Electricity and Magnetism • Announcements • Capacitors – Dielectric • Experiment EF Mar 8 2002 web.mit.edu/8.02x/www Announcements • Handout – Notes, question on Exp EF • Pset 4 due today • HVPS due today • Reading suggestions – Giancoli 24/5-6 (Today) Mar 8 2002 web.mit.edu/8.02x/www Announcements • Program for next week – – – – – – – Electric currents Resistance Ohm’s law Electric Power DC circuits RC circuits Kirchoff’s Rules • Giancoli Chapters 25, 26 Mar 8 2002 web.mit.edu/8.02x/www Announcements • HVPS – due today – needed for many other experiments – common errors • • • • • Winding primary in opposite direction to secondary Poor soldering missing connections wrong circuits (LVPS regulator instead of HVPS transistor) mis-reading circuit diagram • Lab session today! Mar 8 2002 web.mit.edu/8.02x/www Parallel Plate Capacitor C=e0 A/d V d big • Change d – change C • Q constant slope = 1/C V2 d small V1 d bigger -> C smaller -> V bigger for fixed Q Mar 8 2002 web.mit.edu/8.02x/www Q0 Q Energy stored in Capacitor • Can store more energy, if – C bigger – V bigger Mar 8 2002 web.mit.edu/8.02x/www Demo (loud...) C = 100mF U = 800 J thin wire Vab = 4000 V Mar 8 2002 web.mit.edu/8.02x/www Where is the energy stored? • Energy is stored in Electric Field • E2 gives Energy Density: • U/Volume = ½ e0 E2 Mar 8 2002 - -Q - + + + + +Q + + + + + + web.mit.edu/8.02x/www d Electric Circuits C2 5 6 2 3 C1 1 V14 4 Mar 8 2002 • Two capacitors in parallel • V56 = V23 = V14 (after capacitor is charged) • Q1/C1 = Q2/C2 = V14 • Qtot = Q1 +Q2 • Ctot = (Q1 +Q2 )/ V14 = C1+C2 • Capacitors in parallel -> Capacitances add! web.mit.edu/8.02x/www Electric Circuits Capacitor C Wire V Voltage source (like LVPS) Mar 8 2002 web.mit.edu/8.02x/www Electric Circuits 2 • • • • 35 C1 Two capacitors in series V14 = V23 + V56 Q = Q1 = Q2 Vtot = Q1/C1 +Q2/C2 = 6 Q/(C1+C2) • 1/Ctot = 1/C1+1/C2 C2 • Inverse Capacitances add! 1 Mar 8 2002 V14 4 web.mit.edu/8.02x/www Dielectrics Mar 8 2002 web.mit.edu/8.02x/www Dielectrics • Parallel Plate Capacitor: – C = e0 A/d – Ex. A = 1m2, d=0.1mm -> C ~ 0.1mF Mar 8 2002 web.mit.edu/8.02x/www Dielectrics • Parallel Plate Capacitor: – C = e0 A/d – Ex. A = 1m2, d=0.1mm -> C ~ 0.1mF Mar 8 2002 web.mit.edu/8.02x/www In your toolbox: 2 cm C = 1000mF Dielectrics • Parallel Plate Capacitor: – C = e0 A/d – Ex. A = 1m2, d=0.1mm -> C ~ 0.1mF • How do they do that? • Where to get a factor of 10000? Mar 8 2002 web.mit.edu/8.02x/www In your toolbox: 2 cm C = 1000mF Dielectric Demo + + + +Q + + + + Mar 8 2002 • Start w/ charged capacitor - -Q • d big -> C small -> V large - web.mit.edu/8.02x/www Dielectric Demo + + + +Q + + + + • Start w/ charged capacitor - -Q • d big -> C small -> V large • Insert Glass plate • Now V much smaller • C bigger • But A and d unchanged ! Mar 8 2002 web.mit.edu/8.02x/www Dielectric Demo + + + +Q + + + + • Start w/ charged capacitor - -Q • d big -> C small -> V large • Insert Glass plate • Now V much smaller • C bigger • But A and d unchanged ! • Glass is a Dielectric Mar 8 2002 web.mit.edu/8.02x/www Microscopic view Mar 8 2002 web.mit.edu/8.02x/www Microscopic view Remember: Dipoles + - Dipole Moment L Mar 8 2002 web.mit.edu/8.02x/www p=q L Microscopic view Remember: Dipoles + - Dipole Moment L E=0 Mar 8 2002 web.mit.edu/8.02x/www p=q L Microscopic view Remember: Dipoles + - Dipole Moment p=q L L + - + + E>0 E=0 Mar 8 2002 web.mit.edu/8.02x/www Microscopic view + - + + E>0 E=0 Def: Polarization P = n <p> = const. E Density: #dipoles/volume Mar 8 2002 web.mit.edu/8.02x/www Microscopic view Polarization P = const. E = e0 c E Susceptibility Mar 8 2002 web.mit.edu/8.02x/www Microscopic view Polarization P = const. E = e0 c E Glass - -Q - + + + +Q + + + + Mar 8 2002 web.mit.edu/8.02x/www Microscopic view Polarization + + + +Q + + + + - Mar 8 2002 - + + - + + - + + - + + - + + - + P = const. E = e0 c E - + - + + - + - + + - + - + - + + - + - + - + + - + - + - + + - +- + - + web.mit.edu/8.02x/www - -Q - Microscopic view Inside: Charges compensate + + + +Q + + + + - Mar 8 2002 - + + - + + - + + - + + - + + - + - + - + + - + - + + - + - + - + + - + - + - + + - + - + - + + - +- + - + web.mit.edu/8.02x/www Surface: Unbalanced Charges! - -Q - Microscopic view Inside: Charges compensate + + + +Q + + + + - Mar 8 2002 - + - + - + + - + - + - + - + - + +Surface - +layer: + - charges + -Surface Thickness L - + +reduce - +field! - + - + - + - + + - + - + - + - + - + + - + - +- + - + - + web.mit.edu/8.02x/www Surface: Unbalanced Charges! - -Q - Dielectric Constant Surface charge density Mar 8 2002 web.mit.edu/8.02x/www Dielectric Constant Surface charge density Polarization Mar 8 2002 web.mit.edu/8.02x/www Dielectric Constant Surface charge density Polarization Mar 8 2002 web.mit.edu/8.02x/www Dielectric Constant Add contributions to E Mar 8 2002 web.mit.edu/8.02x/www Dielectric Constant Add contributions to E E from plates and E from Dielectric surface charge K: Dielectric Constant Field w/o Dielectric Mar 8 2002 web.mit.edu/8.02x/www Dielectric Constant • Dielectric reduces field E0 (K > 1) – E = 1/K E0 • Dielectric increases Capacitance – C = Q/V = Q/(E d) = K Q/(E0d) • This is how to make small capacitors with large C ! Mar 8 2002 web.mit.edu/8.02x/www Dielectric Constant • Examples Material Vacuum Air Plexiglass Water Ethanol Ceramics Glass Mar 8 2002 K 1 1.0006 3.4 80.4 23 ~5000 5-10 web.mit.edu/8.02x/www Dielectric Constant • Examples Material Vacuum Air Plexiglass Water Ethanol Ceramics Glass Mar 8 2002 K 1 1.0006 3.4 80.4 23 ~5000 5-10 Similar to vacuum Large! C in HVPS web.mit.edu/8.02x/www ‘Puzzle’ Demo Mar 8 2002 web.mit.edu/8.02x/www ‘Puzzle’ Demo Copper Glass - + Mar 8 2002 web.mit.edu/8.02x/www ‘Puzzle’ Demo • Where does the charge sit for second spark? • Discuss with your neighbour! Mar 8 2002 web.mit.edu/8.02x/www ‘Puzzle’ Demo + - - +-+ +-+ - ++ - ++-+ - +-+ -+ + + - +-+- + +- + + - - ++ ++ + ++ Mar 8 2002 web.mit.edu/8.02x/www ‘Puzzle’ Demo Mar 8 2002 - - + +-+ +-+ ++ ++-+ +-+ -+ + -+ + + + +- + + - - ++ ++ + ++ web.mit.edu/8.02x/www ‘Puzzle’ Demo Mar 8 2002 - - + +-+ +-+ ++ ++-+ +-+ -+ + -+ + + + +- + + - - ++ ++ + ++ web.mit.edu/8.02x/www ‘Puzzle’ Demo +-+ +-+ +-+ +-+ -+ + + + +- - Mar 8 2002 web.mit.edu/8.02x/www ‘Puzzle’ Demo Surfaces charges remain on Glass ! +-+ +-+ +-+ +-+ -+ + + + +- - Mar 8 2002 web.mit.edu/8.02x/www ‘Puzzle’ Demo +-+ +-+ +-+ +-+ -+ + + + +- - Mar 8 2002 web.mit.edu/8.02x/www ‘Puzzle’ Demo Mar 8 2002 web.mit.edu/8.02x/www Experiment EF Mar 8 2002 web.mit.edu/8.02x/www Experiment EF • Finally a real experiment, using tools built earlier! • Measure e0 Mar 8 2002 web.mit.edu/8.02x/www Experiment EF MMM2 HVPS + - V V MMM1 +Q d -Q Al Foil How do we measure e0 with this? Mar 8 2002 web.mit.edu/8.02x/www MMM2 HVPS + - V V MMM1 +Q d Al Foil Mar 8 2002 web.mit.edu/8.02x/www -Q MMM2 HVPS + - V V MMM1 +Q d Al Foil Mar 8 2002 web.mit.edu/8.02x/www -Q MMM2 HVPS + - V V MMM1 +Q d Al Foil Mar 8 2002 web.mit.edu/8.02x/www -Q MMM2 HVPS + - V V MMM1 +Q d Al Foil Mar 8 2002 web.mit.edu/8.02x/www -Q MMM2 HVPS + - V V MMM1 +Q d Al Foil Q = CV = e0A/d V Mar 8 2002 web.mit.edu/8.02x/www -Q MMM2 HVPS + - V V MMM1 +Q d Al Foil Q = CV = e0A/d V Mar 8 2002 web.mit.edu/8.02x/www -Q MMM2 HVPS + - V V MMM1 +Q d Al Foil Q = CV = e0A/d V Mar 8 2002 web.mit.edu/8.02x/www -Q How to get force? Mar 8 2002 web.mit.edu/8.02x/www How to get force? Balance unknown Force with known Force -> Gravity! Mar 8 2002 web.mit.edu/8.02x/www How to get force? t: thickness Balance unknown Force with known Force -> Gravity! Mar 8 2002 web.mit.edu/8.02x/www
© Copyright 2026 Paperzz