composition and tectonic–metamorphic evolution of the crystalline basement are roughly similar in both massifs. In addition, the Aiguilles Rouges massif comprises sedimentary and volcanic rocks of Viséan and Westphalian ages (Bellière & Streel, 1980) and a few Late Variscan plutonic bodies mainly represented by the Pormenaz and Vallorcine intrusions. (40) The Pormenaz monzonite (~2 km2) intrudes gneisses and metagraywackes (Bussy et al., 1998). This funnel-shaped intrusion is made up of foliated, porphyritic rocks, rich in amphibole, biotite and titanite, enclosing durbachitic enclaves. Leucocratic granites and aplitic dykes occur at the periphery. Subalkaline and magnesian quartz syenites, rich in mafic minerals, may be the main rock type (only one analysis). They were dated at 332 ± 2 Ma by U–Pb on zircon (Bussy et al., 1998). (41) The Vallorcine granite (~10 km2) crops out as an elongate body resembling the Montenvers granite (Fig. 9). It mainly consists of a coarse-grained, massive or foliated, porphyritic, dark syenogranite, with biotite, muscovite, ± rare andalusite or sillimanite, enclosing fine-grained biotite-rich igneous enclaves (Poncerry, 1981; Brändlein et al., 1994). Aplitic granites and cordierite-bearing leucogranites occur locally, in particular at the periphery of the intrusion. This peraluminous and magnesian– ferriferous granite was dated by U–Pb on zircon and monazite at 307 ± 2 Ma (Bussy, 1995). Fig. 9. Geological sketch map of the Mont Blanc and Aiguilles Rouges massifs [modified from von Raumer et al. (1993)]. (See Table 2 for chronological data.) conspicuous dykes of leucocratic granites and aplites occur. Mafic igneous enclaves are common in the central type. They were divided by Bussy (1990) into two groups, a ‘magnesian’ group with biotite and amphibole (38), the other ‘ferriferous’ with biotite alone (39). Quartz monzodiorites form their main rock type. The Mont Blanc granite represents an alkali–calcic (subalkaline) association (Bussy, 1990). The dominant central monzogranite and its mafic enclaves with biotite alone are ferriferous, whereas the border granite and the biotite– amphibole enclaves are, on average, magnesian– ferriferous (Fig. 3). U–Pb datings on zircon yielded an Aar massif The Aar massif (Fig. 10) extends N 60°E for ~110 km. It comprises a pre-Variscan and Variscan polymetamorphic basement, made up of several units with different metamorphic histories, separated by mylonite zones (Schaltegger, 1990a, 1993; von Raumer et al., 1993, and references therein). From north to south, they are the Innertkirchen–Lauterbrunnen, Erstfeld, Guttanen and southernmost Ofenhorn–Stampfhorn units. The first unit is migmatitic whereas the others mostly consist of gneisses and schists, with some calcsilicate and mafic or ultramafic lenses. Late Variscan volcaniclastic rocks were deposited during Viséan(?) and Stephanian times (Schaltegger & Corfu, 1995) while widespread plutonic bodies were 1170 DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS Fig. 10. Geological sketch map of the Aar and Gotthard massifs [modified from von Raumer et al. (1993), Schaltegger (1994) and Schaltegger & Corfu (1995)]. Plutonic groups (A, B, C, D) refer to the chronological classification of Schaltegger (1994): A, 331–337 Ma; B, 306–312 Ma; C, 296—~303 Ma; D, ~290–295 Ma. (See Table 2 for chronological data.) emplaced. Three successive intrusive suites, compositionally different, have been distinguished in the Aar massif by Schaltegger (1994, and references therein). (45) Tödi granite (<1 km2): a fine-grained, strongly deformed, porphyritic granite (Schaltegger & Corfu, 1995), probably belonging to the same suite (Schaltegger, 1994). ‘Shoshonitic–ultrapotassic suite’ ‘High-K calc-alkaline suite’ This suite comprises several small plutonic bodies (Schaltegger et al., 1991; Schaltegger & Corfu, 1992). These subalkaline and magnesian bodies were dated by U–Pb on zircon at 334 ± 2·5 Ma (Giuv syenite, Punteglias granite and diorite; Schaltegger & Corfu, 1992) and 333 ± 2 Ma (Tödi granite; Schaltegger & Corfu, 1995). (42) Giuv syenite (~6 km2): is made up of a coarsegrained central facies and a medium- to fine-grained marginal facies, both porphyritic and foliated, with biotite and amphibole. Quartz syenites rich in mafic minerals could be the main rock type. (43) Punteglias granite (~10 km2): a lens-shaped intrusion consisting of various porphyritic and foliated granites and granodiorites. Syenogranites rich in mafic minerals could be the main rock type. (44) Punteglias diorite (<1 km2): a complex of some 10 small stocks displaying abundant mingling features, associated in the field with the Punteglias granite. It comprises a variety of biotite and amphibole rocks (e.g. quartz monzonites rich in mafic minerals). This suite is composed of four small plutonic bodies: Brunni granite, Düssi diorite, Schöllenen diorite and Voralp granite (Schaltegger et al., 1991; Schaltegger & Corfu, 1992). Most of them are subalkaline and magnesian. However, the Schöllenen diorite could be calcalkaline (only one analysis), and the Brunni granite is magnesian–ferriferous. U–Pb zircon or titanite datings yielded an age of 308 ± 2 Ma for the Düssi diorite (and, possibly, to the associated Brunni granite; Schaltegger et al., 1991), 310 ± 3 Ma for the Schöllenen diorite, and 309 ± 2 Ma for the Voralp granite (Schaltegger & Corfu, 1992). (46) Brunni granite (~3 km2): a locally porphyritic, foliated, light monzogranite, with allanite and epidote. (47) Düssi diorite (~3 km2): a heterogeneous complex associated in the field with the Brunni granite, displaying abundant mingling phenomena, made up of meladiorites to granodiorites with amphibole or biotite, locally porphyritic. Monzogabbros rich in mafic minerals could represent the main rock type. 1171 JOURNAL OF PETROLOGY VOLUME 40 (48) Schöllenen diorite: a complex of enclaves, probably reaching km3 size (Schaltegger & von Quadt, 1990), enclosed within the Central Aar granite, made up of medium-grained, massive rocks rich in biotite and amphibole, at least in part quartz monzodioritic in composition. (49) Voralp granite (~10 km2): a subvolcanic pluton of unknown typology which might belong to the same suite (Schaltegger & Corfu, 1992). ‘Calc-alkaline to subalkaline granitic suite’ This suite comprises the Central Aar and Gastern granites (Schaltegger, 1994). (50–58) The Central Aar granite (~550 km2) is a large elongate complex made up of coarse- to fine-grained, massive to strongly foliated, granodiorites to leucocratic granites, most of them enclosing variable amounts of mafic enclaves (Schaltegger, 1990a). All of these rocks contain biotite, whereas garnet and fluorite can occur in the most leucocratic members. Nine granitic bodies, with transitional or sharp contacts, have been distinguished along two main profiles (Grimsel pass and Reuss valley) [Schaltegger (1990a) and references therein]. On the basis of increasing SiO2 content (Table 2), they are as follows (Table 1): (50) Grimsel granodiorite (granodiorite); (51) Central granite sensu lato (light granodiorite); (52) Central granite sensu stricto (main type; monzogranite); (53) Southern border granite (light monzogranite); (54) Central granite sensu stricto (leucocratic monzogranite); (55) Aplite, fine-grained leucogranite (dykes and stocks of leucocratic syenogranite); (56) Northern border granite (leucocratic monzogranite); (57) Mittagflue granite (leucocratic monzogranite); (58) Kessiturm aplite (intrusion of leucocratic monzogranite, 0·2 km × 0·8 km in size). These nine granitic bodies define a typical subalkaline association. Some are ferriferous (50, 54, 56, 57) and the others magnesian–ferriferous (51–53, 55, 58), without any gap between them. Five out of these bodies were dated by U–Pb on zircon or titanite (Schaltegger & von Quadt, 1990; Schaltegger & Corfu, 1992; review by Schaltegger, 1994), yielding the following results: 299 ± 2 Ma (50), 297 ± 2 Ma (51), 299 ± 2 Ma (52), 298 ± 7 Ma (56) and 296·5 ± 2·5 Ma (57), leading to a mean age of 298 ± 2 Ma for the whole Central Aar granite (Schaltegger, 1994). (59) The Gastern granite (~35 km2), at the western end of the Aar massif, is a porphyritic biotite granite. It was dated at 303 ± 4 Ma by U–Pb on zircon (Schaltegger, 1993), but its chemical typology is unknown. NUMBER 7 JULY 1999 by the ‘Urseren–Garvera zone’ made up of deformed Permo-Carboniferous and Mesozoic formations. Its crystalline basement consists of monotonous gneisses including lenses of amphibolites, eclogites, mafic or ultramafic rocks, and marbles (von Raumer et al., 1993, and references therein). Unlike the Aar massif, this basement also comprises widespread orthogneisses (‘Streifengneis’), derived from Late Ordovician intrusions (439 ± 5 Ma; Sergeev & Steiger, 1993). Widespread Late Variscan plutons occur. They can be divided into two groups on the basis of structural and chronological data (Oberli et