Class 3 The PAH Spectrum, what does it tell us?? PAH Vibrations! CCstr! CHstr! 3! 4! NASA Ames! Astrochemisty Lab! 5! CCstr/CHip! CHoop! 6! 7! 8! 9! 10! Wavelength (µm)! 15! Vibration - S. Langhoff! Orion ISO Spectrum - E. Peeters! But the Real Treasure (and some nice surprises) are in the Details... • The global similarity of the interstellar emission" single chemical family; molecule-sized polycyclic aromatic compounds" • Differences at the most detailed levels" reflect spectroscopic characteristics of that portion of the population that is changing in response to changing physical and chemical conditions. " • Therefore, it is the details of the interstellar spectra that hold the key to exploiting PAHs as probes of the emitting regions. " Slide adapted from Hudgins- IAU Symposium 231! Analysis of the 6.2 µm Emission Band Observations of the 6.2 µm emission feature have shown: • Range: 6.203µm - 6.299µm. • Composite of 2 bands, not a continuous dist’n of 1. • Class A, B bands by far the most common. Emission at this position is dominated by PAH ions • Large PAH cations (NC > 50 C atoms) can accommodate Class C emission component • Class A component anomalous A" B" Peeters et al. 2002 A&A, 360, 1089. Composite" spectra of PAH ions" C" Polycyclic Aromatic Nitrogen Heterocycles - PANHs Exhibit Exhibit1600 IR spectroscopic cm-1 CC stretching characteristics features very that are similar veryto similar those to those of theofparent the parent PAH. PAH PANH N N Position of strongest 1500 - 1600 cm-1 cation band (parent PAH) PANH N 1549 cm-1, 6.456 µm (1540 cm-1, 6.494 µm) N 1559 cm-1, 6.414 µm (1560 cm-1, 6.410 µm) 1553 cm-1, 6.439 µm N (parent PAH) 1538, cm-1, 6.502 µm (1553 cm-1, 6.439 µm) N Position of strongest 1500 - 1600 cm-1 cation band 1531 cm-1, 6.532 µm (1540 cm-1, 6.494 µm) N 1568 cm-1, 6.378 µm (1560 cm-1, 6.410 µm) 1585 cm-1, 6.309 µm 1564 cm-1, 6.394 µm 1574 cm-1, 6.353 µm (1560 cm-1, 6.410 µm) N Chem. & Phys. Matrix Isolated Species (1590 cm-1, 6.289 µm) 5 Polycyclic Aromatic Nitrogen Heterocycles - PANHs Substitution at an edge site = “exoskeletal” PANH Substitution at an internal site = “endoskeletal” PANH " Chem. & Phys. Matrix Isolated Species 6 _ _ _ Theoretical Calculations - C. Bauschlicher Normalized Absorbance _ 6.60 _ 6.10 Wavelength (µm) 6.20 6.30 6.40 6.50 _ N Substituted coronene cations N1b-Coronene Cation, C2 3H1 1N+ 1650 1625 1600 1575 1550 1525 1500 -1 Wavenumber (cm ) Chem. & Phys. Matrix Isolated Species Coronene Cation, C2 4H1 2+ 7 _ _ _ _ 6.60 _ 6.10 Wavelength (µm) 6.20 6.30 6.40 6.50 _ N Substituted coronene cations Theoretical Calculations - C. Bauschlicher Normalized Absorbance N3b-Coronene Cation, C2 3H1 1N+ N2b-Coronene Cation, C2 3H1 1N+ N1b-Coronene Cation, C2 3H1 1N+ 1650 1625 1600 1575 1550 1525 1500 -1 Wavenumber (cm ) Chem. & Phys. Matrix Isolated Species Coronene Cation, C2 4H1 2+ 8 6.60 _ _ _ _ _ 6.10 Wavelength (µm) 6.20 6.30 6.40 6.50 _ “Endoskeletal” PANHs and