Decision Optimization IBM CPLEX Global Non-Convex MIQP Christian Bliek & Pierre Bonami Decision Optimization Disclaimer IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice at IBM’s sole discretion. Information regarding potential future products is intended to outline our general product direction and it should not be relied on in making a purchasing decision. The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any material, code or functionality. Information about potential future products may not be incorporated into any contract. The development, release, and timing of any future features or functionality described for our products remains at our sole discretion. Performance is based on measurements and projections using standard IBM® benchmarks in a controlled environment. The actual throughput or performance that any user will experience will vary depending upon many factors, including considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve results similar to those stated here. © 2013 IBM Corporation Global Non-Convex MIQP Quadratic Program (QP) Standard form 1 Min x' Qx + c' x 2 Ax = b x ≥ 0 Convex or Positive Semi-Definite x' Qx ≥ 0 Indefinite 3 any Q © 2013 IBM Corporation Global Non-Convex MIQP Non-Convex QP Local optimum Available since IBM CPLEX 12.3 Interior Point Algorithm Solution target Parameter FIRSTORDER 4 © 2013 IBM Corporation Global Non-Convex MIQP Local Non-Convex QP Benchmark Performance Cplex versus Ipopt with Wsmp 1,6 1,4 relative time 1,2 1 time 0,8 iterations 0,6 0,4 0,2 0 [0,1) [1,10) [10,100) [100,1k) [1k,10k) problem time 5 © 2013 IBM Corporation Global Non-Convex MIQP Non-Convex MIQP Global optimum NEW in CPLEX 12.6 Branch and Bound 6 © 2013 IBM Corporation Global Non-Convex MIQP Example Min xy − 2 ≤ x ≤ 1 −1 ≤ y ≤ 1 y Local Optimum Global Optimum 7 x © 2013 IBM Corporation Global Non-Convex MIQP Global Non-Convex QP Even if Q has only 1 negative eigenvalue, Non-Convex QP is NP-hard Checking if a feasible solution is not a local minimum is NP-complete Checking if a Non-Convex QP is unbounded is NPcomplete 8 © 2013 IBM Corporation Global Non-Convex MIQP Overview We consider 2 formulations 1. Original 2. Factorized Eigenvalue 9 © 2013 IBM Corporation Global Non-Convex MIQP Factorized Eigenvalue Formulation 1 Min x' Qx + c' x 2 Ax = b x≥0 10 © 2013 IBM Corporation Global Non-Convex MIQP Factorized Eigenvalue Formulation 1 Min x' Qx + c' x 2 Ax = b x≥0 1 Min y' By + c' x 2 Ax = b L' x = y x≥0 Q = LBL ' 11 © 2013 IBM Corporation Global Non-Convex MIQP Factorized Eigenvalue Formulation 1 Min x' Qx + c' x 2 Ax = b x≥0 12 1 Min y' By + c' x 2 Ax = b L' x = y x≥0 © 2013 IBM Corporation Global Non-Convex MIQP Factorized Eigenvalue Formulation 1 Min x' Qx + c' x 2 Ax = b x≥0 1 Min y' By + c' x 2 Ax = b L' x = y x≥0 1 Min z ' Λz + c' x 2 Ax = b L' x = y Φ' y = z x≥0 B = ΦΛΦ ' 13 © 2013 IBM Corporation Global Non-Convex MIQP Factorized Eigenvalue Formulation 1 Min x' Qx + c' x 2 Ax = b x≥0 14 1 Min y' By + c' x 2 Ax = b L' x = y x≥0 1 Min z ' Λz + c' x 2 Ax = b L' x = y Φ' y = z x≥0 © 2013 IBM Corporation Global Non-Convex MIQP Factorized Eigenvalue Formulation 1 Min x' Qx + c' x 2 Ax = b x≥0 1 Min y' By + c' x 2 Ax = b L' x = y x≥0 1 Min z ' Λz + c' x 2 Ax = b L' x = y Φ' y = z x≥0 Advantage – Sparse – Efficient – Proper identification of negative eigenvalues 15 © 2013 IBM Corporation Global Non-Convex MIQP Example 1. Original Formulation Min xy − 2 ≤ x ≤ 1 −1 ≤ y ≤ 1 2. Factorized Eigenvalue Formulation 0 Q = 1 1 = 1 0 2 1 2 2 Min u − v 2 ( 16 x x − − + y − y 2 ≤ 1 ≤ 1 1 1 1 − 1 0 0 1 − 1 1 1 − 1 ) = 2u = 2v x ≤ 1 y ≤ 1 © 2013 IBM Corporation Global Non-Convex MIQP Overview We consider 2 formulations 1. Original 2. Factorized Eigenvalue 17 © 2013 IBM Corporation Global Non-Convex MIQP Overview We consider 2 formulations 1. Original 2. Factorized Eigenvalue