al., 1981; Schaltegger, 1994, and references therein). Most of them were dated by U–Pb on zircon. An older group, composed of strongly deformed (gneissic) granites, mainly comprises: (60) the Fibbia granite (~8 km2), a coarse-grained porphyritic syenogranite (299·4 ± 2 Ma; Sergeev et al., 1995); (61) the Gamsboden granite (~13 km2), a monzogranite similar to the Fibbia granite (301 ± 2 Ma, Guerrot & Steiger, 1991; 299·4 ± 2 Ma, Sergeev et al., 1995); (62, 63) a complex (~40 km2) comprising the Medel monzogranite (303 ± 20 Ma; Grünenfelder, 1962) and the Cristallina granodiorite. The younger group is made up of massive rocks, nearly devoid of any deformation. It mainly comprises: (64) the Cacciola granite (~2 km2), a medium- to fine-grained, biotite and muscovite monzogranite (292 ± 11 Ma; Oberli et al., 1981); (65) the Rotondo syenogranite (~26 km2) (294·3 ± 1·1 Ma; Sergeev et al., 1995); (66) the Sädelhorn diorite, outcropping as a sigmoidal dyke, ~3 km × Ζ0·2 km in size, composed of a fine-grained quartz-bearing monzodiorite (Table 1) with biotite, epidote and titanite (293 + 5/ – 4 Ma; Bossart et al., 1986); (67) the Tremola syenogranite (~2 km2), similar to the Rotondo granite (294·3 ± 1·1 Ma; Sergeev et al., 1995); (68) the leucocratic Winterhorn monzogranite (~1 km2) (Oberli et al., 1981). Judging from average compositions (S. A. Sergeev, personal communication, 1998), these plutonic bodies are most probably subalkaline apart from the peraluminous Cacciola monzogranite and the possibly calc-alkaline Cristallina granodiorite. They may be divided into a magnesian–ferriferous group [Fibbia, Medel (?)– Cristallina, Cacciola, Winterhorn] and a ferriferous group (Gamsboden, Rotondo, Sädelhorn, Tremola) (Fig. 3). The fact that this Mg/Fe typology is based on ratios directly calculated from average compositions makes it unsteady, and might account for some discrepancies with previous classifications (see above). Gotthard massif DISCUSSION Two plutonic suites The Gotthard massif (Fig. 10) extends for ~80 km, parallel to the Aar massif. It is separated from the latter The Late Variscan plutonic bodies of the ECM can be divided into three groups on the basis of their average 1172 DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS Mg/(Fe + Mg) ratio and mafic mineral content (Fig. 3). The chemical and mineralogical compositions of the three groups (Table 3; mafic enclaves and Sädelhorn dyke excluded from calculations) variably overlap one another, with a general tendency for an increase of the Si (and quartz) content and 87Rb/86Sr ratio and a decrease in Ti, Al, Fe, Mg, Ca, P, Ba, Sr and mafic mineral content on going from the Mg group to the Fe group, through the Mg–Fe group. In contrast, chemical parameters such as the alkalis [Na, K, sum Na + K, K/ (Na + K) ratio], commonly used for the classification of igneous rocks, or the Rb and feldspar contents, remain almost similar in the three groups. Judging from average compositions, a significant gap separates the magnesian plutonic bodies from the others in mg-number–B diagrams (Figs 3 and 11). In contrast, there is no distinct gap between the magnesian–ferriferous bodies and the ferriferous ones, which, in addition, can coexist within a single pluton (Mont Blanc and Central Aar granites). Apart from those obtained for three magnesian bodies (Combeynot, Düssi, Schöllenen; see below), ages recorded among the magnesian, magnesian– ferriferous and ferriferous intrusions vary from 343 to 332 Ma, 307 to 292 Ma and 305 to 293 Ma, respectively (Table 2; Figs 11 and 12). They corroborate the Mg/Fe typology: a gap separates most of the magnesian bodies from the others, whereas ages obtained for the magnesian–ferriferous and the ferriferous intrusions overlap each other. Altogether, these data are interpreted to indicate that the three plutonic groups form only two separate suites, namely a Viséan (~330–340 Ma) highmg-number suite corresponding to the magnesian plutonic bodies, and a mainly Stephanian (~295–305 Ma) low-mgnumber suite comprising both the magnesian–ferriferous and the ferriferous bodies. The boundary between the two suites does not coincide with the ‘critical line’ of the mg-number–B diagram, but is situated significantly above it (Fig. 11). Thus, as suggested by previous studies (Debon et al., 1994, 1998), the Late Variscan intrusions of the ECM display a remarkable, discontinuous evolution in the course of time, from magnesian to more ferriferous compositions. Accordingly, the mg-number is regarded, in the ECM, as a first-rank discrimination criterion. Bonin et al. (1993) and Bonin (1997) have proposed an overall evolution of the entire Late Variscan plutonic rocks of the Alps towards increasingly alkaline compositions: ‘Lower to Middle Carboniferous high-K calcalkaline suites’ are followed by ‘Late Carboniferous nearalkaline associations’ and then by A-type Mid- to Late Permian plutonic–volcanic complexes. This point of view is questionable in the case of the ECM. The Viséan highmg-number and the mainly Stephanian low-mg-number plutonic suites display remarkably similar high contents in alkalis (Na + K) and K/(Na + K) ratios (Table 3), and both are mainly subalkaline (Figs 2 and 13), whatever their Mg/Fe typology and age of emplacement may be. On the R1–R2 diagram (de la Roche et al., 1980), of common use for the classification of igneous rocks and their magmatic associations (e.g. de la Roche, 1979; Batchelor & Bowden, 1985; Rollinson, 1993), the two suites are indistinguishable from each other, apart from a higher proportion of mafic rocks in the high-mg-number suite and of quartz-rich granites in the low-mg-number suite (Figs 11 and 13). In addition, both Viséan and Westphalian ages were obtained for two granites of distinct alkaline affinity, namely La Lauzière (341 ± 13 Ma; Debon et al., 1998) and Combeynot (312 ± 7 Ma; Costarella, 1987; Bonin, 1997; Cannic et al., 1998). Actually, the subvolcanic Combeynot granite exhibits atypical features relative to the other plutonic bodies of the ECM. Its dominant coarse-grained type is clearly magnesian (Figs 3 and 11) but displays REE and spiderdiagram patterns similar to those of ferriferous granites (Figs 14 and 15). It is younger by some 20 my than the other magnesian plutons (332–343 Ma), but remains significantly older than most of the plutonic bodies of the low-mg-number suite (292–308 Ma) (Fig. 12). The reasons for these discrepancies are unclear. In particular, although this granite is separated from the Pelvoux massif (Fig. 6) by a westward-vergent thrust zone (e.g. de Gracianski, 1993), it cannot represent a fragment of the Internal Alps thrust onto the ECM by Alpine tectonics, because its Mesozoic cover is undoubtedly of the Helvetic type (Barféty, 1988, and personal communication, 1998). Except for Ba, Rb and Sr (Table 2), trace element data remain rather scarce for the Late Variscan plutonic rocks of the ECM (Table 4). REE and spiderdiagram patterns obtained from available data seem hardly pertinent to discriminate between the plutonic bodies, maybe except for Eu, HREE, Sr and highly compatible elements (Figs 14 and 15; see also Vittoz et al., 1987; Bonin et al., 1993). Discriminating criteria other than the mg-number— structural, mineralogical or geochemical—were used in some specific massifs (Pelvoux, Mont Blanc, Aiguilles Rouges, Aar, Gotthard). They led to classifications of the Pelvoux plutons somewhat different from ours, indicating, for example, an E–W-directed evolutionary trend for this plutonism (Vittoz et al., 1987, and references therein). Many criteria can actually be used and there is no reason why they should lead to a unique classification. In the scope of this paper, the most worthwhile criteria are those liable to display an evolution through time, as the mg-number does at the scale of all the ECM. Using, in addition to the above-mentioned criteria, precise ages of emplacement, Bussy & Hernandez (1997) and Bussy et al. (1998) distinguished, in the Mont Blanc and Aiguilles Rouges area, a 330 Ma magnesian plutonic event, followed by a peraluminous event at 307 Ma, and then by 1173 JOURNAL OF PETROLOGY VOLUME 40 NUMBER 7 JULY 1999 Fig. 11. Plot of Late Variscan plutonic bodies (average compositions) from the ECM on the mg-number–B diagram of Debon & Le Fort (1988). Tödi (333 ± 2 Ma), Voralp (309 ± 2) and Gastern (303 ± 4 Ma) granites are not shown because of unknown chemical typology. Other explanations as in Fig. 3. of the ECM remain uncertain. A variety of interacting factors are suitable to account for it, depending, in particular, on the nature of the source materials, the physical and chemical conditions of melting, and the geodynamic setting. Source materials Fig. 12. Ages of emplacement of Late Variscan plutonic bodies from the ECM. Data from Table 2. Error bars at 2r, except for ages obtained through the lead-evaporation method (see Table 2). 