The Changing Faces in Effluent and Environmental Monitoring Douglas Wahl Exelon REMP Sensitivity Seasonal Mixing of the Stratosphere and Troposphere Documented the Environmental Impact – Fallout from Nuclear Weapons Test – Three Mile Island Unit 2 Accident in 1979 – Destruction of Chernobyl Reactor No. 4 in 1986 Radioactivity Passing – From the Atmosphere and Rainfall – To the Grass-Cow-Milk Pathway – Through the Water Pathway Demographic Changes Change of Program Ownership – Nuclear Generator – NRC Inspections Many of the New Owners – Never Experienced a Significant Event in the REMP – Activity is < MDC Most Programs 30+ Years in Existance Knowledge Base Being Lost by the Nuclear Generator – Lack of Mentoring Program – Bases not well Documented – Major Reductions in Gaseous and Liquid Effluents. – Big Deal when » Plant Related Activity is Found in the Environment » Medical Isotopes are Found in REMP Samples Knowledge Base Ignored by the Nuclear Regulator – Wanting Documentation on the Bases for Establishing the REMP – Changing Interpretation of the Program Requirements Where is the NRC’s Knowledge Base? NRC Knowledge Base Branch Technical Position Paper – Revision 1 Issued in 1979 – Incorporated into NUREG 1301/1302 BTP Developed in part from the following: – Reg. Guide 1.21, 4.1, 4.8, and 1.109 – NUREG 0472, 0473, and 0133 What was the World Like when the BTP was Drafted? The United States and Soviet Union had Eliminated above Ground Testing of Nuclear Weapons in 1963 The French and Chinese Continued until 1980 The Result of all these Tests was an Atmosphere Polluted with Radioactive Fallout Summary of Above Ground Weapons Tests No. of Detonations Years Total Yield Mt United States 216 1945-1962 153.8 Soviet Union 214 1945-1962 281.6 United Kingdom 21 1952-1958 10.8 France 46 1960-1974 11.4 China 23 1964-1980 21.5 South Africa 1 1979 0.003 Nation compiled by Wm. Robert Johnston http://www.johnstonsarchive.net/nuclear/atest00.html What Did the Data Tell the Authors of the BTP? Concentration of Sr-90 in Milk in the Philadelphia Region, 1960 - 2002 45 40 (pCi/L) 35 30 25 20 15 10 5 0 60 9 62 9 64 9 66 9 68 9 70 9 72 9 74 9 76 9 78 9 80 9 82 9 84 9 86 9 88 9 90 9 92 9 94 9 96 9 98 0 00 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 Year Source EPA What Did the Data Tell the Authors of the BTP? Average Monthly Gross Beta Activity in Air 1966 - 2005, Peach Bottom Atomic Power Station 1 0.9 0.8 0.6 0.5 0.4 0.3 0.2 0.1 0 19 66 19 68 19 70 19 72 19 74 19 76 19 78 19 80 19 82 19 84 19 86 19 88 19 90 19 92 19 94 19 96 19 98 20 00 20 02 20 04 pCi/m3 0.7 Year Differences Between the 60’s/70’s and Today 60’s and 70’s 2006 – Maximum Sr-90 concentration was 39 pCi/L – Sr-90 < 2 pCi/L LOD – Maximum Monthly Average Gross Beta in Air was 0.92 pCi/m3 – Maximum Concentration of Gross Beta in Air < 0.07 pCi/ m3 – Average Monthly Gross Beta Concentration in Air was 0.14 pCi/m3 – Average Concentration of Gross Beta in Air < 0.04 pCi/m3 Clearly the Drafters of