Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example High Energy Radiation Processes Dmitry Khangulyan Institute of Space and Astronautical Science, Tokyo, Japan Dublin Summer School on High Energy Astrophysics High Energy Radiation Processes 1 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Outline Introduction Particle distribution Efficiency of the radiation processes Klein-Nishina Regime Example High Energy Radiation Processes 2 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example What this talk is about Malcolm’s Talk: Radiation Processes in High Energy Astrophysics A Physical Approach with Applications Bremsstralung, Synchrotron, inverse Compton (Thomson limit) This talk: High Energy Radiation Processes One Zone Modelling Synchrotron, inverse Compton (Klein-Nishina limit) High Energy Radiation Processes 3 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example The talk is biased towards made with http://www.wordle.net/ High Energy Radiation Processes 4 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Particle Distribution Microscopical Description dN(qi , pi , t) = f (qi , pi , t)dqi dpi f is the distribution function qi and pi are some coordinates in the phase space f = e.g. dN dV or dN d3 xd3 p One Zone Modeling typically implies f = dN dE High Energy Radiation Processes 5 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Particle Distribution Microscopical Description Boltzmann Equation ∂f ∂f ∂f ∂f +v +F = ∂t ∂r ∂p ∂t col Collision integral ∂f ∂t col accounts for many processes: particle injection, acceleration, scattering, energy losses, etc In the case of injection/cooling problems, the problem may be significantly simplified under the continue loss approximation High Energy Radiation Processes 6 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Significant simplification in the case of energy losses Cont. Loss Approx. Z∞ F (E, t) = f (E 0 , t)dE 0 E F (E + Ėdt, t + dt) = Z∞ F (E, t)+dt q(E 0 , t)dE 0 E Fokker-Planck Equation Distribution function & Injection dN = f (E, t)dE dN = q(E, t)dEdt ∂f ∂(Ėf ) + = q(E, t) ∂t ∂E High Energy Radiation Processes 7 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Significant simplification in the case of energy losses Z∞ F (E + Ėdt, t + dt) = F (E, t) + dt q(E 0 , t)dE 0 E ∂F ∂F dt = F (E, t) + dt F (E, t) + Ėdt + ∂E ∂t Z∞ q(E 0 , t)dE 0 E accounting for ∂F ∂E = −f ∂ =⇒ ∂E R∞ ∂ ∂E q(E 0 , t)dE 0 = −q E ∂f ∂(Ėf ) + = q(E, t) ∂t ∂E High Energy Radiation Processes 8 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Particle Energy Distribution Fokker-Planck Equation Solution f (E, t) = 1 Ė ZEeff dE 0 q(E 0 ), ZEeff where t = E E dE 0 Ė 0 Ė = Ėsyn + Ėic + Ėad + etc/Ėsyn + Ėpp + Ėpγ + etc Fast Cooling (Saturation) Eeff → ∞ f (E) = 1 Ė Slow Cooling t E/Ė Z∞ dE 0 q(E 0 ) f (E, t) = q(E) · t E High Energy Radiation Processes 9 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Some Remarks Used simplifications Acceleration and Losses are treated independently High energy cut-off depends on loss rate Some acceleration processes cannot be treated in this way, e.g. converter mechanism by Derishev Particles lose energy by small fractions, which is not true for some processes, e.g. IC in the Klein-Nishina regime Transport Equation with Diffusion and Escape ∂f ∂(Ėf ) f + + ∇ (D∇f ) + = q(E, t) ∂t ∂E τ also can be solved analytically, see e.g. Ginzburg’s "Astrophysics of Cosmic Rays" High Energy Radiation Processes 10 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Some Remarks Klein-Nishina and Continues Loss approximation Particles lose energy by small fractions, which is not true for some processes, e.g. IC in the Klein-Nishina regime Solid line: cσic f (γ) = q(γ) + c R∞ γ Dash-dotted line: f (γ) = 1 Ėic R∞ dσ dγ 0 f (γ 0 ) dE (γ 0 , γ 0 − γ) γ dγ 0 q(γ 0 ) γ High Energy Radiation Processes 11 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Some Remarks High Acceleration Cut-Off Acceleration Time Cooling Time tacc = 0.1ηETeV BG−1 s (where η > 1) tcool = E/Ė tacc < tcool Dominant Synchrotron Losses −1/2 −1/2 γ < 108 BG η ~ω < 100η −1 MeV High Energy Radiation Processes 12 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example An Extreme Accelerator? Crab Nebula Broad Band Spectrum High Energy Radiation Processes 13 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example νFν peak gives the luminosity νFν peaking distribution νFν = Eγ2 dNγ dEγ Z Lγ = ZE0 Emin dEγ Eγ dEγ Eγ1−α