Homework Set #1 Solutions Chapter 15 15.4 The attractive forces exerted on the positive charge by the negative charges are shown in the sketch and have magnitudes F1 and ke q 2 a2 F2 15.6 ke q 2 F3 2 a 2 ke q 2 2a 2 Fx F2 F3 cos 45 ke q 2 a2 ke q 2 0.707 2a 2 1.35 ke q 2 a2 Fy F1 F3 sin 45 ke q 2 a2 ke q 2 0.707 2a 2 1.35 ke q 2 a2 ke q 2 and a2 tan FR so and FR Fx 2 Fy ke q 2 a2 1.91 2 1.91 Fy 1 tan Fx 1 1 45 along the diagonal toward the negative charge The attractive force between the charged ends tends to compress the molecule. Its magnitude is F ke 1e 2 r2 N m2 8.99 10 C2 9 1.60 10 2.17 10 19 6 C m 2 2 4.89 10 The compression of the “spring” is x 0.010 0 r 0.010 0 2.17 10 6 m so the spring constant is k F x 4.89 10 17 N 2.17 10 8 m 2.17 10 8 m , 2.25 10 9 N m 17 N. 15.10 The forces are as shown in the sketch at the right. F1 F2 F3 ke q1q2 r122 6.00 10 N m2 8.99 10 C2 9 ke q1 q3 N m2 8.99 10 C2 6.00 10 r ke q2 q3 N m2 C2 1.50 10 8.99 109 2 23 r The net force on the 6 C charge is F6 15.12 6 6 C 2.00 10 89.9 N 6 C 43.2 N 2 C 2.00 10 2.00 10-2 m F2 C 2 5.00 10-2 m F1 6 C 1.50 10 3.00 10-2 m 9 2 13 6 6 C 67.4 N 2 46.7 N (to the left) The net force on the 1.5 C charge is F1.5 F1 F3 157 N (to the right) The net force on the 2 C charge is F 2 F2 F3 111 N (to the left) Consider the arrangement of charges shown in the sketch at the right. The distance r is r 2 0.500 m 0.500 m 2 0.707 m The forces exerted on the 6.00 nC charge are F2 8.99 109 2.16 10 and F3 7 8.99 109 N m2 C2 6.00 10 9 C 2.00 10 0.707 m 9 C 9 C 2 N N m2 C2 6.00 10 9 C 3.00 10 0.707 m 2 3.24 10 7 N Thus, Fx F2 F3 cos 45.0 and Fy F2 F3 sin 45.0 3.81 10 7 N 7.63 10 8 N The resultant force on the 6.00 nC charge is then or 15.20 2 FR Fx Fy FR 3.89 10 7 2 3.89 10 N at tan 1 Fy Fx 11.3 N at 11.3 below +x axis The force an electric field exerts on a positive change is in the direction of the field. Since this force must serve as a retarding force and bring the proton to rest, the force and hence the field must be in the direction opposite to the proton’s velocity . The work-energy theorem, Wnet qE 15.21 7 x 0 KEi 1.60 10 or 19 a F m qE mp (b) t v a 1.20 106 m s 6.12 1010 m s2 (a) (c) x (d) KE f v 2f v02 2a 1 m p v 2f 2 KEi , gives the magnitude of the field as KE f KEi q x E C 640 N C 1.673 10-27 kg 1.96 10 5 s 1.20 106 m s 10 2 6.12 10 1 1.673 10 2 2 0 ms 27 2 3.25 10 15 J 1.60 10-19 C 1.25 m 1.63 104 N C 6.12 1010 m s2 19.6 s 11.8 m kg 1.20 106 m s 2 1.20 10 15 J 15.23 If the resultant field is zero, the contributions from the two charges must be in opposite directions and also have equal magnitudes. Choose the line connecting the charges as the x-axis, with the origin at the –2.5 C charge. Then, the two contributions will have opposite directions only in the regions x 0 and x 1.0 m . For the magnitudes to be equal, the point must be nearer the smaller charge. Thus, the point of zero resultant field is on the x-axis at x 0 . Requiring equal magnitudes gives Thus, 2.5 6.0 1.0 m d ke q1 r12 ke q2 2.5 C or d2 r22 6.0 C 1.0 m d d Solving for d yields d 15.36 (a) F 1.8 m , ke q1 q2 r2 or 1.8 m to the left of the ke e 2 r2 8.99 109 N m 2 C 2 1.60 10 0.53 10 (b) F v meac r F me 2.5 C charge 10 m 19 C 2 2 8.2 10 8 N me v 2 r , so 0.53 10 10 m 8.2 10 9.11 10 -31 kg 8 N 2.2 106 m s 2 15.38 Consider the free-body diagram shown at the right. Fy 0 T cos Fx 0 Fe Since Fe T sin mg tan qE , we have qE mg tan , or q mg tan E 2.00 10 3 kg 9.80 m s2 tan15.0 q 15.45 mg cos mg or T 5.25 10 6 C 1.00 103 N C 5.25 C The sketch at the right gives a free-body diagram of the positively charged sphere. Here, F1 ke q 2 r 2 is the attractive force exerted by the negatively charged sphere and F2 is exerted by the electric field. mg Fy 0 T cos10 mg or T cos10 Fx 0 F2 F1 +T sin10 ke q r2 or qE qE 2 mg tan10 At equilibrium, the distance between the two spheres is r E ke q 4 L sin10 2 2 L sin10 . Thus, mg tan10 q 8.99 109 N m2 C2 5.0 10 4 0.100 m sin10 8 2.0 10 3 kg 9.80 m s2 tan10 C 2 or the needed electric field strength is 5.0 10 E 4.4 105 N C 8 C
© Copyright 2026 Paperzz