the BTP Never Foresaw that the Atmosphere Would Clean Itself Up and Return to Low Activity State Changing Interpretation of Program Requirements Dose Calculations from Contributions of Transuranics No Clear Understanding of Importance of Transuranics to Overall Dose – Is it a Test of the Program Owner Knowledge Level? – Is it a “Failure to Perform an Adequate Survey”? – Transuranic Dose Factors not Available in Reg. Guide 1.109 Transuranics Contribute an Insignificant Amount to the Overall Dose from Effluents Impact of Transuranics on Dose Contribution Radionuclide AGi (Relative Activity to Groundwater) Solubility, Si Transport, Ti Relative Dose, Hi Total Relative Dose Potential, Ri 1 Sr-90 9.00E+00 4.00E-01 6.70E-02 2.20E+03 5.31E+02 2 Cs-137 1.30E+01 1.00E+00 3.70E-03 7.80E+02 3.75E+01 3 Co-60 1.11E+00 1.00E+00 1.70E-02 4.20E+02 7.93E+00 4 H-3 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 5 Cs-134 1.80E-01 1.00E+00 3.70E-03 1.10E+03 7.33E-01 6 I-129 5.50E-06 1.00E+00 1.00E+00 4.30E+03 2.37E-02 7 Ni-63 2.50E-01 1.00E+00 3.30E-03 9.00E+00 7.43E-03 8 C-14 1.25E-04 1.00E+00 1.00E+00 3.30E+01 4.13E-03 9 Pu-238 2.60E-01 3.00E-05 1.80E-03 5.00E+04 7.02E-04 10 Am-241 1.50E-01 7.00E-05 5.30E-04 5.70E+04 3.17E-04 11 Fe-55 4.00E-03 1.00E+00 6.10E-03 9.50E+00 2.32E-04 12 Pu-241 3.90E+00 3.00E-05 1.80E-03 1.10E+03 2.32E-04 13 Pu-240 3.10E-02 3.00E-05 1.80E-03 5.50E+04 9.21E-05 14 Pu-239 1.80E-02 3.00E-05 1.80E-03 5.50E+04 5.35E-05 16 Nb-93m 1.90E-03 4.00E-01 6.30E-03 8.20E+00 3.93E-05 15 Cs-135 9.50E-05 1.00E+00 3.70E-03 1.10E+02 3.87E-05 17 Cm-244 1.80E-01 2.00E-05 2.50E-04 3.20E+04 2.88E-05 18 Cd-113m 1.20E-03 3.00E-04 2.50E-02 2.50E+03 2.25E-05 19 Nb-94 8.10E-05 4.00E-01 6.30E-03 1.10E+02 2.25E-05 20 Ni-59 1.90E-03 1.00E+00 3.30E-03 3.30E+00 2.07E-05 Relative Rank Groundwater Monitoring Guidance for Nuclear Power Plants. EPRI, Palo Alto, CA: 2005 Changing Interpretation of Program Requirements REMP Programs are Well Established The BTP is Ambiguous in Many Requirements – Subject to Different Interpretations – Forcing Changes in these Programs The Following Examples Demonstrate where Potential Confusion Exits in the BTP Example 1 Given the following BTP requirements for an acceptable air monitoring program Three samples (A1-A3) from close to the three SITE BOUNDARY locations, in different sectors, of the highest calculated annual average ground-level D/Q What is meant by “Close to the three site boundary locations… with the highest calculated annual average ground-level D/Q”? 1. 2. Does it mean that air stations have to be relocated each year if the annual D/Q values change or is historical data based on long term (3-10 year) averaging acceptable? Must air stations be located at the highest D/Q points or are the highest three D/Q sectors determined by averaging the data and then locating the sampling equipment near the site boundary where other environmental factors such as accessibility, tree cover, location to power lines acceptable? Comparison