8, Combeynot granite; 47, Düssi diorite; 48, Schöllenen diorite. Tödi (333 ± 2 Ma), Voralp (309 ± 2 Ma) and Gastern (303 ± 4 Ma) granites are not shown because of unknown chemical typology. the intrusion of the ferriferous Mont Blanc granite. In the same way, the distinction of up to four intrusive events was proposed in the Aar and Gotthard massifs [for a review, see Schaltegger (1994)], with the first two events mainly corresponding to the high-mg-number suite and the other two to the low-mg-number suite (Fig. 10). This shows that our partition into two major suites can be, at least locally, made more accurate. The reasons for the evolution from magnesian to more ferriferous compositions in the Late Variscan plutonism As indicated by their mafic enclaves, the Late Variscan granites of the ECM are most probably hybrid rocks, deriving from at least two source materials (Didier & Barbarin, 1991, and references therein). A number of studies on mafic enclave–host granite pairs (Debon, 1991, and references therein), specifically in the ECM (Banzet, 1987; Debon et al., 1998), have shown that: (1) the enclaves and their host granites share compositional characteristics indicating their close relationship (e.g. Figs 14 and 15); (2) the two groups of rocks, however, are not cogenetic and their relationship was probably acquired through pervasive mechanical and chemical interaction (especially differential interdiffusion) between two originally independent magmas. Isotopic data which may provide constraints on the source of the Late Variscan plutons are rather scarce. The initial 87Sr/86Sr isotope ratios of plutonic rocks (mafic 1174 DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS Fig. 13. Plot of Late Variscan plutonic bodies (average compositions) from the ECM on the R1–R2 diagram of de la Roche et al. (1980). Data from Table 2. Other explanations as in Fig. 2. Fig. 14. Chondrite-normalized REE diagrams for Late Variscan plutonic bodies (average compositions) from the ECM. Data (Table 4) normalized to chondritic values of Evensen et al. (1978). 1175 JOURNAL OF PETROLOGY VOLUME 40 NUMBER 7 JULY 1999 Fig. 15. Chondrite-normalized element variation diagrams (spiderdiagrams) for Late Variscan plutonic bodies (average compositions) from the ECM. Data (Table 4) normalized to chondritic abundances (Thompson, 1982), except for Rb, K and P, which are normalized to primitive terrestrial mantle values (Sun, 1982). Symbols as in Fig. 14. enclaves included) from the high-mg-number suite (Colle Blanche–Moutières, Péou de Saint Maurice, Rochail, and Sept Laux plutons; Giuv syenite) vary from 0·7038 to 0·7077 (Demeulemeester, 1982; Banzet, 1987; Schaltegger et al., 1991). Apart from an old value of 0·712 given by Ferrara & Malaroda (1969) for the Argentera Central granite, those obtained for rocks from the lowmg-number suite (Mont Blanc and Central Aar granites) range from 0·7049 to 0·7058 (Bussy et al., 1989; Schaltegger, 1990a, 1990b, 1994) with, in addition, a higher value of 0·7074 for the Sädelhorn diorite from the Gotthard massif (Bossart et al., 1986). Negative initial Nd isotopic compositions (eNd) were obtained for rocks from both the high-mg-number (–2 and –5 for the Combeynot and Sept Laux granites, respectively; Cannic et al., 1998; Debon et al., 1998) and the low-mg-number suite (–2·7 for the Sädelhorn diorite; Bossart et al., 1986; –3 and –5 for the Gamsboden–Fibbia and Medel–Cristallina granites, respectively; Guerrot & Steiger, 1991). Finally, the initial Hf isotopic compositions (eHf ) determined for rocks from the high-mg-number and the low-mg-number suite range, in the Aar massif, from –8 to 0 and from –5 to +3·5, respectively (Schaltegger & Corfu, 1992, 1995), whereas a value of +4·47 was obtained for the ferriferous Sädelhorn diorite (Stille et al., 1989). The large isotopic overlap between the high-mg-number and the low-mg-number suite is likely to indicate that both suites were derived from common source materials. This is corroborated by the fact that the two suites display the same mainly subalkaline typology (Figs 2 and 13) as well as similar REE and spiderdiagram patterns (distinctive positive spike at Th, but generally negative at Ba, Nb, Sr, P and Ti, both for felsic and mafic or intermediate rocks) (Figs 14 and 15). A subcontinental enriched mantle and a continental crust might constitute these common source materials (e.g. Banzet, 1987; Schaltegger et al., 1991; Stille & Steiger, 1991; Schaltegger & Corfu, 1992; Schaltegger, 1994; Debon et al., 1998). The involvement of an enriched-mantle component is supported in particular by: (1) the presence, in many magnesian plutons (Colle Blanche–Moutières, Péou de Saint Maurice, Quatre Tours, Rochail, Sept Laux, Pormenaz), of vaugneritic or durbachitic enclaves, i.e. of isotopically heterogeneous mafic rocks, rich in both compatible and incompatible elements (e.g. Mg, K), and of lamproitic or lamprophyric affinity (Banzet, 1987, and references therein; Sabatier, 1991). As shown by many studies, most workers agree that the ultimate source of such K-rich mafic magmas lies in an enriched upper mantle [for reviews, see Foley et al. (1987), Wilson (1989) and Mitchell & Bergman (1991)]. (2) The marked similarities displayed by the REE and spiderdiagram patterns of felsic, intermediate and mafic rocks from the two plutonic suites with those of both the Sept Laux vaugnerites and certain ultrapotassic rocks 1176 DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS Fig. 16. REE and spiderdiagram patterns of the Sept Laux vaugnerites (Table 4), high-K lamprophyres from the Northwestern Alps (Venturelli et al., 1984a), lamproites from Southeastern Spain (Nixon et al., 1984; Venturelli et al., 1984b; Nelson et al., 1986), and potassic lavas from Central Italy (Rogers et al., 1985). Other explanations as in Figs 14 and 15. from Groups I (e.g. lamproites from Southeastern Spain; high-K lamprophyres from the Northwestern Alps) and III (e.g. basanites and leucitites from central Italy) of Foley et al. (1987) [Figs 14–16 (see also Banzet (1987)]. (3) The ‘shoshonitic–ultrapotassic suite’ of the Aar massif (Schaltegger et al., 1991), of vaugneritic affinity. A continental contribution to the genesis of the Late Variscan plutonic rocks from the ECM is suggested by several lines of evidence: (1) the mainly granitic composition of these rocks (Tables 1 and 2; Fig. 13); (2) their positive anomaly in Th (Fig. 15); (3) their initial 87 Sr/86Sr isotope ratios (0·704–0·708) higher than primary mantle values; (4) their generally negative initial eNd (–3 to –5) and eHf values (–8 to +4·5); (5) the presence of (rare) zircons inherited from the lower or the upper crust in some of these rocks (Bossart et al., 1986; Banzet, 1987; Schaltegger & Corfu, 1992, 1995; Schaltegger, 1993; Sergeev et al., 1995). Some of these features (2–4), however, are ambiguous because they can also characterize ultrapotassic rocks such as many lamproites (e.g. Mitchell & Bergman, 1991) and, thus, might also be accounted for by a contribution from an enriched mantle. In addition, Schaltegger (1994) considered that the general lack of inherited lead in zircons from the Aar plutonic rocks would indicate a predominantly mantle origin. Although dated at 308 and 310 Ma, the Düssi and Schöllenen diorites (numbers 47 and 48) belong to the high-mg-number suite (Figs 3, 10–12). The former is associated with the magnesian–ferriferous Brunni granite, whereas the latter is an enclave within the ferriferous Central Aar granite. Interpreting their ages is therefore made difficult because mechanical or chemical interaction with the associated granites cannot be excluded. More field data would be of prime importance to go further in discussing these two particular cases, hence supporting the fact that the magnesian magmatism of lamproitic affinity was still active during the emplacement of the low-mg-number plutonic suite. This is corroborated by the magnesian–ferriferous group of enclaves (number 38) dated at 306 Ma that occurs in the ferriferous Mont Blanc granite, possibly by the 307 Ma gabbroic enclaves (U–Pb zircon dating; Bussy & Hernandez, 1997) enclosed in the Fully migmatites (Aiguilles Rouges massif ), and by volcanic rocks of shoshonitic affinity dated by U–Pb on zircon at 308 ± 15 Ma in the Grandes Rousses massif (Banzet et al., 1985; Cannic et al., 1998). However, apart from the coarse-grained Combeynot granite, felsic magnesian plutonic bodies are only Viséan in age. The most probable perenniality of a mafic magnesian activity during Late Variscan times is consistent with the conspicuous scarcity of strongly ferriferous granites in the ECM (Fig. 3). A decreasing contribution from an enriched mantle of lamproitic affinity in the course of time might account for the replacement of the magnesian granites by more ferriferous ones. This is suggested by: (1) the overall greater abundance of mafic igneous enclaves (see Pelvoux massif ) in the