Contents of Session 4 Aquatic Physics II – • Stable Isotopes of Water in the Hydrological Cycle – Global Meteoric Water Line (GMWL) – Effects on stable isotopes in precipitation: 4. Stable Isotopes in the Global Water Cycle • Temperature effect • Altitude and continental effect • Amount effect Werner Aeschbach-Hertig Institute of Environmental Physics University of Heidelberg Literature: Mook (2001) Vol. 1, ch. 7; Vol. 2, ch. 3,4 1 Institut für Umweltphysik Universität Heidelberg Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle 2 Institut für Umweltphysik Stable Isotopes of Water in the Hydrological Cycle Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg The Global Meteoric Water Line (GMWL) The Global Meteoric Water Line (GMWL) Empirical Finding (Craig, 1961): Isotopic composition of precipitation from all over the world, plotted in δ2H versus δ18O graphs, are strongly correlated according to the equation: δ 2 H = 8 ⋅ δ 18 O + 10 (in ‰) The slope of 8 is similar to the ratio of the equilibrium fractionations The intercept of 10 ‰ is called deuterium excess (d-excess) from Mook, 2001 3 Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg Institut für Umweltphysik GMWL Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle GMWL from Clark & Fritz, 1997 5 Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle 4 Universität Heidelberg Universität Heidelberg from Mook, 2001 6 Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg 1 Evaporation line Origin of the GWML (1) • First step: Evaporation from the ocean • Mixed equilibrium and kinetic fractionation (Craig-Gordon) Evaporation shifts isotopic composition along a line with slope SE < 8 (depending on humidity). Equilibrium at surface δv = δl − εl / v Total fractionation ε tot = ε l / v + ε diff δ of evaporation flux δE = δ l − hδ a − ε tot 1− h Slope of evaporation line h: Relative humidity at water temperature Institut für Umweltphysik ⎡ h (δ a − δ l ) + ε tot ⎤⎦ 2 H SE = ⎣ ⎡⎣ h (δ a − δ l ) + ε tot ⎤⎦ 18 O 7 Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg from Mook, 2001 8 Institut für Umweltphysik Origin of the GWML (2) Universität Heidelberg Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Origin of the GWML (3) • Second step: Rayleigh-type condensation in clouds • Approximately equilibrium fractionation: slope ~ 8 from Clark & Fritz, 1997 10 from Clark & Fritz, 1997 9 Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg Institut für Umweltphysik Universität Heidelberg Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Progressive Rainout of Atmospheric Vapour Explanation of the GMWL • Slope of ~ 8 due to ~ equilibrium conditions during condensation of precipitation in clouds • Deuterium excess of ~ 10 ‰ due to mean relative humidity of ~ 85 % during evaporation from the ocean Vapour pressure [mbar] Institut für Umweltphysik 40 30 d-excess depends on humidity during evaporation 20 ⇒ indicator of conditions in moisture source region 10 Temperature [°C] 0 0 Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg 10 15 20 25 30 from Mook, 2001 11 Institut für Umweltphysik 5 Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle 12 Universität Heidelberg 2 Temperature Effect Temperature Effect Relationships between temperature T (in °C) and δ18O (in ‰): Dansgaard (1964): δ18O = 0.695T - 13.6 Yurtsever (1975): δ18O = 0.521T - 15.0 Slope ~ 0.6 ‰ °C-1 from Dansgaard, 1964, Tellus 16: 436-468 Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle from Rozanski et al., 1993, In: Climatic Change in Continental Isotopic Records 14 13 Universität Heidelberg Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Comparison of seasonal and temperature effect Seasonal Effect from Clark & Fritz, 1997 15 Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg Universität Heidelberg from Mook, 2001 16 Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg Continental Effect Continental Effect Rainout of oceanic water vapour: Increasing depletion of precipitation Contours of δ2H in precipitation over Europe from Siegenthaler, 1997, In: Lectures in Isotope Hydrology 17 Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg 18 Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg 3 Continental Effect Altitude Effect from Clark & Fritz, 1997 19 Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg from Mook, 2001 20 Institut für Umweltphysik Slope of Altitude Effect Simple estimate: Lapse rate: Temperature effect: Altitude effect: Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg Amount Effect Light/early rainfall tends to be enriched compared to heavy rainfall. dT/dz ~ -0.5 °C/100m dδ18O/dT ~ 0.6 ‰/°C dδ18O/dz ~ -0.3 ‰/100m In part due to evaporation of falling rain drops. Also due to dynamics in convective storm cells. Important effect in tropical regions! from Clark & Fritz, 1997 21 Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg from Mook, 2001 Institut für Umweltphysik Operated by IAEA and WMO; http://isohis.iaea.org/ from Clark & Fritz, 1997 23 Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle 22 Universität Heidelberg GNIP: Global Network of Isotopes in Precipitation Amount Effect Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg from Rozanski et al., 1993, In: Climatic Change in Continental Isotopic Records 24 Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg 4 Global distribution of stable isotopes http://isohis.iaea.org/userupdate/Waterloo/index.html 25 Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg http://isohis.iaea.org/userupdate/Waterloo/index.html 26 Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg Summary • Water isotopes in the hydrological cycle – δ2H and δ18O correlated along Global Meteoric Water Line – Position of precipitation on GMWL related to temperature – GMWL explained by non-equilibrium evaporation (d-excess) and equilibrium condensation during rainout (slope) • Factors influencing stable isotopes in precipitation – Temperature effect due to progressive rainout with cooling – Continental and altitude effects due to progressive rainout – Amount effect can be dominant in tropics – No strict, exact physical relationships, but very useful 27 Institut für Umweltphysik Physics of Aquatic Systems II, 4. Stable Isotopes – Water Cycle Universität Heidelberg 5
© Copyright 2026 Paperzz