of D/Q values (1/m 2) from Vent Releases out to 5200 Meters Distance Meters 366 396 488 600 640 700 823 884 945 1000 1098 1159 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4300 4600 4900 5200 Average Max NNE NE NNE E ESE 2.73E-09 2.12E-09 1.64E-09 1.51E-09 1.34E-09 1.07E-09 9.70E-10 8.82E-10 8.14E-10 1.34E-09 1.22E-09 9.51E-10 7.32E-10 6.73E-10 5.96E-10 4.76E-10 4.30E-10 3.90E-10 3.59E-10 2.23E-09 2.05E-09 1.73E-09 1.40E-09 1.30E-09 1.17E-09 9.51E-10 8.65E-10 7.90E-10 7.30E-10 3.33E-09 2.79E-09 2.28E-09 2.12E-09 1.92E-09 1.57E-09 1.43E-09 1.31E-09 1.21E-09 6.55E-09 5.19E-09 4.06E-09 3.75E-09 3.34E-09 2.70E-09 2.45E-09 2.24E-09 2.07E-09 SE SSE S 2.83E-09 2.56E-09 2.34E-09 2.16E-09 SSW 6.23E-10 4.94E-10 4.02E-10 3.33E-10 2.81E-10 2.41E-10 2.09E-10 2.74E-10 2.15E-10 1.88E-10 1.68E-10 1.50E-10 1.35E-10 1.23E-10 1.11E-10 9.74E-11 8.59E-11 7.63E-11 6.82E-11 2.73E-10 2.15E-10 1.74E-10 1.58E-10 1.36E-10 1.16E-10 1.29E-10 1.25E-10 1.10E-10 7.83E-11 6.96E-11 6.22E-11 5.60E-11 5.06E-11 4.60E-11 4.02E-11 3.54E-11 3.15E-11 2.81E-11 5.60E-10 4.42E-10 3.58E-10 2.96E-10 2.48E-10 2.16E-10 3.08E-10 2.67E-10 2.34E-10 2.07E-10 1.84E-10 1.64E-10 1.48E-10 1.34E-10 1.22E-10 1.02E-10 9.34E-11 8.83E-10 7.40E-11 9.36E-10 7.43E-10 6.04E-10 5.00E-10 4.21E-10 3.59E-10 6.29E-10 4.77E-10 4.18E-10 3.70E-10 3.29E-10 2.94E-10 2.65E-10 2.40E-10 2.18E-10 1.90E-10 1.68E-10 1.49E-10 1.33E-10 1.59E-09 1.27E-09 1.03E-09 8.59E-10 7.26E-10 6.21E-10 5.38E-10 4.70E-10 4.15E-10 3.69E-10 3.30E-10 2.99E-10 2.81E-10 2.93E-10 4.10E-10 3.64E-10 2.45E-10 2.17E-10 1.94E-10 2.58E-09 1.86E-09 1.48E-09 1.21E-09 1.01E-09 8.49E-10 7.27E-10 6.29E-10 5.51E-10 4.86E-10 4.32E-10 3.86E-10 3.48E-10 3.15E-10 2.86E-10 2.50E-10 2.21E-10 1.96E-10 1.75E-10 2.59E-09 1.88E-09 1.49E-09 1.21E-09 1.01E-09 8.48E-10 7.25E-10 6.27E-10 5.48E-10 4.83E-10 4.30E-10 3.84E-10 3.46E-10 3.13E-10 2.85E-10 2.49E-10 2.20E-10 1.95E-10 1.75E-10 1.02E-09 9.14E-10 6.96E-10 5.48E-10 4.44E-10 3.67E-10 3.09E-10 2.64E-10 2.28E-10 1.99E-10 1.75E-10 1.56E-10 1.39E-10 1.25E-10 1.13E-10 1.03E-10 9.00E-11 7.94E-11 7.06E-11 6.32E-11 8.80E-10 7.88E-10 6.52E-10 6.22E-10 5.58E-10 4.25E-10 3.34E-10 2.71E-10 2.24E-10 1.19E-10 1.61E-10 1.39E-10 1.21E-10 1.07E-10 9.46E-11 8.46E-11 7.61E-11 6.89E-11 6.26E-11 5.48E-11 4.83E-11 4.30E-11 3.85E-11 6.19E-10 2.73E-09 3.14E-10 1.34E-09 6.29E-10 2.23E-09 9.07E-10 3.33E-09 1.53E-09 6.55E-09 1.04E-09 2.83E-09 8.49E-10 2.97E-09 3.05E-10 1.02E-09 2.60E-10 8.80E-10 2.97E-09 SW WSW W WNW NW NNW N 3.23E-09 2.47E-09 1.88E-09 1.72E-09 1.52E-09 1.21E-09 1.09E-09 9.90E-10 9.11E-10 7.94E-10 7.63E-10 6.96E-10 5.51E-10 4.48E-10 3.72E-10 3.14E-10 2.69E-10 2.32E-10 2.03E-10 1.79E-10 1.59E-10 1.53E-10 1.52E-10 1.38E-10 1.24E-10 1.13E-10 9.85E-11 8.69E-11 7.72E-11 6.91E-11 7.00E-10 3.23E-09 3.22E-10 3.04E-10 2.94E-10 2.49E-10 2.38E-10 2.13E-10 1.54E-10 1.21E-10 9.75E-11 8.04E-11 6.76E-11 5.76E-11 4.97E-11 4.34E-11 3.82E-11 3.39E-11 3.03E-11 2.73E-11 2.47E-11 2.24E-11 1.96E-11 1.73E-11 1.54E-11 1.38E-11 1.32E-10 