some comments on the Experimental tests of the fluctuationdissipation relation in aging glassy systems D. L’Hôte SPEC CE Saclay Local measurements Electric Force Microscopy: realizes (almost) the dream to visualize molecular systems as (e.g.) a microscope for colloids, a camera for granular systems, a plotter for simulations ... Direct observation of the heterogeneities 0 2500s 301.5 K 0 700nm E. Vidal Russel & N. E. Israeloff Nature 408 (2000) 695 Very beautiful (and difficult) experiments Grigera & Israeloff: First measurement of FDT violation in a structural glass (glycerol) Test of FDTviolation in ageing PVAc (bulk) Slow quench Little or no FDR violation T (K) PVAc 335 330 330 Initial dT/dt=0.15 K/s 325 320 relaxation time T (K) “slow quench” 315 310 305 300 300 00 100 time (s) 200 300 400 400 aging Quench duration not small in comparison with relaxation time at 300K Test of FDT violation in ageing PVAc (bulk) Fast quench 335 PVAc 330 “fast quench” initial dT/dt=10 K/s T (K) 325 320 315 310 305 300 0 0 2 1 4 2 3 6 4 5 6 7 time (s) Glycerol dT/dt=0.025 K/s Ti=206K PVAc Log f tw N.E. Israeloff et al. R.L. Leheny & S.R. Nagel PRB57, 5154 (98). Test of FDT in ageing PVAc (bulk) Fast quench wtw1 Teff Large Teff (comp. glycerol) Teff (K) Ti wtw>1 Tg f fixed Tf Teff < Tf tw tw(s) 2 Hz Polycarbonate Tg=419K Tf=0.93Tg quench: 1 K/s 7 Hz Not gaussian intermittency (spikes) L. Buisson & S. Ciliberto Physica D204, 1 (04) Origin of large Teff ? of different Teff’s ? of Teff < Tf ? Test of FDT in ageing PVAc (bulk) Scaling ? 800 tw : 700 1. 5 3 Teff < Tf ?? 4. 6 9. 2 14 Teff(K) 600 500 400 19 300 200 0.01 0.1 0.450.45 1 f tft ww 10 Scaling for spin glasses : Same scaling for response and correlation vs. (t-tw)/twm. If m<1, time replaced by effective time l (comes from polymers !) same m close to 1 (0.87); but ac  m ≈1 "subaging" (i.e; m < 1): due to quench rate ? Parker et al. PRB74, 184432 (06) Rodriguez et al. PRL91, 037203 (03) D. Hérisson and M. Ocio, EPJB40, 283 (04) Test of FDT in ageing PVAc What about T during the quench ? DH DH DH DH DH DH DH Ti t1 >t2 >t3 >t4 >t5 >t6 >t7 >... Phonon bath Ti time quench (t) t4 > t > t5 DH DH DH DH DH DH DH ?? t1 >t2 >t3 >t4 >t5 >t6 >t7 >... Phonon bath Tf DH DH DH DH DH DH DH Tf t1 >t2 >t3 >t4 >t5 >t6 >t7 >... Phonon bath Tf relaxation time of Dynamic Het. ti = thermal coupling time to phonon bath R. Richert, S. Weinstein PRL97, 095703 (06) K. Schröter and E. Donth, J. Chem. Phys. 113, 9101 (00) R. V. Chamberlin, PRL82, 2520 (99) ... Test of FDT in ageing PVAc (bulk) The meaning of large Teff , Teff < Tf , several Teff’s ? Physics of aging e.g.. Domain growth models: Teff  ∞ ; Molecular dynamics simulation (A. Barrat PRE57, 3629 (98)) e.g.: Teff = 2.2 Tf (660K !) Teff < Tf ? Negative FD ratio for KCModels (heterogeneous dynamics) J.L. Barrat & W. Kob, EPL46, 637 (99) P. Mayer et al. PRL96, 030602 (06): Also: Barrat & Kob (Nathan) Many Teff’s ? "Unusual" scaling ? More than two “time sectors“ ? (2 time sectors: FDVratio = 1 or Tf/Teff in e.g. mean field models) Additional noise. Nathan’s model Possible other origin ? density are also the physics...)  Internal constraints ? release  noise Thermal contraction during quench (but the rearrangements to Weak Teff in glycerol, large Teff in polymers ? Local polarization measurements 0 100 200 300 0 400 500 600nm 500 400 300 200 100 t =48mn t =17mn t =0 Spatial fluctuations of the polarization due to DH’s ? 0 PVAc Convol. resol.P(x) P DH glass trans. x DH DH PVAc DH Assuming each DH has its own polarization. DH size  3nm Probed volume: 203030 nm3  103 DH among which only a few are "active" C. Dalle-Ferrier et al. Phys. Rev. E76, 041510 (07) Direct observation of the DH’s in a polymer ? 0 2500s 301.5 K 0 2500 305.5 K 0 700nm What do we see ? "active" DH’s (33nm3)303020nm3 ? Issues: Correlations between DH’s: fusions/splitting, fast DH’s close (or not) to slow DH’s ? Spatial structure DH’s Do DH’s move? Correlation (Charac. time) – (DH size) ? Birth, death: comes from what, replaced by what ? etc. Or what ? Issues: The same with something else than DH’s... Response/Correlation => spatio-temporal distribution of FDR violation/Teff H.E. Castillo, C. Chamon, L.F. Cugliandolo, M.P. Kennett, PRL88, 237201 (2002) Test of FDR in ageing PVAc (local) -1/kB slope 305.5 303.5 302.5 262 ± 15 258 ± 30 253 ± 40 R(t) T (K) 303.5 K 302.5 K 305.5 K Q=Ceff VP Ceff = 7.2x10-18 F R(t)=A-Q(t)/V C(t)=<Q(t’)Q(t’+t)> If Q=(corr.)Q, Teff  (corr.)Teff 0 0 C (t) Corrections: Geometry of dipoles acting on the tip Effective field Q = S f(pi,ri) C = S <f(pi,ri).f(pj,rj)> correlations between DH’s 1/2 NHD Ageing : growing of a correlation length ? tw E. Vidal Russel & N. E. Israeloff Nature 408 (2000) 695 time K.S. Sinnathamby, H. Oukris & N. E. Israeloff PRL 95 (05) 067205 Simple model: Independent DH’s  superposition of Lorentzians But: - Correlations size – char. time - Correlations between DH’s - etc. position Heisenberg spin glass L. Berthier & A.P. Young PRB69, 184423 (04) 0.1 Calculation ? s2 (C) 0.05 0 0 500 1000 Open issues Violation of Fluctuation-dissipation theorem: Very attractive experiments But: • Teff < Tf • No unique Teff (> Tf) for wtw  1 • Unusual scaling of Teff • Additional noise ? Nathan’s model • Extrinsic noise ? • « DHs temperature" vs. phonon temperature Electric force microscopy: a fantastic tool for local FDT violations, and many other things (spatio-temporal correlations...) What are the observed structures ? Calculations/simulations of the experimental situation ? Simple dynamic heterogeneity Correlated dynamic herogeneities
© Copyright 2025 Paperzz