dNγ = dEγ E Zmax dEγ Eγ1−β + E0 Emin E0 Emax 1 1 + Lγ = L0 2−α β−2 For α = 1.5 and β = 2.5 Lγ = 4L0 High Energy Radiation Processes 14 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example νFν peak gives order of magnitude estimate of the luminosity Fermi/LAT observations of PSR B1259-63 Detailed information about the pulsar spin-down luminosity provides very precise information about the available energetics LSD = 8.3 × 1035 erg s−1 LLAT = 8 × 10 35 D 2.3kpc 2 erg s−1 Even in this case, there are unavoidable uncertainties related to the distance to the source... High Energy Radiation Processes 15 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Radiation Production Single particle spectra: Emission of a Particle (two channels) dNi = Ki (Eγ , E0 ) dEγ Total luminosity: L = Ė1 + Ė2 Luminosity per channel: Li = Ėi Ė1 + Ė2 L Ratio of the humps: Ė1 L1 = L2 Ė2 High Energy Radiation Processes 16 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Comparison of Radiation Mechanisms Radiation Efficiency Escape Time: tesc = min(tdiff , tad ) tdiff = R2 2 ∼ 2 · 104 ζ −1 R12 B1 E1−1 s, 2D tad = Energy Transfer: µ = ζ= D DBohm R −1 ∼ 102 R12 V10 s Vbulk Eγ E0 Radiation Efficiency: κ = µ min(1, tesc /tint ) High Energy Radiation Processes 17 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Radiation Mechanism in BS Inverse Compton Scattering Cooling Time: tic = 40 L 38 10 erg/s −1 2 R 1012 cm T 3 · 104 K 1.7 0.7 ETeV s Energy Transfer: ( Eγ = Ee , Ee2 , m2 c 4 E m2 c 4 E m2 c 4 Radiation Efficiency κ∼1 High Energy Radiation Processes 18 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Radiation Mechanism in BS Proton-proton interaction Cooling Time: tpp = 106 −1 np s 109 cm−3 Energy Transfer: Eγ ∼ 0.1 Ep Radiation Efficiency κ = 10−3 np tesc 104 s 109 cm−3 High Energy Radiation Processes 19 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Radiation Mechanism in BS Photo-meson production Cooling Time: tpγ = 3 · 104 L 1038 erg/s −1 R 2 1012 cm T 3 · 104 K s Energy Transfer: Eγ ∼ 0.1 Ep Radiation Efficiency tesc L κ = 0.03 4 10 s 1038 erg/s R 1012 cm −2 T 3 · 104 K −1 High Energy Radiation Processes 20 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Radiation Mechanism in BS Photo-disintegration (see Bosch-Ramon&Khangulyan, 2009) Cooling Time: tpd ∼ 3 · 103 L 1038 erg/s −1 T 3 · 104 K 2 R 1012 cm s Energy Transfer: Eγ ∼ 0.01 EN Radiation Efficiency tesc L κ = 0.03 4 10 s 1038 erg/s R 1012 cm −2 T 3 · 104 K −1 High Energy Radiation Processes 21 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example The most Favorable Emission Process in BS Radiation Processes Proc. IC pp Eγ /E0 1 0.1 κ 1 n p tesc 10−3 10 4 9 −3 “ s 10 cm ”−2 “ pγ 0.1 tesc L 0.03 10 4 s 1038 erg/s Photo-des. 0.01 tesc L 0.03 10 4 s 1038 erg/s R 1012 cm “ R 1012 cm ”−2 “ T 3·104 K T 3·104 K ”−1 ”−1 High Energy Radiation Processes 22 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Proton Synchrotron Electrons −1 −2 Cooling: tcool = 400ETeV BG s Photon Energy: 2 ~ω = 20ETeV BG keV Highest Energy Cooling: −3/2 tcool = 6η 1/2 BG s Highest Energy Photons: ~ω = 100η −1 MeV Protons Cooling: −1 −2 tcool = 400ETeV BG mp me 4 s Photon Energy:~ω = 3 me 2 20ETeV BG m keV p Highest Energy Cooling: 2 −3/2 mp tcool = 6η 1/2 BG s me Highest Energy Photons: m ~ω = 100η −1 mpe MeV High Energy Radiation Processes 23 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Synchrotron-IC Model Very similar processes Energy Losses 4 ĖIC = − Uph cγ 2 3 Mean Energy 4 ~ω = ~ω0 γ 2 3 Lsyn UB = Lic Uph 4 Ėsyn = − UB cγ 2 3 ~ω = eB~ 2πme c ~ωsyn = ~ωic γ2 eB~ 2πme c 4 3 ~ω0 High Energy Radiation Processes 24 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Synchrotron-IC Model Ratio of the peaks Two identical humps? Lsyn UB = Lic Uph Ratio of the energies eB~ ~ωsyn 2πme c = 4 ~ωic 3 ~ω0 High Energy Radiation Processes 25 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Kein-Nishina Cut-off Photon Energy < Electron Energy 4 ~ω = ~ω0 γ 2 < γme c 2 3 ! me c 2 γ< 4 3 ~ω0 −1 γ < 5 × 105 ω0, eV ~ω = eB~ 2πme c γ< γ 2 < γme c 2 2πme2 c 3 eB~ γ < 3 × 1014 BG−1 High Energy Radiation Processes 26 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Some Remarks High Acceleration Cut-Off Acceleration Time Cooling Time tacc = 0.1ηETeV BG−1 s (where η > 1) tcool = E/Ė tacc < tcool Dominant Synchrotron Losses −1/2 −1/2 γ < 108 BG η ~ω < 100η −1 MeV High Energy Radiation Processes 27 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Kein-Nishina