1.27E-10 1.09E-10 1.04E-10 1.04E-10 8.07E-11 5.92E-11 4.81E-11 3.99E-11 3.36E-11 2.87E-11 2.49E-11 2.17E-11 1.92E-11 1.02E-11 1.52E-11 1.37E-11 1.24E-11 1.13E-11 9.87E-12 8.71E-12 7.75E-12 6.93E-12 1.12E-10 1.02E-10 8.58E-11 8.24E-11 6.97E-11 5.38E-11 4.28E-11 3.49E-11 2.90E-11 2.45E-11 2.10E-11 1.81E-11 1.59E-11 1.40E-11 1.25E-11 1.11E-11 1.00E-11 9.08E-12 8.26E-12 7.23E-12 6.38E-12 5.67E-12 5.73E-12 2.25E-10 2.06E-10 1.79E-10 1.72E-10 1.45E-10 1.12E-10 8.86E-12 7.21E-12 5.98E-12 5.04E-12 4.31E-12 3.73E-12 3.26E-12 2.87E-12 2.55E-12 2.28E-12 2.05E-12 1.86E-12 1.69E-12 1.48E-12 1.30E-12 1.16E-12 1.03E-12 8.32E-10 7.45E-10 6.79E-10 5.83E-10 5.58E-10 5.05E-10 4.37E-10 3.17E-10 2.58E-10 2.13E-10 1.80E-10 1.54E-10 1.33E-10 1.16E-10 1.02E-10 9.07E-11 8.11E-11 7.29E-11 6.60E-11 6.00E-11 5.24E-11 4.62E-11 4.10E-11 3.67E-11 1.10E-09 9.84E-10 7.51E-10 6.65E-10 5.94E-10 5.40E-10 4.61E-10 4.40E-10 4.64E-10 3.33E-10 2.64E-10 2.15E-10 1.78E-10 1.50E-10 1.28E-10 1.11E-10 9.68E-11 8.53E-11 7.58E-11 6.77E-11 6.10E-11 5.51E-11 5.01E-11 4.38E-11 3.86E-11 3.43E-11 3.07E-11 1.06E-10 3.22E-10 4.47E-11 3.40E-11 1.32E-10 1.12E-10 4.76E-11 2.25E-10 2.65E-10 8.32E-10 2.97E-10 1.10E-09 Comparison of D/Q values (1/m 2 ) from Vent Releases out to Distance Meters NNE NE NNE E 366 1.34E-09 2.23E-09 396 2.73E-09 1.22E-09 2.05E-09 3.33E-09 488 2.12E-09 9.51E-10 1.73E-09 2.79E-09 600 1.64E-09 7.32E-10 1.40E-09 2.28E-09 640 1.51E-09 6.73E-10 1.30E-09 2.12E-09 700 1.34E-09 5.96E-10 1.17E-09 1.92E-09 823 1.07E-09 4.76E-10 9.51E-10 1.57E-09 884 9.70E-10 4.30E-10 8.65E-10 1.43E-09 945 8.82E-10 3.90E-10 7.90E-10 1.31E-09 1000 8.14E-10 3.59E-10 7.30E-10 1.21E-09 1098 1159 1200 6.23E-10 2.73E-10 5.60E-10 9.36E-10 1400 4.94E-10 2.15E-10 4.42E-10 7.43E-10 1600 4.02E-10 1.74E-10 3.58E-10 6.04E-10 Average Max 1.22E-09 2.73E-09 6.02E-10 1.34E-09 1.12E-09 2.23E-09 1.69E-09 3.33E-09 1600 Meters ESE 6.55E-09 5.19E-09 4.06E-09 3.75E-09 3.34E-09 2.70E-09 2.45E-09 2.24E-09 2.07E-09 SE SSE S 2.83E-09 2.56E-09 2.34E-09 2.16E-09 SSW 1.59E-09 1.27E-09 1.03E-09 2.58E-09 1.86E-09 1.48E-09 2.59E-09 1.88E-09 1.49E-09 1.02E-09 9.14E-10 6.96E-10 5.48E-10 8.80E-10 7.88E-10 6.52E-10 6.22E-10 5.58E-10 4.25E-10 3.34E-10 3.02E-09 6.55E-09 2.26E-09 2.83E-09 2.23E-09 2.97E-09 7.94E-10 1.02E-09 6.08E-10 8.80E-10 2.97E-09 SW WSW W WNW NW NNW N 3.23E-09 2.47E-09 1.88E-09 1.72E-09 1.52E-09 1.21E-09 1.09E-09 9.90E-10 9.11E-10 7.94E-10 7.63E-10 6.96E-10 5.51E-10 4.48E-10 1.31E-09 3.23E-09 3.22E-10 3.04E-10 2.94E-10 2.49E-10 2.38E-10 2.13E-10 1.54E-10 1.21E-10 1.32E-10 1.27E-10 1.09E-10 1.04E-10 1.04E-10 8.07E-11 5.92E-11 1.12E-10 1.02E-10 8.58E-11 8.24E-11 6.97E-11 5.38E-11 4.28E-11 2.25E-10 2.06E-10 1.79E-10 1.72E-10 1.45E-10 1.12E-10 8.86E-12 8.32E-10 7.45E-10 6.79E-10 5.83E-10 5.58E-10 5.05E-10 4.37E-10 3.17E-10 1.10E-09 9.84E-10 7.51E-10 6.65E-10 5.94E-10 5.40E-10 4.61E-10 4.40E-10 4.64E-10 3.33E-10 2.64E-10 2.37E-10 3.22E-10 1.02E-10 1.32E-10 7.84E-11 1.12E-10 1.50E-10 2.25E-10 5.82E-10 8.32E-10 6.00E-10 1.10E-09 Example 2 Given the following BTP requirements for an acceptable ingestion (milk) monitoring program Samples from milking animals in three locations (1a1-1a3) within 5 km distance having the highest dose potential What is meant by “highest dose potential”? 