the 6.2 µm Emission Band" Normalized Absorbance N19 Cation + 5N-Circumcor N21 Cation + 4N-Circumcor N29 Cation + 3N-Circumcor N substitution within the carbon skeleton of a PAH produces a depth-dependant "blue shift in the" "position of the" "dominant CC" "stretching" "feature near " "6.2 µm." N35 Cation + 2N-Circumcor + N23 Cation 1’N-Circumcor + + Circumcoronene Cation, Circumcoronene Cation,C5C4H541H 8 18 1650 1625 1600 1575 1550 1525 1500 -1 Wavenumber (cm ) The position of the! nominal interstellar 6.2 µm emission band may provide a tracer of N in interstellar dust. Chem. & Phys. Matrix Isolated Species 9 PANHs have a large permanent dipole (µ), PAHs do not N Microwave observatories should be able to detect the “finger prints” of PANHs in the interstellar environment. This would allow the identification of individual aromatic molecules in the interstellar medium.. Image Gallery-Radio Telescopes http://www.jb.man.ac.uk/vlbi/images/telbig/dsn15.gif Andy Mattioda PANH cations all possess significant dipole moments…" Species Dipole Moments (Debye) µa µb µ N-coronene cations 1 N 5.48 2 N 3.69 3 N 2.67 0.19 0.00 0.00 5.49 3.69 2.67 N-ovalene cations 1N 1'N 1''N 1'''N 2N 2'N 3N 3'N 4N 0.98 4.81 4.26 3.47 1.19 3.65 1.02 1.99 1.56 7.17 7.21 6.51 3.47 5.38 3.98 4.44 2.37 1.56 7.10 5.38 4.92 0.00 5.25 1.59 4.32 1.29 0.00 Hudgins, Bauschlicher, & Allamandola (2005)! Species Dipole Moments (Debye) µa µb µ N-circumcoronene cations 1 N 9.23 1 ' N 6.99 2 N 6.77 3 N 5.30 4 N 4.55 5 N 1.32 0.23 0.00 0.47 1.20 0.00 0.00 N-circum-circumcoronene cations 2 N 10.1 2 0.33 2 ' N 9.09 0.00 3 N 7.47 1.94 3 ' N 8.31 0.00 4 N 7.33 0.63 5 N 4.75 0.62 6 N 3.06 0.00 7 N 2.54 0.00 9.23 6.99 6.79 5.43 4.55 1.32 10.1 3 9.09 7.72 8.31 7.72 4.79 3.06 2.54 11 …and rotational constants in the" 0.34 - 0.01 GHz (340 – 10 MHz) range" Specie s N-coronenes N-ovalenes N-circumcoronenes N-circum-circumcoronene s Rotational Constants (GHz ) Ra Rb Rc 0.334 - 0.337 0.331 - 0.336 0.166 - 0.168 0.238 0.148 0.091 0.066 0.066 0.033 0.021 0.021 0.011 Hudgins, Bauschlicher, & Allamandola (2005)! • Interstellar PANHs should produce a dense forest of lines over a very broad spectral range." • Interstellar PANHs may contribute to anomalous galactic background emission at radio wavelengths. " • Interstellar PANHs may represent an interesting, albeit challenging, subject for an interstellar search." Chem. & Phys. Matrix Isolated Species 12 The Anomalous Microwave Emission (AME) on the Cosmic Microwave Background Flux density [Jy] 105 Model Ancillary data WMAP Planck 104 Planck Data 103 102 101 100 1 10 100 Frequency [GHz] 1000 The AME (10 to 100 MHz) falls precisely in the range expected from large PANHs (and PAHs)!!! PAH Vibrations! CCstr! CHstr! 3! 4! NASA Ames! Astrochemisty Lab! 5! CCstr/CHip! CHoop! 6! 7! 8! 9! 10! Wavelength (µm)! 15! Vibration - S. Langhoff! Orion ISO Spectrum - E. Peeters! End part 1 Class 3 Go to Christiaan’s work
© Copyright 2026 Paperzz