magnesian granites than in the more ferriferous ones, and of mafic or intermediate plutonic bodies in the high-mg-number suite than in the low-mgnumber one (Table 3; Figs 11 and 13); (2) the similar low contents in HREE and in most compatible elements 1177 JOURNAL OF PETROLOGY VOLUME 40 (Tb, Y, Tm, Yb) displayed by the vaugnerites and many magnesian plutonic bodies, a feature that does not appear in ferriferous bodies (Figs 14 and 15); (3) the continuance of a typical, although fading, magnesian magmatic activity during the emplacement of the low-mg-number plutonic suite (e.g. Düssi and Schöllenen diorites; see above). In the Aar massif, however, the overall increase of initial eHf values from magnesian to ferriferous rocks was interpreted to reflect a decreasing crustal contribution to magma generation in the course of crustal thinning or to an increasing influence of an asthenospheric–mantle component (Schaltegger & Corfu, 1992, 1995; Schaltegger, 1994). Physical and chemical conditions of melting Assuming that both plutonic suites originated from similar source materials, another possibility, not exclusive of the preceding one, is that they were generated under different physical and chemical conditions. There are several experimental studies dealing with the composition and especially with the Mg/Fe ratio of primary granitic melts generated from various protoliths ( Johannes & Holtz, 1996, and references therein). These are helpful in highlighting the possible effects, on this ratio, of oxygen fugacity, temperature, pressure and water activity. Besides the chemical and mineralogical compositions of the protolith, the f O2 conditions prevailing in the source have dramatic effects on the iron content and Mg/Fe ratio of the melts ( Johannes & Holtz, 1996). However, only few systematic investigations of the effects of f O2 were carried out because this parameter is difficult to control and to monitor experimentally (F. Holtz, personal communication, 1998). Oxygen fugacity exerts a strong control on the nature of the ferromagnesian phases of the source rocks and, therefore, on the composition of the melts themselves (Patiño Douce & Beard, 1996). The solubility of ferromagnesian minerals in melts is significantly higher under reducing conditions ( Johannes & Holtz, 1996); however, the effects of f O2 on the Mg/Fe ratio of the melts remain poorly known. Depending on a number of factors, such as the composition of both the source rock and the coexisting melt, this ratio might increase (Truckenbrodt et al., 1997) or decrease (Scaillet et al., 1995; Johannes & Holtz, 1996; Patiño Douce & Beard, 1996) under increasingly reducing conditions. Most studies show that the Mg and Fe contents of the melts display a general tendency to increase with rising temperature, dependent on the nature and stability of the phases involved in the melting reactions ( Johannes & Holtz, 1996). In contrast, pressure and water activity NUMBER 7 JULY 1999 seem to have little direct effect on the iron and magnesium contents of the melts. Pressure can have, however, important indirect effects on the Mg/Fe ratio because the stability of some minerals is strongly dependent on P ( Johannes & Holtz, 1996), and the ferromagnesian content of the melt can decrease with decreasing aH2O (Patiño Douce, 1996). Among the above-mentioned physical and chemical parameters, T, f O2 and P might be, a priori, the most relevant to account for a significant change in the Mg/ Fe ratio of the melts. In particular, it seems likely that a rise in temperature can trigger the involvement of increasingly magnesium-rich minerals in the melting processes. The presence of comagmatic (although not cogenetic) vaugneritic enclaves in many magnesian granites of the ECM implies the involvement of a high-temperature mafic magma [~1000°C for the emplacement temperature ascribed to vaugnerites studied by Montel & Weisbrod (1986)]. Such mafic magmas crystallized under low f O2 conditions (Sabatier, 1980; Rossi, 1986; Rossi & Cocherie, 1991). In Corsica (Fig. 1), probably a part of the External Alps (Lemoine, 1984), the Late Variscan granites also comprise an early magnesian suite [(U1); 337–339 Ma] and a younger more ferriferous suite [(U2); 288–307 Ma] (Rossi, 1986; Rossi & Cocherie, 1995; Ménot et al., 1996). Here again, the two suites are considered as being derived from similar protoliths (namely, an Austro-Alpine continent) but under different conditions of melting; namely, under granulite-facies conditions with pCO2 > pH2O for the magnesian suite, and then under amphibolite-facies conditions with lower pressure but higher aH2O for the ferriferous suite (Rossi, 1986; Rossi & Cocherie, 1991). In this case, P and aH2O would be the main factors liable to account for the transition from the high-mgnumber to the low-mg-number suite. Consequently, this increase of aH2O might have induced an increase of f O2 (Baker & Rutherford, 1996; F. Holtz, personal communication, 1998). In addition, the fact that magnesian and ferriferous granites crystallized under reducing, near the Ni–NiO buffer, and oxidizing conditions, respectively, also suggests a possible increase of f O2 at the places of melting with time. Just as in Corsica, the generation of the magnesian granites from the Pelvoux massif might be related to the early granulitic stage of metamorphism (P = 5 ± 1 kbar, T = 800 ± 50°C) described by Grandjean et al. (1996), and that of the magnesian– ferriferous granites to the later amphibolitic stage (P = 3 ± 1 kbar, T = 700 ± 50°C) (C. Guerrot & F. Debon, in preparation). Altogether, the above data suggest that a decrease of T and P, and an increase of f O2 and aH2O at the level of the protoliths might be alternative means of accounting for the transition from the high-mg-number to the lowmg-number suite. 1178 DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS Geodynamic setting The Variscan orogenic belt of Europe evolved during the Palaeozoic convergence of Gondwana and Laurasia and was consolidated in the Late Palaeozoic (e.g. Finger & Steyrer, 1990, and references therein). The Late Variscan plutonic bodies of the ECM were emplaced in an intracontinental environment, subsequent to the Devonian– Early Carboniferous major stage of collision and crustal thickening (Bonin et al., 1993; von Raumer & Neubauer, 1993; von Raumer et al., 1993; Bonin, 1997). Unlike the South Alpine realms (Finger & Steyrer, 1990; Bonin, 1997), there is no evidence for an emplacement of these bodies in an active continental margin, despite their negative anomalies in Ba, Nb, Sr, P and Ti (Fig. 15), similar to those displayed by subduction-related magmas. In the ECM, these anomalies might be related to the involvement of an upper-mantle component of lamproitic affinity (see before), enriched in incompatible elements by inferred pre- (or syn-)collisional subduction(s) (Banzet, 1987; Stille, 1987; Schaltegger & Corfu, 1992). Extension, crustal thinning and wrench tectonics characterize the post-collisional evolution of the Variscan belt (e.g. Ménard & Molnar, 1988). Two main successive extensional events have been recognized by Burg et al. (1994) in the western European Variscides: (1) the predominantly Late Viséan–Westphalian extension was a diachronous event, beginning in the inner, thickest parts of the belt, in association with wrench tectonics reactivating thrust zones during escape tectonics controlled by still active compressional forces. These processes induced an extension almost parallel to the Variscan belt, at a time when thermal relaxation was already occurring. (2) The second period of extension, namely, the Late Stephanian to Early Permian event, is characterized by major stretching and thinning with an extension direction mainly transverse to the Variscan belt. It was induced by the gravity collapse of the entire belt. Accordingly, it appears that the two plutonic suites of the ECM, namely, the Viséan high-mg-number suite and the mainly Stephanian low-mg-number suite, were intruded at the beginning of each of the two major extension events recognized by Burg et al. (1994), either the Late Viséan–Westphalian event or the Late Stephanian to Early Permian event. This remarkable coincidence strongly suggests that magma generation was triggered by drastic and abrupt changes in the tectonic setting, including in the direction of extension, as pointed out in many collisional domains (e.g. Boullier et al., 1986; Liégeois & Black, 1987; Debon & Zimmermann, 1993) and emphasized, in the Alps, by the following studies. The high-mg-number suite forms part of the ‘Lower to Middle Carboniferous high-K calc-alkaline suites’ recognized by Bonin et al. (1993) throughout the Variscan Alps and which were emplaced during a stage of uplift and erosion in a short-lived transpressional and/or transtensional regime. In the Aar massif, the intrusion of the magnesian plutonic rocks marks the beginning of Late Variscan