3.2 The Fourier Series
x
given f ( x) for
we want to choose numbers a0 , a1,a2 , ..... and b0 , b1, b2 , ... so that
1
f ( x) a0 (an cos( nx) bn sin( nx))
2
n 1
1
integrate
cos (mx)
2
2
integrate
π
-π
π
-π
π
-π
1
f ( x)dx a0 dx
2
cos( mx) f ( x)dx
1
a
0
2 n1 (an cos(nx) bn sin( nx)) cos(mx)dx
-π
sin (mx)
integrate
π
sin( mx) f ( x)dx
1
2 a (a
0
n 1
n
cos( nx) bn sin( nx)) sin( mx)dx
How to
find these
coeff
a0
1
π
-π
f ( x)dx
π
am cos( mx) f ( x)dx
-π
for m 1, 2, ...
bm
1
π
-π
sin( mx) f ( x)dx
for m 1, 2, ...
3.2 The Fourier Series
f ( x) for
x
1
FS ( x) a0 (an cos( nx) bn sin( nx))
2
n 1
Theorem 3.1:
at each x FS(x) converges to ( f(x+) + f(x-) )/2
a0
Example
0
f ( x)
1
1
π
-π
f ( x)dx
π
x 0
0 x
am cos( mx) f ( x)dx
-π
for m 1, 2, ...
1 π
bm sin( mx) f ( x)dx
-π
for m 1, 2, ...
0
f ( x)
1
Fourier Series
x 0
0 x
1 (1 (1)n )
FS ( x)
sin( nx)
2 n1
n
1
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
-3
-2
-1
1
2
3
-3
1
2 sin( x )
2 sin( 3 x )
2
3
-2
-1
1
2
3
1
2 sin( x )
2 sin( 3 x )
2 sin( 5 x )
2 sin( 7 x )
2
3
5
7
1
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
-3
-2
-1
1
2
0.2
3
-3
-2
-1
15terms
25terms
1
2
3
Fourier Series
0 x 0
f ( x)
1 0 x
1
1 (1 (1)n )
FS ( x)
sin( nx)
2 n1
n
0.8
0.6
0.4
1
0.2
0.8
-3
-2
-1
1
2
3
0.6
125terms
0.4
0.2
-3
-2
-1
1
1000terms
MATHEMATICA
Plot[0.5+Sum[ (1-(-1)^n)*Sin[n x]/(n Pi),{n,1,1000}],{x,-Pi,Pi}];
2
3
3.2 The Fourier Series
given f ( x) for
L x L
we want to choose numbers a0 , a1,a2 , ..... and b0 , b1, b2 , ... so that
1
f ( x) a0 (an cos( nx) bn sin( nx))
2
n 1
1 L
nx
an cos(
) f ( x)dx
-L
L
L
for
n 0,1, 2, ...
1 L
nx
bn sin(
) f ( x)dx for
L -L
L
n 1, 2, ...
3.2 The Fourier Sine Series
Fourier Sine
given f ( x) for
0 x L
nx
f ( x) bn sin(
)
L
n 1
2 L
nx
bn sin(
) f ( x)dx for
0
L
L
Fourier Cosine
given f ( x) for
n 1, 2, ...
0 x L
1
nx
f ( x) a0 an cos(
)
2
L
n 1
2 L
nx
an cos(1 L ) f n( x)xdx for
) f ( x)dx
L 0an -LLcos(
L
L
n 0,1, 2, ...
for
n 0,1, 2, ...
© Copyright 2026 Paperzz