1. 2. Is it strictly defined as highest D/Q, that is given the data presented above, the cows must be located in the E, ESE and N sectors at 396 meter from the vents? Pathway must be available to have a dose potential. That is if sector E has no cows then regardless of D/Q factor there is zero dose potential. The BTP requirements continue: If there are none, then one sample from milking animals in each of three areas (1a1-1a3) between 5 to 8 km distant where doses are calculated to be greater than 1 mrem per year. Clearly, the writers of the BTP did not expect the industry to minimize their gaseous releases. Example 2 Given the following BTP requirements for an acceptable ingestion (milk) monitoring program The BTP requirements for the ingestion pathway continues with Food Products: Samples of three different kinds of broad leaf vegetation grown nearest each of two different offsite locations of highest predicted annual average ground level D/Q if milk sampling is not performed. – Recent Inspection interpreted this requirement to mean that cows must be housed at the highest D/Q location or vegetation sampling must be performed. The cows must be located in the E, ESE and N sectors at 396 meter from the vents. At many sites, because there are no gardens in the area, they substitute tree leaves 1. How is one to interpret activity found on tree leaves? What is the consumption rate of an oak leaf? 2. What are we really trying to measure? If it is deposition, then grass sampling would provide as good a measure as tree leaves. Data could be reported in pCi/m2 Example 3 The BTP LLD table as detailed in NUREG 1301/1302 contains two subtle changes TABLE 4.12-1 DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYS (1) (2) (3) ANALYSIS Gross Beta H-3 WATER (pCi/L) 4 LOWER LIMIT OF DETECTION (LLD) AIRBORNE PARTICULATE FISH OR GASES (pCi/kg, MILK 3 (pCi/m ) wet) (pCi/L) FOOD PRODUCTS SEDIMENT (pCi/kg, (pCi/kg, wet} dry) 0.01 2000* Mn-54 15 130 Fe-59 Co-58,60 30 15 260 130 Zn-65 30 260 Zr-Nb-95 15 I-131 1** 0.07 Cs-134 Cs-137 15 18 0.05 0.06 Ba-La-140 15 130 150 1 60 15 I8 60 80 15 * If no drinking water pathway exists, a value of 3000 pCi/L may be used. ** If no drinking water pathway exists, a value of 15 pCi/L may be used. 150 180 Summary Are the Requirements of Our Primary Guidance Document the BTP Still Relevant? Existing Requirements Need Clarification Conclusion Words have no meaning. People have meaning. Interpretation of these Requirements should not be left to a Few. The NRC with the Membership of this Workshop should Remove the Ambiguity Present in the BTP and if Necessary Develop New Requirements for the Next Generation of Radiological Environmental Monitoring Program.
© Copyright 2026 Paperzz