An innovative modeling approach for simulating hypoxia/anoxia in estuarine ecosystems Mark J. Brush James N. Kremer Scott W. Nixon with contributions from: John Brawley Nicole Goebel Jamie Vaudrey ASFA SEARCH FOR "ECOSYSTEM MODEL" ERSEM I (1995) Rigler & Peters (1995) 45 NUMBER PUBLICATIONS PUBLICATIONS OFOF NUMBER 40 35 30 Also: Reckhow (1994 & others) Håkanson (1995, 2004) Hofmann & Lascara (1998) Pace (2001) Duarte et al. (2003) Fulton et al. (2003) Kremer & Nixon (1978) 25 Baretta & Ruardij (1988) 20 15 Steele (1974) Riley (1946, 1947) Odum (1983) ERSEM II (1997) 10 5 Chesapeake Bay Model 0 1940 1950 1960 1970 1980 1990 Odum (1994) 2000 USE OF MODELS IN MANAGEMENT Trade-off between realism & predictability: Generality Precision Loss of utility at lowest complexity? Realism Increasing complexity / realism R. Levins (1966, 1968) Phytoplankton Primary Production Published Gmax Functions 1971-1998 10.0 8.0 Brush et al. (2002) elevated Eppley -1 max,,dd-1 Gmax G 6.0 Eppley Curve 4.0 2.0 0.0 0 5 10 15 20 o TEMPERATURE, TEMPERATURE, CoC 25 30 Duarte et al. (2003) “The Limits to Models in Ecology” Can we find a middle ground? Generality Question: Can a simplified eutrophication model be useful as a heuristic and management tool? • Parsimony Principle • Ockam's Razor Precision R. Levins (1966, 1968) Empirical “Stressor-Response” Models Realism Complex, Mechanistic Systems Models Estuarine Eutrophication Model Estuarine Eutrophication Model * Need to accurately model both states and rates Phyto Production Pelagic Respiration Macro Metabolism Denitrification Phytoplankton Primary Production Light x Biomass (“BZI”) Models Pd = *Chl*Zp*PAR + … capped by available nutrients Cole & Cloern (1987) MEPS v. 36 Brush et al. (2002) MEPS v. 238 Water Column Respiration Rd = *e kT*Chl10 Source Nixon & Oviatt (1973) Turner (1978) Nowicki (1983) Holligan et al. (1984) Jensen et al. (1990) Iriarte et al. (1991) Sampou & Kemp (1994) Smith & Kemp (1995) Fourqurean et al. (1997) Caffrey et al. (1998) Moncoiffe et al. (2000) MERL (Brush, unpublished) Location PCR = f of: Bissel Cove, RI Georgia creek Potter Pond, RI English Channel Roskilde Fjord North Sea Chesapeake Bay Chesapeake Bay Tomales Bay, CA San Francisco Bay, CA Ria de Vigo MERL mesocosms, RI T T T Chl Chl Chl T T T, Chl Chl T, Chl T, Chl, P, N Carbon Flux to Sediments & Benthic Respiration Nixon (1981) Estuaries and Nutrients The Humana Press Csed = 0.25*Pd Rsed = *e kT Denitrification Nixon et al. (1996) Biogeochemistry 35(1) DENIT = Nload*f(RT) Empirical Functions • Robust, data-driven, & apply across several systems - ideal when mechanistic formulations are insufficient or poorly constrained. • Reduce model complexity by integrating multiple processes (which are often poorly constrained) into simplified, bulk functions. • Produce output we can measure and test. • Excellent tools for model validation. … a hybrid, empirical-mechanistic approach Greenwich Bay Eutrophication Model Greenwich Bay, RI (Avg Z = 3 m) Surface Phytoplankton Lower West Passage Chl-a Surface DIN Bottom O2 Bottom O2 with Forced Maximum Chlorophyll a original run max chl * Need to accurately model both states and rates Rate Processes Mid-Bay: Daily P & R Mid-Bay: Sediment Carbon 1.5 3 -2 1.0 gCm 2 0.5 1 0 0.0 J F M A M J J A S O N D J F M A M J J A S O N D Lower Bay: Water Column Respiration Annual Primary Production 4 -1 g C m-2 y-1 3 MERL fcn of T, Chl, NPP -2 Observed: 281 – 326 Modeled: 306 g O2 m d -2 gCm d -1 4 2 1 In the absence of flux measurements model 0 J F M A M J J A S O N D System-Level Validation: Nutrient Reduction Scenarios Keller (1988) Nixon et al. (2001) Nixon et al. (1996) Generality Precision Empirical Models A Simplified, Hybrid Empirical-Mechanistic Systems Model R. Levins (1966, 1968) Realism Multiple, parallel modeling approaches, e.g.: • Latour, Brush & Bonzek (2003) • Scavia et al. (2003) • Borsuk et al. (2002, 2004) Complex, Mechanistic Systems Models Oviatt et al. Models for Hypoxia Applied in Narragansett Bay NOAA Coastal Hypoxia Research Program Parameter C:Chl mBZI0 Chl tavg ƒNPPSED wtrclm Rƒ0 wtrclm RƒQ10 R tavg Values Chl-a DIN DIP 30, 60 ± 20% ± 20% 0.15, 0.35 ± 20% ± 20% ± 20% 37 14 10 12 11 16 12 12 17 12 12 11 12 O2 System Py 18 16 10 11 Full 3D resolution in ROMS: Nutrient Reduction Scenarios Bottom O2, mg/L 14 12 0% watershed N,P 10 8 6 4 2 0 14 12 J F M A M J J A S O N D 0% Narr. Bay N,P 10 8 6 4 2 0 14 12 J F M A M J J A S O N D 0% Narr. Bay N,P & saturating O2 10 8 6 4 2 0 J F M A M J J A S O N D PROVIDENCE RIVER LOWER NARRAGANSETT BAY Scope for Improvement: Pre-Colonial Inputs Bottom O2 Nixon (1997) Estuaries 20(2) Effect of Macroalgal Decomposition Bottom O2 Bottom O2 Effect of Macroalgal Decomposition Resultant O2, mg/L 8 6 4 2 0 0 1E+08 2E+08 3E+08 4E+08 Area, m2 Stochastic Simulation Kremer (1983) Surface Chl-a, mg/m3 70 60 50 40 30 20 10 0 J F M A M J J A S Bottom O2, mg/L O N D 12 10 8 Parameter 6 C:Chl mBZI0 Chl tavg ƒNPPSED wtrclm Rƒ0 wtrclm RƒQ10 Atavg S O R 4 2 0 J F M A M J J Values 30, 60 ± 20% ± 20% Bottom 0.15, O 0.35 2 ± 20% ± 20% N D± 20% Chl-a DIN DIP 37 14 10 12 11 16 12 12 17 12 12 11 12 O2 System Py 18 16 10 11 Acknowledgements James N. Kremer Scott W. Nixon John Brawley Nicole Goebel Jamie Vaudrey Dr. Brush’s wardrobe provided by: Bay St. Louis Kmart
© Copyright 2026 Paperzz