strike-slip tectonics and coincides with a first period of extension or transtension associated with the formation of volcano-sedimentary basins (Schaltegger et al., 1991; Schaltegger & Corfu, 1995). In the Belledonne massif, the magnesian granites support a (short-lived?) Early Viséan period of opening, in a tectonic regime that was in this area, however, more probably transpressional than transtensional (Debon et al., 1998). Magnesian plutonic rocks have also been reported from other massifs of the Moldanubian zone of the Variscides [e.g. Central Bohemia: 340–343 Ma (Holub et al., 1997); Southern Vosges: 339–342 Ma (Schaltegger et al., 1996); Corsica: 337–339 Ma (Rossi & Cocherie, 1995; Ménot et al., 1996) (Fig. 1)]. In the Southern Vosges, these rocks are linked to an extremely shortlived episode of extension, between ~345 and 340 Ma (Viséan), marked by the development of a large volcanosedimentary basin and the exhumation of adjacent highgrade gneissic rocks (Schaltegger et al., 1996). In Corsica, their generation is related to an abrupt adiabatic uplift of the crust under extensional conditions (Rossi, 1986; Ferré, 1989; Rossi & Cocherie, 1991). The low-mg-number suite belongs to the ‘Late Carboniferous near-alkaline suites’ of Bonin et al. (1993), which were emplaced in a major distensional regime. According to Bussy & Hernandez (1997), the Vallorcine, Montenvers and Mont Blanc granites (Mont Blanc and Aiguilles Rouges massifs) were emplaced in an uplifting basement subjected to crustal-scale strike-slip faulting, in an overall extensional regime of ‘Basin and Range’ type. Previously (Schulz & von Raumer, 1993), pull-apart mechanisms have been proposed for the emplacement of the Vallorcine granite. In the Aar massif, the intrusion of the ferriferous granites (e.g. Central Aar granite), accompanied by the formation of volcano-sedimentary basins, coincided with a second period of Late Variscan ‘Basin and Range’-like extension or transtension (Schaltegger & Corfu, 1995). In Corsica, the ferriferous suite (U2) was intruded in a still uplifting basement under extensional conditions (Rossi, 1986; Rossi & Cocherie, 1991; Rossi et al., 1992; Thevoux-Chabuel et al., 1995). Thus, it is likely that generation and emplacement of the Late Variscan granites of the ECM were closely linked to regional tectonics. They most probably represent a discontinuous phenomenon, triggered by at least two distinct tectonic events, dominated by extensional or transtensional processes occurring in a general framework of large-scale uplift and crustal thinning. The two suites are variably represented among the different ECM (Fig. 17). Granites of the high-mg-number 1179 JOURNAL OF PETROLOGY VOLUME 40 NUMBER 7 JULY 1999 Fig. 17. Synthetic map showing the Mg/Fe typology and the ages of emplacement of Late Variscan plutonic bodies from the ECM. Data from Table 2. Magnesian–ferriferous and ferriferous bodies of the Mont Blanc and Central Aar granites are not distinguished from each other. suite occur almost everywhere, with a conspicuous maximum in the Belledonne, Grandes Rousses and Pelvoux massifs, i.e. at the point of inflexion of the arc defined by the ECM. The ferriferous granites of the low-mgnumber suite, widely developed in the Argentera, Mont Blanc, Aar and Gotthard massifs, are absent elsewhere, whereas the magnesian–ferriferous granites also occur in the Pelvoux and Aiguilles Rouges massifs. In other words, the early high-mg-number suite and the younger low-mgnumber suite tend to develop within distinct massifs. This implies that the conditions propitious for magma generation were not simultaneously realized in the different ECM. Pre-Mesozoic reconstructions of the Alps remain a matter for speculation and thus the respective positions of the ECM in Upper Carboniferous times are poorly constrained (von Raumer & Neubauer, 1993; Bonin, 1997), although Bogdanoff et al. (1991) considered the ECM arc as mainly inherited from the Variscan orogeny. Burg et al. (1994) showed that the two Late Variscan extensional events were, respectively, nearly parallel and mainly transverse to the belt. Because of probable differences in their structural orientations, the 1180 DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS ECM might have been predominantly affected by either the first or the second of these two events, thus promoting a greater development of either magnesian (in N–Sdirected massifs) or ferriferous granites (in E–W-directed massifs). Differences in the original situation (more or less internal) of the ECM relative to the Late Variscan belt might also account for the contrasted distribution of the two suites. This has been pointed out in Corsica– Sardinia and, more generally, in the French Variscan, where, as a whole, the high-mg-number plutons are located in more internal parts of the belt than the low-mg-number ones (Orsini, 1979, 1980; R. P. Ménot, personal communication, 1998). The composite Belledonne massif, made up of three distinct domains (terranes), shows that Late Variscan strike-slip tectonics was actually able to juxtapose basement pieces of very different origins (Ménot, 1988a, 1988b). The ECM were part of the inner zone of the Variscides (Bogdanoff et al., 1991; von Raumer et al., 1993), i.e. of a domain propitious for early development of extensional processes (Burg et al., 1994), as early as ~340 Ma by the ages obtained for the Belledonne granites (Debon et al., 1998). In addition, as the presence of vaugnerites or durbachites implies a contribution from a subcontinental mantle component, it is likely that, as emphasized by Burg et al. (1994), Late Variscan strike-slip faults were lithospheric scale, allowing mantle melts to rise into the upper crust (Schaltegger et al., 1991). The overall evolution of Mg/Fe ratios might be accounted for by the combination of a number of interacting factors related to the nature of the source of the magmas, the physical and chemical conditions of melting, and the Late Variscan geodynamic setting. On the basis of geochemical and isotopic data available in the literature, it is suggested, in agreement with previous studies, that both suites are composed of hybrid rocks originating from similar source materials, namely a subcontinental enriched mantle of lamproitic affinity and a sialic crust. A decreasing contribution from the enriched mantle in the course of time, possibly related to a decrease in temperature and pressure conditions and to an increase of the oxygen fugacity and water activity at the places of melting, might be the main factors responsible for the evolution towards increasingly ferriferous granites. Changes in the physical conditions of melting were probably linked to extensional processes occurring in a general framework of strike-slip tectonics, large-scale uplift and thinning. Emplacement of the Late Variscan granites of the ECM was a discontinuous phenomenon, composed of at least two distinct steps, the former Viséan and the latter mainly Stephanian. Each step took place at the beginning of the two major extension periods recognized by Burg et al. (1994) in the Variscan belt of Western Europe. This strongly suggests that magma generation was triggered by drastic and abrupt changes in the tectonic conditions, as pointed out in many collisional domains. CONCLUSION ACKNOWLEDGEMENTS Use of the mg-number–B diagram of Debon & Le Fort (1988) led us to distinguish two suites of Late Variscan intrusions in the External Crystalline Massifs of the Alps (ECM), namely a high-mg-number and a low-mg-number suite. With few exceptions, each suite is characterized by a specific age of emplacement, namely, Viséan (~330–340 Ma) and mainly Stephanian (~295–305 Ma), respectively. This demonstrates the existence of an evolution with time from magnesian granites to more ferriferous ones and therefore makes the Mg/Fe ratio a first-rank criterion to approach the Late Variscan magmatic processes in the ECM, at that time a part of a wide post-collisional orogenic belt. In contrast, criteria commonly used to discriminate between igneous suites (alkali content and ratio, REE and spiderdiagram patterns) seem hardly pertinent to evidence an evolution in the ECM. More precise chronological data, however, would allow the proposed partition into two major suites to be refined, specifically regarding the composite low-mg-number suite. In addition, although fading, the high-mg-number magmatism was still going on during the emplacement of the low-mg-number suite. Early drafts of the manuscript were greatly improved by thorough reviews from Marjorie Wilson (Executive Editor of this journal), R. P. Ménot (University of Saint-Etienne), B. Bonin (University of Paris-Sud), and an anonymous referee. The authors gratefully acknowledge F. Holtz (CNRS, Orléans and University of Hannover), G. Banzet (CNRS, Nancy), Kirsten Nicholson (University of Auckland) and A. Pêcher (University of Grenoble) for fruitful comments, as also G. Banzet, F. Bussy (University of Lausanne), Catherine Guerrot (BRGM, Orléans), B. Lombardo (CNR, Torino), A. Pêcher, U. Schaltegger (ETH, Zürich), S. A. Sergeev (ETH, Zürich) and G. Vivier (CNRS, Nancy) for providing them with unpublished chemical or chronological data, K. Govindaraju (CRPG– CNRS, Nancy) for high-quality chemical analyses, K. Furness for his help with the English manuscript, and Pam Stuart for editorial handling. REFERENCES Baker, L. L. & Rutherford, M. L. (1996). The effect of dissolved water on the oxidation state of silicic melts. Geochimica et Cosmochimica Acta 60, 2179–2187. 