1. The probability that a randomly chosen tire will have a lifetime (a) between 30000 and 40000 miles (b) more than 25000 miles. R∞ c ∞ −1 (x)|−∞ = cπ = 1 ⇒ c = π1 . 5. (a) −∞ 1+x 2 dx = c tan 1 R1 tan−1 (x) 1 (b) −1 π(1+x dx = = 12 . 2) π −1 R∞ R 10 0.1dx = 1. f (x) ≥ 0 for all x. R 10 2 = 5. (b) −∞ xf (x)dx = 0 0.1xdx = 10 20 200 ∞ R 200 −t/µ R ∞ −t/µ (a) 0 e µ dt = −e−t/1000 0 = 1 − e−0.2 . 800 e µ dt = −e−t/1000 800 = e−0.8 . ∞ R ∞ −t/µ −m = − ln 2 ⇔ m = 1000 ln 2. (b) m e µ dt = −e−t/1000 m = e−m/1000 = 21 ⇔ 1000 R∞ 1 2 2 √ e−(x−9.4) /(2·4.2 ) dx ≈ 0.4432 = 44.32%. 10 4.2 2π R 480 2 2 (a) −∞ 12√1 2π e−(x−500) /(2·12 ) dx ≈ 0.0478 = 4.78%. R 500 R 500 2 2 2 2 (b) −∞ 12√1 2π e−(x−µ) /(2·12 ) dx ≤ 5%. Note that if µ = 520, then −∞ 12√1 2π e−(x−µ) /(2·12 ) dx = R 480 1 −(x0 −500)2 /(2·122 ) 0 √ e dx ≤ 5%. Hence we can choose the target weight 520 g. −∞ 12 2π R 100 2 2 (a) −∞ 8√12π e−(x−112) /(2·8 ) dx ≈ 6.68%. R∞ 2 2 (b) 125 8√12π e−(x−112) /(2·8 ) dx ≈ 5.21%. 2 2 2 2 −2(x−µ) d √1 e−(x−µ) /(2·σ ) = √1 e−(x−µ) /(2·σ ) · . dx σ 2π 2·σ 2 σ 2π 7. (a) −∞ f (x)dx = 0 R∞ 10. 13. 14. 15. 16. d2 d2 x 1 2 2 √ e−(x−µ) /(2·σ ) σ 2π −2 −2(x − µ) −2(x − µ) 1 −(x−µ)2 /(2·σ 2 ) · + · = √ e 2 · σ2 2 · σ2 2 · σ2 σ 2π 2 2 e−(x−µ) /(2·σ ) √ (4(x − µ)2 − 4σ 2 ) = 3 4σ 2π > 0 ,x < µ − σ < 0 ,µ − σ < x < µ + σ = > 0 ,x > µ + σ 18. Z ∞ (t − µ) 0 1/2 Z ∞ Z ∞ Z ∞ −t/µ 1/2 e 1 2 −t/µ −t/µ 2 dt = te dt − 2te dt + µ dt µ µ 0 µ 0 0 1/2 Z Z ∞ 1 2 1 ∞ −t/µ ∞ −t/µ −t/µ 2 = t (−µe )0 − 2t(−µe )dt − 2te dt + µ µ µ 0 0 1/2 t2 2 = lim − t/µ + µ =µ t→∞ e −t/µ 2e 1 Remark. If f (x) is a normal distribution, one should expect that this definition of standard deviation coincides the one defined in f (x). And indeed it’s true: "Z 2 ∞ 2 e−(x−µ) /(2·σ ) √ dx (x − µ)2 σ 2π −∞ 19. (a) R∞ 0 4 2 −2r/a0 r e dr a30 = 4 a30 h #1/2 r2 #1/2 −X 2 /(2·σ 2 ) e √ dX = X2 σ 2π −∞ ∞ " #1/2 Z ∞ −X 2 /(2·σ 2 ) −X 2 /(2·σ 2 ) e e √ √ (−σ 2 ) = X · (−σ 2 ) − dX σ 2π −∞ σ 2π −∞ 1/2 = 0 − (−σ 2 ) =σ "Z ∞ −a0 −2r/a0 e 2 − 2r a20 −2r/a0 e 22 +2 −a30 −2r/a0 e 23 and p(r) ≥ 0 for all r ≥ 0. (b) lim a43 r2 e−2r/a0 = r→∞ 0 4 2re−2r/a0 + r2 · a3 0 2 4 lim r a30 r→∞ e2r/a0 −2 −2r/a0 e = a0 = 0 by l’Hospital’s Rule. 0 ⇔ 2r + r2 · −2 a0 d dr i∞ = 1 0 4 2 −2r/a0 r e a30 = = 0 ⇔ r = 0 or r = a0 . Clearly r = 0, p(r) is not maximum and notice that r > a0 , Hence it’s maximal at r = a0 . d p(r) dr < 0; r < a0 , d p(r) dr > 0. (c) Near 0, it behaves like r2 . And it behaves like e−2r/a0 as r → ∞. 2 3 i4a0 h R 4a0 4 2 −2r/a a0 −2r/a0 −a0 −2r/a0 4 2 −a0 −2r/a0 0 e − 2r 22 e + 2 23 e dr = a3 r = (d) 0 a3 r e 2 0 0 3 3 i h 0 2 a −a −a 4 16a20 −a2 0 e−8 − 8a0 220 e−8 + 2 230 e−8 − 2 230 = 1 − 41e−8 ≈ 98.63%. a30 h 2 3 4 i∞ R∞ a −a a (e) 0 r· a43 r2 e−2r/a0 dr = a43 r3 −a2 0 e−2r/a0 − 3r2 220 e−2r/a0 + 6r 230 e−2r/a0 − 6 240 e−2r/a0 0 = 0 0 3a0 . 2 2
© Copyright 2026 Paperzz