2-1
Chapter 2: Fuzzy Sets vs Crisp Sets
※ α-cuts bridge fuzzy and crisp sets
2.1 Additional Properties of α-cuts
○ Theorem 2.1: A, B ( X ) , , [0,1]
(i)
(ii)
(iii)
A A
A A, A A
( A B) A B ,
( A B) A B
(iv) ( A B) A B ,
(v)
( A B) A B
( A) (1 ) A
Proof:
(ii) (a) Show A A
x A A( x)
, A( x)
x A
A A
2-2
(b) Show
A
A
x A A( x)
A( x)
x A
(iii) (a) Show
A A
( A B) A B
1) x ( A B ) , ( A B)( x)
min{ A( x), B ( x)}
A( x) , B ( x)
x A, x B x A b
( A B ) A B - - - - ( A)
2) x A B , x A, x B
A( x) , B( x) min[ A( x), B( x)]
( A B)( x) x ( A B)
A B ( A B)
(A), (B)
(b) Show
- - - - - - ( B)
( A B) A B
( A B) A B
1) x ( A B), ( A B)( x)
max{ A( x), B( x)}
A( x) or B( x)
x A or B( x) x A B
2-3
( A B) A B
------- (A)
2) x A B, x A or x B
A( x) or B( x)
max[ A( x), B( x)]
( A B)( x) x ( A B)
A B ( A B)
------- (B)
(A),(B) ( A B) A B
(iv) (a) Show ( A B) A B,
x ( A B) ( A B)( x)
min{ A( x), B( x)}
A( x) , B( x)
x A, x B x A B
( A B) A B
------ (A)
x A B x A, x B
A( x) , B( x)
min( A( x), B( x))
( A B )( x) x ( A B )
A B ( A B)
------ (B)
(A),(B) ( A B) A B
2-4
(b) Show
( A B) A B
x ( A B)
( A B)( x) max( A( x), B( x))
A( x) or B( x)
x A or x B x A B
( A B) A B
------ (A)
x A B A( x) or B( x)
max( A( x), B( x))
( A B)( x) x ( A B)
A B ( A B)
------ (B)
(A),(B) A B ( A B)
(v) Show
( A) (1 ) A
1) x ( A), A( x )
1 A( x) A( x) 1
x (1 ) A x (1 ) A
( A)
(1 )
A
(1 )
A, x (1 ) A
2) x
A( x) (1 ) 1 A( x)
A( x) x ( A)
(1 ) A ( A)
2-5
◎
( A): the α-cut of the complement of A
A: the complement of the α-cut of A
○ Theorem 2.2:
Ai ( X ), i I infinite index set
(vi)
Ai (
Ai )
i
i
(vii)
Ai (
i
Ai (
i
,
Ai )
i
,
i
Ai )
Ai (
i
Ai )
i
Proof:
(vi) (a) Show
iI
i
i
x
A ( A)
i
i
Ai i0 I , s.t.
x Ai0 (i.e. Ai0 ( x) )
2-6
sup Ai ( x) (
iI
x (
iI
(b) Show
i
iI
iI
iI
Ai )
Ai ( Ai )
Ai i, Ai ( x)
inf Ai ( x) (
iI
x (
i
Ai (
i
Ai )( x)
iI
Ai )
iI
(vii) (a) Show
x
Ai (
i
x
Ai )
iI
Ai )( x)
Ai ( Ai )
i
Ai )
i
Ai , i0 I s.t. x Ai0
i
(i.e., Ai ( x) )
0
def .
supAi ( x) (
iI
x (
Ai )
iI
(b) Show
iI
Ai )( x)
Ai (
i
i
Ai ( Ai )
i
i
x ( Ai ) ( Ai )( x)
i
i
def .
A ( x)
inf
meet
iI
i
Ai )
2-7
i I , Ai ( x) (i.e., x Ai )
x
Ai
( Ai )
i
i
Ai
i
○ Example:
A F( X )
i
1
Let A ( x) 1 , i N
i
i
1
x X , ( A )( x) supA ( x) sup(1 ) 1
i
i
i
i
i
i
( A) X
1
i
i
1
However, i N , A ( x X , A ( x) 1 1)
i
A X ( A)
1
i
i
1
i
1
i
i
i
i
○ Theorem 2.3: A, B F ( X ), [0,1]
(viii) A B iff A B , (ix) A B iff
+
A B
+
Proof:
(viii) (a) Show A B iff A B
i) ( ) Assume A B
x , s.t. x A, x B,
0
0
0
i.e. A( x ) , B( x )
0
0
def.
A( x ) B( x ) i.e. A B contradict
0
0
A B
2-8
ii) ( ) Assume A B x , s.t.
0
A( x ) B ( x )
0
0
Let =A( X ) x A, x B
0
0
0
i.e. A B
(b) Show A B iff
A B
1) ( ) Similar to (a)
2) ( )
Assume A B x , A( x ) B( x )
0
0
0
Let A( x ) B ( x ) x A, x B
0
0
0
0
A B
(ix) A B iff
+
(a) A B iff
(b) A B iff
A +B
A B
A B
1, if A B, then A B
A B x, A( x) B( x)
, A( x ) iff B ( x )
, A( x ) A iff x B
, A B
2-9
2. if
A B, then A B
assume A B x0 s.t. A( x0 ) B( x0 )
Let =A( x0 ) B ( x0 )
x0 A, x0 B
A B
(b) A B iff
A
B
1. if A B, then
A
B
A B x, A( x) B ( x)
, A( x) iff B( x)
, A( x)
,
2. if
A
A
A iff x B
B
B, then A B
assume A B x0 s.t. A( x0 ) B( x0 )
Let =A( x0 ) B ( x0 )
x0 A, x0 B
A
B
© Copyright 2026 Paperzz