1181 JOURNAL OF PETROLOGY VOLUME 40 Banzet, G. (1987). Interactions croûte–manteau et genèse du plutonisme subalcalin du Haut-Dauphiné occidental (massifs cristallins externes, Alpes): vaugnérites, durbachites et granitoı̈des magnésio-potassiques. Géologie Alpine 63, 95–117. Banzet, G., Lapierre, H., Le Fort, P. & Pêcher, A. (1985). Le volcanisme Carbonifère-Supérieur du massif des Grandes Rousses (Zone dauphinoise—Alpes externes françaises): un magmatisme à affinités shoshonitiques lié à la fracturation crustale tardi-varisque. Géologie Alpine 61, 33–60. Barbieri, A. (1970). Etude pétrographique de la partie orientale du massif des Ecrins-Pelvoux. Les granites. Aperçu sur la géochronométrie du massif. Thèse de 3ème Cycle, Université de Grenoble, 127 pp. Barféty, J. C. (1988). Le Jurassique dauphinois entre Durance et Rhône. Etude stratigraphique et géodynamique (zone externe des Alpes occidentales françaises). Documents du Bureau de Recherches Géologiques et Minières 131, 1–656. Barféty, J. C., Pêcher, A. (coords) et al. (1984). Carte géologique de la France à 1/50 000, feuille Saint-Christophe-en-Oisans (822) et notice explicative. Orléans: Bureau de Recherches Géologiques et Minières, 64 pp. Barféty, J. C. (coord.) et al. (1976). Carte géologique de la France à 1/50 000, feuille La Grave (798) et notice explicative. Orléans: Bureau de Recherches Géologiques et Minières, 44 pp. Barféty, J. C. (coord.) et al. (1989). Carte géologique de la France à 1/50 000, feuille La Mure (821) et notice explicative. Orléans: Bureau de Recherches Géologiques et Minières, 98 pp. Barféty, J. C., Ménot, R. P., Gidon, M., Debon, F. & Fourneaux, J. C. (1999). Carte géologique de la France à 1/50 000, feuille Domène (773) et notice explicative. Orléans: Bureau de Recherches Géologiques et Minières, in press. Batchelor, R. A. & Bowden, P. (1985). Petrogenetic interpretation of granitoid rocks series using multicationic parameters. Chemical Geology 48, 43–55. Bellière, J. & Streel, M. (1980). Roches d’âge viséen supérieur dans le massif des Aiguilles Rouges (Haute-Savoie). Comptes Rendus de l’Académie des Sciences, Paris 290, D, 1341–1343. Bogdanoff, S., Ménot, R. P. & Vivier, G. (1991). Les massifs cristallins externes des Alpes occidentales françaises, un fragment de la zone interne varisque. Sciences Géologiques, Bulletin 44, 237–285. Bonin, B. (1997). Late Variscan magmatic evolution of the Alpine belt: an overview. In: Sinha, A. K., Sassi, F. P. & Papanikolaou D. (eds) Geodynamic Domains in Alpine–Himalayan Tethys. Rotterdam: A. A. Balkema, pp. 295–314. Bonin, B. (coord.), Brändlein, P., Bussy, F., Desmons, J., Eggenberger, U., Finger, F., Graf, K., Marro, C., Mercolli, I., Oberhänsli, R., Ploquin, A., von Quadt, A., von Raumer, J. F., Schaltegger, U., Steyrer, H. P., Visonà, D. & Vivier, G. (1993). Late Variscan magmatic evolution of the Alpine basement. In: von Raumer, J. F. & Neubauer, F. (eds) Pre-Mesozoic Geology in the Alps. Berlin: SpringerVerlag, pp. 171–201. Bossart, P. J., Meier, M., Oberli, F. & Steiger, R. H. (1986). Morphology versus U–Pb systematics in zircon: a high-resolution isotopic study of a zircon population from a Variscan dike in the Central Alps. Earth and Planetary Science Letters 78, 339–354. Boullier, A. M., Liégeois, J. P., Black, R., Fabre, J., Sauvage, M. & Bertrand, J. M. (1986). Late Pan-African tectonics marking the transition from subduction-related calc-alkaline magmatism to within-plate alkaline granitoids (Adrar des Iforas, Mali). Tectonophysics 132, 233–246. Brändlein, P., Nollau, G., Sharp, Z. & von Raumer, J. F. (1994). Petrography and geochemistry of the Vallorcine granite (Aiguilles Rouges massif, Western Alps). Schweizerische Mineralogische und Petrographische Mitteilungen 74, 227–243. NUMBER 7 JULY 1999 Burg, J. P., van den Driessche, J. & Brun, J. P. (1994). Syn- to postthickening extension in the Variscan Belt of Western Europe: modes and structural consequences. Géologie de la France 3, 33–51. Bussy, F. (1990). Pétrogenèse des enclaves microgrenues associées aux granitoı̈des calco-alcalins: exemple des massifs varisque du MontBlanc (Alpes occidentales) et miocène du Monte Capanne (Ile d’Elbe, Italie). Mémoires de Géologie (Lausanne) 7, 1–309. Bussy, F. (1992). Genetic implications for identical U–Pb ages of the Mont-Blanc granite and its microgranular enclaves. Géologie Alpine, Série spéciale Résumés de colloques 1, 11. Bussy, F. (1995). Une revue des âges radiométriques de mise en place de magmatites dans les massifs cristallins externes des AiguillesRouges et du Mont-Blanc. In: Magmatismes dans le Sud-Est de la France. Séance spécialisée de la Société géologique de France, Université de Nice, abstract volume, p. 20. Bussy, F. & Hernandez, J. (1997). Short-lived bimodal magmatism at 307 Ma in the Mont-Blanc/Aiguilles-Rouges area: a combination of decompression melting, basaltic underplating and crustal fracturing. Quaderni di Geodinamica Alpina e Quaternaria 4, 22. Bussy, F. & von Raumer, J. F. (1993). U–Pb dating of Palaeozoic events in the Mont-Blanc crystalline massif, Western Alps. Terra Nova 5, Abstract Supplement 1, 382–383. Bussy, F., Schaltegger, U. & Marro, C. (1989). The age of the MontBlanc granite (Western Alps): a heterogeneous system dated by Rb–Sr whole rock determinations on its microgranular enclaves. Schweizerische Mineralogische und Petrographische Mitteilungen 69, 3–13. Bussy, F., Delitroz, D., Fellay, R. & Hernandez, J. (1998). The Pormenaz monzonite (Aiguilles-Rouges, Western Alps): an additional evidence for a 330 Ma-old magnesio-potassic magmatic suite in the Variscan Alps. Schweizerische Mineralogische und Petrographische Mitteilungen 78, 193–194. Cannic, S., Lapierre, H., Schärer, U., Monié, P., Briqueu, L. & Basile, C. (1998). Origin of Hercynian magmatism in the French Western Alps: geochemical and geochronological constraints. V. M. Goldschmidt Conference, Toulouse, 1998 (poster and abstract). Mineralogical Magazine 62A, 274–275. Cocherie, A., Guerrot, C. & Rossi, P. (1992). Single-zircon dating by step-wise Pb evaporation: comparison with other geochronological techniques applied to the Hercynian granites of Corsica, France. Chemical Geology (Isotope Geosciences Section) 101, 131–141. Colombo, F. (1996). Evoluzione tettonico-metamorfica del Complesso Malinvern–Argentera (Massiccio Cristallino dell’Argentera, Alpi Marittime, Italia). Tesi Dottoratto di Ricerca in Scienze della Terra, Università di Torino, 155 pp. Costarella, R. (1987). Le complexe annulaire alcalin de Combeynot (Massifs Cristallins Externes, Alpes françaises), témoin d’un magmatisme en régime distensif. Pétrogéochimie et signification géodynamique. Thèse de 3ème Cycle, Université de Grenoble, 268 pp. Debelmas, J. (coord.) et al. (1980). Carte géologique de la France à 1/50 000, feuille Orcières (846) et notice explicative. Orléans: Bureau de Recherches Géologiques et Minières, 27 pp. de Boisset, T. (1986). Les enclaves basiques du granite du Rochail (syénite du Lauvitel), Haut Dauphiné, Alpes françaises. Pétrographie et minéralogie. Thèse de 3ème Cycle, Université de Grenoble, 188 pp. Debon, F. (1991). Comparative major element chemistry in various ‘microgranular enclave–plutonic host’ pairs. In: Didier, J. & Barbarin, B. (eds) Enclaves and Granite Petrology. Developments in Petrology 13, 293–312. Debon, F. & Enrique, P. (1996). Plutonisme hercynien. Typologie chimico-minéralogique. In: Barnolas, A., Chiron, J. C. & Guérangé, B. (eds) Synthèse Géologique et Géophysique des Pyrénées. Orléans: Bureau de 1182 DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS Recherches Géologiques et Minières; Madrid: Instituto Technológico Geominero de España. Volume 1, 9, 469–472. Debon, F. & Le Fort, P. (1983). A chemical–mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh, Earth Sciences 73, 135–149. Debon, F. & Le Fort, P. (1988). A cationic classification of common plutonic rocks and their magmatic associations: principles, method, applications. Bulletin de Minéralogie 111, 493–510. Debon, F. & Zimmermann, J. L. (1993). Mafic dykes from some plutons of the western Pyrenean Axial Zone (France, Spain): markers of the transition from late-Hercynian to early-Alpine events. Schweizerische Mineralogische und Petrographische Mitteilungen 73, 421–433. Debon, F., Enrique, P., Dreux, G., Boymond, E. & Desmidt, A. (1991). Composition