Automatically select most promising one 18 © 2013 IBM Corporation Global Non-Convex MIQP Overview We consider 2 formulations 1. Original 2. Factorized Eigenvalue Automatically select most promising one Do Term by Term McCormick Relaxation 19 © 2013 IBM Corporation Global Non-Convex MIQP Relaxation of Non-Convex MIQP Min 1 q x x + q x x ∑ ij i j ∑ ij i j + c ' x 2 P N Ax = b x ≥ 0 1 Min ∑ q ij x i x j + ∑ q ij z ij + c ' x 2 P N Ax = b z ij ≥ q ij x i x j x ≥ 0 20 © 2013 IBM Corporation Global Non-Convex MIQP Relaxation of Non-Convex MIQP Relaxation of individual Non-Convex quadratic terms using McCormick envelopes 21 © 2013 IBM Corporation Global Non-Convex MIQP Overview We consider 2 formulations 1. Original 2. Factorized Eigenvalue Automatically select most promising one Do Term by Term McCormick Relaxation 22 © 2013 IBM Corporation Global Non-Convex MIQP Overview We consider 2 formulations 1. Original 2. Factorized Eigenvalue Automatically select most promising one Do Term by Term McCormick Relaxation Branch and Bound 23 © 2013 IBM Corporation Global Non-Convex MIQP Branching for Non-Convex MIQP Branch on continuous variables and update envelopes 24 © 2013 IBM Corporation Global Non-Convex MIQP Other Ingredients QP simplex for convex QP relaxation Pseudocost branching Local interior point solver for incumbents Bound strengthening Detection of unboundedness Linearize quadratic terms involving binaries 25 © 2013 IBM Corporation Global Non-Convex MIQP Global Non-Convex QP Benchmark internal non-convex miqp testset globallib GAMS minlp.org boxqp From miqp testset generated 50% mixed miqp set Comparison with SCIP and Couenne on 1 thread 26 © 2013 IBM Corporation Global Non-Convex MIQP Global Non-Convex QP Benchmark CPLEX versus SCIP on individual testsets at most one timeout no timeouts 0,35 1,2 0,3 1 binary 0,2 50% binary 0,15 continuous and integer 0,1 0,8 binary 0,6 50% binary continuous and integer 0,4 0,2 0,05 0 0 [0,10k] [1,10k] [10,10k] [100,10k] 1k,10k] problem time 27 relative time relative time 0,25 [0,1) [1,10) [10,100) [100,1k) [1k,10k) problem time © 2013 IBM Corporation Global Non-Convex MIQP Global Non-Convex QP Benchmark CPLEX versus SCIP and Couenne on combined testset at most one timeout no timeouts 0,35 1,2 0,3 1 0,2 scip couenne 0,15 0,1 0,8 scip 0,6 couenne 0,4 0,2 0,05 0 0 [0,10k] [1,10k] [10,10k] problem time 28 relative time relative time 0,25 [100,10k] 1k,10k] [0,1) [1,10) [10,100) [100,1k) [1k,10k) problem time © 2013 IBM Corporation Global Non-Convex MIQP Global Non-Convex QP Benchmark CPLEX versus SCIP and Couenne on combined testset no timeouts at most one timeout 1,6 0,7 1,4 0,6 r e l a ti v e n o d e s 0,4 scip couenne 0,3 r e l a ti v e n o d e s 1,2 0,5 1 scip 0,8 couenne 0,6 0,2 0,4 0,1 0,2 0 0 [0,10k] [1,10k] [10,10k] problem time 29 [100,10k] 1k,10k] [0,1) [1,10) [10,100) [100,1k) [1k,10k) problem time © 2013 IBM Corporation Global Non-Convex MIQP Global Non-Convex QP Benchmark CPLEX 1 versus 4 threads on combined testset no timeouts at most one timeout 1,2 0,9 0,8 1 0,6 0,5 4thread 0,4 0,3 relative time relative time 0,7 0,8 0,6 4thread 0,4 0,2 0,2 0,1 0 0 [0,10k] [1,10k] [10,10k] problem time 30 [100,10k] 1k,10k] [0,1) [1,10) [10,100) [100,1k) [1k,10k) problem time © 2013 IBM Corporation Global Non-Convex MIQP How to use it Available in CPLEX 12.6 By default Non-Convex MIQP are not accepted Set Solution Target Parameter to OPTIMALGLOBAL 31 © 2013 IBM Corporation Global Non-Convex MIQP Global Non-Convex QP Benchmark CPLEX versus SCIP and Couenne on combined testset at most one timeout no timeouts 0,35 1,2 0,3 1 0,2 scip couenne 0,15 0,1 0,8 scip 0,6 couenne 0,4 0,2 0,05 0 0 [0,10k] [1,10k] [10,10k] problem time 32 relative time relative time 0,25 [100,10k] 1k,10k] [0,1) [1,10) [10,100) [100,1k) [1k,10k) problem time © 2013 IBM Corporation
© Copyright 2026 Paperzz