Cut-off Photon Energy < Electron Energy 4 ~ω = ~ω0 γ 2 < γme c 2 3 ! me c 2 γ< 4 3 ~ω0 −1 γ < 5 × 105 ω0, eV ~ω = eB~ 2πme c γ< γ 2 < γme c 2 2πme2 c 3 eB~ γ < 3 × 1014 BG−1 BG > 1012 η High Energy Radiation Processes 28 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Leptonic Radiation Mechanisms Typical SED High Energy Radiation Processes 29 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Synchrotron Radiation Electrons can interact with B-field Energy Losses: Ėsyn = − 34 UB cγ 2 eB~ γ2 Mean Energy: ~ω = 2πm c e Single Particle Spectrum: √ 3 dIsyn ω 3e B = F 2 dω 2π mc ωc where ωc = 3eBγ 2 2mc Useful approximation: Z∞ F (x) = x x K5/3 (x 0 )dx 0 = 1.76 x 0.29 e−x High Energy Radiation Processes 30 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Synchrotron Radiation Approximation for the peak x 1 F (x) = π 1/2 2 x 1/2 e−x x 1 F (x) = √ 4π x 1/3 3Γ(1/3) Useful approximation (but not an asymptotic): Z∞ F (x) = x K5/3 (x 0 )dx 0 = 1.76 x 0.29 e−x x High Energy Radiation Processes 31 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Inverse Compton Radiation Electrons can interact with photon field Maximum Energy of Gamma Rays Eγ < “ γ 1− 1 4γ 2 1 1+ 4γ ” Single Particle Spectrum: dσγ πr 2 2 Eγ Eγ ln = 3 e + 4γ 2 − 4γEγ − Eγ dEγ γ (γ − Eγ ) γ(γ − Eγ ) 2γ 2 − 2γEγ + Eγ2 + Eγ 4Eγ γ(γ − Eγ ) # Energy Losses for a Planckian photon field: ln(1 + 0.55γTmcc ) 1.4γTmcc 17 3 γ̇IC = 5.5×10 Tmcc γ s−1 , 1+ 2 1 + 25Tmcc γ 1 + 12γ 2 Tmcc where Tmcc = kT /me c 2 High Energy Radiation Processes 32 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Klein-Nishina Effect High Energy Radiation Processes 33 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Klein-Nishina Effect dNe 1 = dE Ė Z∞ dE 0 Q(E) Ė = Ėsyn + Ėic E High Energy Radiation Processes 34 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Klein-Nishina Effect X-ray: hardening γ-rays: no Klein-Nishina cutoff High Energy Radiation Processes 35 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Klein-Nishina Effect High Energy Radiation Processes 36 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Compton Scattering Spectrum dNγ = dEγ Z dEe c(1 − cos θ)nph dNe dσ dEe dEγ Aharonian&Atoyan, 1981 High Energy Radiation Processes 37 / 46 Introduction Particle Distribution dNγ = dEγ Radiation Efficiency Z dEe c(1 − cos θ)nph Klein-Nishina Example dNe dσ dEe dEγ Anisotropic inverse Compton High Energy Radiation Processes 38 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Klein-Nishina Effect High Energy Radiation Processes 39 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Klein-Nishina + Anisotropic IC High Energy Radiation Processes 40 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Gamma-Gamma Absorption The KN regime implies importance of γ-γ absorption γ > 1 Does KN imply strong attenuation? Does strong attenuation implies EMC? High Energy Radiation Processes 41 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example LS 5039 Binary Pulsar Microquasar From Aharonian et al., 2006 A general study of γ- and X-rays production in the leptonic scenario High Energy Radiation Processes 42 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example X-ray and TeV emission from LS5039 Variable/Periodic Apparent similarities in lightcurves Hard distributions of parent particles Takahashi et al., 2009 High Energy Radiation Processes 43 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example X-ray and TeV emission from LS5039 TeV (Aharonian et al., 2006) X-ray (Takahashi et al., 2009) Variable Variable Periodic Seems to be periodic Strong variability in flux level Significant variability in flux level Significant variability in photon index SUPC: lower fluxes and steeper spectra INFC: higher fluxes and harder spectra Very hard spectra at INFC Minor variability in photon index SUPC: lower fluxes and steeper spectra INFC: higher fluxes and harder spectra Hard spectra High Energy Radiation Processes 44 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Time-scales and Energy Bands (II) Takahashi et al., 2009 High Energy Radiation Processes 45 / 46 Introduction Particle Distribution Radiation Efficiency Klein-Nishina Example Modeling (results) Adiabatic cooling rate from X-ray data Good agreement with HESS fluxes Acceptable agreement with HESS spectral indexes Testable prediction for Fermi High Energy Radiation Processes Takahashi et al, 2009 46 / 46
© Copyright 2026 Paperzz