chimique et nomenclature de 1724 roches plutoniques (et filoniennes) hercyniennes des Pyrénées (France, Espagne). Géologie de la France 4, 39–70. Debon, F., Cocherie, A., Ménot, R. P., Vivier, G. & Barféty, J. C. (1994). Datation du plutonisme magnésien varisque des massifs cristallins externes des Alpes: l’exemple du granite des Sept Laux (massif de Belledonne, France). Comptes Rendus de l’Académie des Sciences, Paris 318, II, 1497–1504. Debon, F., Guerrot, C., Ménot, R. P., Vivier, G. & Cocherie, A. (1998). Late Variscan granites of the Belledonne massif (French Western Alps): an Early Visean magnesian plutonism. Schweizerische Mineralogische und Petrographische Mitteilungen 78, 67–85. de Gracianski, P. C. (1993). Basement–cover relationship in the Western Alps. Constraints for the pre-Triassic reconstructions. In: von Raumer, J. F. & Neubauer, F. (eds) Pre-Mesozoic Geology in the Alps. Berlin: Springer-Verlag, pp. 7–28. de la Roche, H. (1964). Sur l’expression graphique des relations entre la composition chimique et la composition minéralogique quantitative des roches cristallines. Présentation d’un diagramme destiné à l’étude chimico-minéralogique des massifs granitiques ou grano-dioritiques. Application aux Vosges cristallines. Sciences de la Terre 9, 293–337. de la Roche, H. (1979). Quelques cas d’interaction et d’échanges entre formations acides et basiques dans les zones profondes. Sciences Géologiques, Mémoire 53, 149–159. de la Roche, H., Leterrier, J., Grandclaude, P. & Marchal, M. (1980). A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses—Its relationships with current nomenclature. Chemical Geology 29, 183–210. Demeulemeester, P. (1982). Contribution à l’étude radiométrique à l’argon et au strontium des massifs cristallins externes (Alpes françaises). Distribution cartographique des âges sur biotites et amphiboles. Thèse de 3ème Cycle, Université de Grenoble, 227 pp. Didier, J. & Barbarin, B. (eds) (1991). Enclaves and Granite Petrology. Developments in Petrology 13. Amsterdam: Elsevier, 625 pp. Evensen, N. M., Hamilton, P. J. & O’Nions, R. K. (1978). Rare-earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta 42, 1199–1212. Faure-Muret, A. (1955). Etudes géologiques sur le massif de l’Argentera– Mercantour et ses enveloppes sédimentaires. Mémoires pour servir à l’explication de la carte géologique détaillée de la France. Paris: Imprimerie Nationale, 336 pp. Ferrara, G. & Malaroda, R. (1969). Radiometric age of granitic rocks from the Argentera massif (Maritime Alps). Bollettino della Società Geologica Italiana 88, 311–320. Ferré, E. (1989). Le plutonisme magnésio-potassique carbonifère de Corse occidentale (France): pétrographie, minéralogie et géochimie. Thèse de l’Université Paul-Sabatier, Toulouse III, 270 pp. Finger, F. & Steyrer, H. P. (1990). I-type granitoids as indicators of a late Paleozoic convergent ocean–continent margin along the southern flank of the central European Variscan orogen. Geology 18, 1207–1210. Foley, S. F., Venturelli, G., Green, D. H. & Toscani, L. (1987). The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth-Science Reviews 24, 81–134. Gasquet, D. (1979). Etude pétrologique, géochimique et structurale des terrains cristallins de Belledonne et du Grand Châtelard traversés par les galeries EDF Arc-Isère, Alpes françaises. Thèse de 3ème Cycle, Université de Grenoble, 230 pp. Giorgi, L. (1979). Contribution à l’étude géologique des terrains cristallins du massif des Grandes Rousses, Isère, France. Thèse de 3ème Cycle, Université de Grenoble, 184 pp. Grandjean, V., Guillot, S. & Pêcher, A. (1996). Un nouveau témoin de l’évolution métamorphique BP–HT post-orogénique hercynienne: l’unité de Peyre-Arguet (Haut-Dauphiné). Comptes Rendus de l’Académie des Sciences, Paris 325, IIa, 189–195. Grünenfelder, M. (1962). Mineralalter von Gesteinen aus dem Gotthardmassiv (abstract). Schweizerische Mineralogische und Petrographische Mitteilungen 42, 6–7. Guerrot, C. (1998). Résultats de datation U–Pb par dissolution sur zircons pour deux échantillons du massif du Pelvoux, Alpes. Massif du Rochail (RO 1)—Massif de Turbat-Lauranoure (TL 1). Rapport SMN/PEA/ISO 146/98 CG/NB. Orléans: Bureau de Recherches Géologiques et Minières, 6 pp. Guerrot, C. & Steiger, R. H. (1991). Variscan granitoids of the Gotthard Massif, Switzerland: U–Pb single zircon and Sr–Nd data. Terra Abstracts 3, 35. Holub, F. V., Cocherie, A. & Rossi, P. (1997). Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian–Barrandian boundary. Comptes Rendus de l’Académie des Sciences, Paris 325, IIa, 19–26. Hunziker, J. C., Desmons, J. & Hurford, A. J. (1992). Thirty-two years of geochronological work in the Central and Western Alps: a review on seven maps. Mémoires de Géologie (Lausanne) 13, 1–59. Johannes, W. & Holtz, F. (1996). Petrogenesis and Experimental Petrology of Granitic Rocks. Minerals and Rocks 22. Berlin: Springer-Verlag, 335 pp. Lacheny, B. (1995). Le complexe vaugnéritique de la Belle Etoile (granite des Sept Laux, massif de Belledonne, Alpes externes). Mémoire de Maı̂trise de Géologie, Université de Grenoble I, 42 pp. Le Fort, P. (1973). Géologie du Haut-Dauphiné cristallin (Alpes françaises). Etude pétrologique et structurale de la partie occidentale. Mémoires Sciences de la Terre 25, 1–373. Le Fort, P. & Pêcher, A. (1971). Présentation d’un schéma structural du Haut-Dauphiné cristallin. Comptes Rendus de l’Académie des Sciences, Paris 273, D, 3–5. Le Fort, P. & Pêcher, A. (1981). Haut-Dauphiné. In: Granitoı̈des du cristallin externe des Alpes françaises (Belledonne, Grandes Rousses, HautDauphiné). Livret-guide géologique, Université de Grenoble. Lemoine, M. (1984). La marge occidentale de la Téthys ligure. In: Boillot, G. (ed.) Les Marges continentales actuelles et fossiles autour de la France. Paris: Masson, pp. 155–248. Liégeois, J. P. & Black, R. (1987). Alkaline magmatism subsequent to collision in the Pan-African belt of the Adrar des Iforas (Mali). In: Fitton, J. G. & Upton, B. G. J. (eds) Alkaline Igneous Rocks. Geological Society, London, Special Publication 30, 381–401. Lombardo, B., Rubatto, D., Colombo, F. & Compagnoni, R. (1997). Variscan eclogites and HP granulites in the Malinvern–Argentera Complex (Argentera massif, Western Alps): PT estimations and U–Pb zircon ages. Terra Nova 9, Abstract Supplement 1, 18–19. 1183 JOURNAL OF PETROLOGY VOLUME 40 Marro, C. (1986). Les granitoı̈des du Mont-Blanc en Suisse. Thèse de l’Université de Fribourg, 145 pp. Ménard, G. & Molnar, P. (1988). Collapse of a Hercynian Tibetan Plateau into a late Palaeozoic European Basin and Range province. Nature 334, 235–237. Ménot, R. P. (1988a). Magmatismes paléozoı̈ques et structuration carbonifère du massif de Belledonne (Alpes françaises). Contraintes nouvelles pour les schémas d’évolution de la chaı̂ne varisque ouesteuropéenne. Mémoires et Documents du Centre Armoricain d’Etude Structurale des Socles 21, 1–465. Ménot, R. P. (1988b). The geology of the Belledonne massif: an overview (External crystalline massifs of the Western Alps). Schweizerische Mineralogische und Petrographische Mitteilungen 68, 531–542. Ménot, R. P., von Raumer, J. F., Bogdanoff, S. & Vivier, G. (1994). Variscan basement of the Western Alps: the External Crystalline Massifs. In: Keppie, J. D. (ed.) Pre-Mesozoic Geology in France and Related Areas. Berlin: Springer-Verlag, pp. 458–466. Ménot, R. P., Paquette, J. L. & Orsini, J. B. (1996). Le plutonisme carbonifère de Balagne (Corse): géochronologie haute précision U–Pb sur zircons. 16ème Réunion des Sciences de la Terre, Société géologique de France (ed.), Paris abstract volume, p. 56. Mitchell, R. H. & Bergman, S. C. (1991). Petrology of Lamproites. New York: Plenum, 447 pp. Montel, J. P. & Weisbrod, A. (1986). Characteristics and evolution of ‘vaugneritic magmas’: an analytical and experimental approach, on the example of the Cévennes Médianes (French Massif Central). Bulletin de Minéralogie 109, 575–587. Nelson, D. R., McCulloch, M. T. & Sun, S. S. (1986). The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. Geochimica et Cosmochimica Acta 50, 231–245. Nixon, P. H., Thirlwall, M. F., Buckley, F. & Davies, C. J. (1984). Spanish and Western Australian lamproites: aspects of whole rock geochemistry. In: Kornprobst, J. (ed.) Kimberlites I: Kimberlites and Related Rocks. Amsterdam: Elsevier, pp. 285–296. Oberli, F., Sommerauer, J. & Steiger, R. H. (1981). U–(Th)–Pb systematics and mineralogy of single crystals and concentrates of accessory minerals from the Cacciola granite, central Gotthard massif, Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen 61, 323–348. Orsini, J. B. (1979). Existence d’une zonation spatiale de la chaı̂ne varisque française aux temps carbonifères à l’aide de marqueurs plutoniques. Implications géodynamiques. Comptes Rendus de l’Académie des Sciences, Paris 289, 1109–1112. Orsini, J. B. (1980). Le batholite corso-sarde: un exemple de batholite hercynien (structure, composition, organisation d’ensemble). Sa place dans la chaı̂ne varisque de l’Europe moyenne. Thèse de Doctorat d’Etat, Université d’Aix–Marseille III, 390 pp. Patiño Douce, A. E. (1996). Effects of pressure and H2O content on the compositions of primary crustal melts. Transactions of the Royal Society of Edinburgh, Earth Sciences 87, 11–21. Patiño Douce, A. E. & Beard, J. S. (1996). Effects of P, f (O2) and Mg/ Fe ratio on dehydration melting of model metagreywackes. Journal of Petrology 37, 999–1024. Peacock, M. A. (1931). Classification of igneous rock series. Journal of Geology 39, 54–67. Poncerry, E. (1981). Contribution à l’étude géologique des granitoı̈des de Vallorcine, Beaufort, Lauzière, de leur encaissant et des minéralisations uranifères associées. Alpes françaises. Thèse de 3ème Cycle, Université de Grenoble, 316 pp. Rogers, N. W., Hawkesworth, C. J., Parker, R. J. & Marsh, J. S. (1985). The geochemistry of potassic lavas from Vulsini, central Italy and implications for mantle enrichment processes beneath the Roman region. Contributions to Mineralogy and Petrology 90, 244–257. NUMBER 7 JULY 1999 Rollinson, H. (1993). Using Geochemical Data: Evaluation, Presentation, Interpretation. Harlow, UK: Longman, 352 pp. Rossi, P. (1986). Organisation et genèse d’un grand batholite orogénique: le batholite calco-alcalin de la Corse. Documents du Bureau de Recherches Géologiques et Minières 107, 1–324. Rossi, P. & Cocherie, A. (1991). Genesis of a Variscan batholith: field, petrological and mineralogical evidence from the Corsica–Sardinia batholith. Tectonophysics 195, 319–346. Rossi, P. & Cocherie, A. (1995). Chronologie des intrusions du batholite corse: données de l’évaporation du plomb sur monozircon. In: Magmatismes dans le Sud-Est de la France. Séance spécialisée de la Société géologique de France, Université de Nice, abstract volume, p. 24. Rossi, P., Cocherie, A. & Lahondère, D. (1992). Relations entre les complexes mafiques–ultramafiques et le volcanisme andésitique stéphano-permien de Corse occidentale, témoins des phénomènes d’amincissement crustal néo-varisques. Comptes Rendus de l’Académie des Sciences, Paris 315, II, 1341–1348. Sabatier, H. (1980). Vaugnérites et granites: une association particulière de roches grenues acides et basiques. Bulletin de Minéralogie 103, 507–522. Sabatier, H. (1991). Vaugnerites: special lamprophyre-derived mafic enclaves in some Hercynian granites from Western Central Europe. In: Didier, J. & Barbarin, B. (eds) Enclaves and Granite Petrology. Developments in Petrology 13, 63–81. Scaillet, B., Pichavant, M. & Roux, J. (1995). Experimental crystallization of leucogranite magmas. Journal of Petrology 36, 663–705. Schaltegger, U. (1989). Geochemische und isotopengeochemische Untersuchungen am Zentralen Aaregranit und seinen assozierten Gesteinen zwischen Aare und Reuss (Aarmassiv, Schweiz). Ph.D. Thesis, University of Bern. Schaltegger, U. (1990a). The Central Aar Granite: highly differentiated calc-alkaline magmatism in the Aar Massif (Central Alps, Switzerland). European Journal of Mineralogy 2, 245–259. Schaltegger, U. (1990b). Post-magmatic resetting of Rb–Sr whole rock ages—a study in the Central Aar Granite (Central Alps, Switzerland). Geologische Rundschau 79, 709–724. Schaltegger, U. (1993). The evolution of the polymetamorphic basement in the Central Alps unravelled by precise U–Pb zircon dating. Contributions to Mineralogy and Petrology 113, 466–478. Schaltegger, U. (1994). Unravelling the pre-Mesozoic history of Aar and Gotthard massifs (Central Alps) by isotopic dating—a review. Schweizerische Mineralogische und Petrographische Mitteilungen 74, 41–51. Schaltegger, U. & Corfu, F. (1992). The age and source of late Hercynian magmatism in the central Alps: evidence from precise U–Pb ages and initial Hf isotopes. Contributions to Mineralogy and Petrology 111, 329–344. Schaltegger, U. & Corfu, F. (1995). Late Variscan ‘Basin and Range’ magmatism and tectonics in the Central Alps: evidence from U–Pb geochronology. Geodinamica Acta 8, 82–98. Schaltegger, U. & von Quadt, A. (1990). U–Pb zircon dating of the Central Aar Granite (Aar Massif, Central Alps). Schweizerische Mineralogische und Petrographische Mitteilungen 70, 361–371. Schaltegger, U., Gnos, E., Küpfer, T. & Labhart, T. P. (1991). Geochemistry and tectonic significance of Late Hercynian potassic and ultrapotassic magmatism in the Aar Massif (Central Alps). Schweizerische Mineralogische und Petrographische Mitteilungen 71, 391–403. Schaltegger, U., Schneider, J. L., Maurin, J. C. & Corfu, F. (1996). Precise U–Pb chronometry of 345–340 Ma old magmatism related to syn-convergence extension in the Southern Vosges (Central Variscan Belt). Earth and Planetary Science Letters 144, 403–419. Schulz, B. & von Raumer, J. F. (1993). Syndeformational uplift of Variscan high-pressure rocks (col de Bérard, Aiguilles Rouges Massif, 1184 DEBON AND LEMMET EVOLUTION OF Mg/Fe RATIOS IN PLUTONIC ROCKS Western Alps). Zeitschrift der Deutschen Geologischen Gesellschaft 144, 104–120. Sergeev, S. A. & Steiger, R. H. (1993). High-precision U–Pb single zircon dating of Variscan and Caledonian magmatic cycles in the Gotthard massif, Central Swiss Alps. Terra Nova 5, Abstract Supplement 1, 394–395. Sergeev, S. A., Meier, M. & Steiger, R. H. (1995). Improving the resolution of single-grain U/Pb dating by use of zircon extracted from feldspar: application to the Variscan magmatic cycle in the central Alps. Earth and Planetary Science Letters 134, 37–51. Siméon, Y. (1979). Etude pétrologique, géochimique et structurale des terrains cristallins de Belledonne entre l’Arc et l’Isère (Alpes françaises). Thèse de 3ème Cycle, Université de Grenoble, 224 pp. Stille, P. (1987). Geochemische Aspekte der Krustenevolution im zentral- und südalpinen Raum. Habilitationschrift, ETH Zürich. Stille, P. & Steiger, R. H. (1991). Hf isotope systematics in granitoids from the central and southern Alps. Contributions to Mineralogy and Petrology 107, 273–278. Stille, P., Oberhänsli, R. & Wenger-Schenk, K. (1989). Hf–Nd isotopic and trace element constraints on the genesis of alkaline and calcalkaline lamprophyres. Earth and Planetary Science Letters 96, 209–219. Sue, C., Tricart, P., Dumont, T. & Pêcher, A. (1997). Raccourcissement polyphasé dans le massif du Pelvoux (Alpes occidentales): exemple du chevauchement de Villard–Notre-Dame. Comptes Rendus de l’Académie des Sciences, Paris 324, IIa, 847–854. Sun, S. S. (1982). Chemical composition and origin of the Earth’s primitive mantle. Geochimica et Cosmochimica Acta 46, 179–192. Thevoux-Chabuel, H., Ménot, R. P., Lardeaux, J. M. & Monnier, O. (1995). Evolution tectono-métamorphique polyphasée paléozoı̈que dans le socle de Zicavo (Corse-du-Sud): témoin d’un amincissement post-orogénique. Comptes Rendus de l’Académie des Sciences, Paris 321, IIa, 47–56. Thompson, R. N. (1982). Magmatism of the British Tertiary Volcanic Province. Scottish Journal of Geology 18, 49–107. Truckenbrodt, J., Johannes, W. & Holtz, F. (1997). Dehydration melting of amphibolite at 1000°C and 10 kbar: the effect of oxygen fugacity and time. Terra Nova 9, Abstract Supplement 1, 468. Venturelli, G., Thorpe, R. S., Dal Piaz, G. V., Del Moro, A. & Potts, P. J. (1984a). Petrogenesis of calc-alkaline, shoshonitic and associated ultrapotassic Oligocene volcanic rocks from the Northwestern Alps, Italy. Contributions to Mineralogy and Petrology 86, 209–220. Venturelli, G., Capedri, S., Di Battistini, G., Crawford, A., Kogarko, L. N. & Celestini, S. (1984b). The ultrapotassic rocks from southeastern Spain. Lithos 17, 37–54. Vittoz, P., Costarella, R., Vivier, G. & Oliver, R. (1987). Typologie des granitoı̈des hercyniens et zonation magmatique dans le massif du Haut Dauphiné. Géologie Alpine 63, 119–136. Vivier, G., Ménot, R. P. & Giraud, P. (1987). Magmatismes et structuration orogénique paléozoı̈ques de la chaı̂ne de Belledonne (Massifs cristallins externes alpins). Le domaine nord-oriental. Géologie Alpine 63, 25–53. von Raumer, J. F. (1984). The External Massifs, relics of Variscan Basement in the Alps. Geologische Rundschau 73, 1–31. von Raumer, J. F. (1987). Les massifs du Mont Blanc et des Aiguilles Rouges: témoins de la formation de croûte varisque dans les Alpes occidentales. Géologie Alpine 63, 7–24. von Raumer, J. F. & Neubauer, F. (1993). Late Precambrian and Palaeozoic evolution of the Alpine basement—an overview. In: von Raumer, J. F. & Neubauer, F. (eds) Pre-Mesozoic Geology in the Alps. Berlin: Springer-Verlag, pp. 625–639. von Raumer, J. F., Ménot, R. P., Abrecht, J. & Biino, G. (1993). The Pre-alpine evolution of the External Massifs. In: von Raumer, J. F. & Neubauer, F. (eds) Pre-Mesozoic Geology in the Alps. Berlin: SpringerVerlag, pp. 221–240. Wilson, M. (1989). Igneous Petrogenesis. A Global Tectonic Approach. London: Chapman & Hall, 466 pp. 1185
© Copyright 2026 Paperzz