Applicability of drought indices to monitor multi-sector impacts: “The Standardized Precipitation Evapotranspiration Index – SPEI” Sergio M. Vicente-Serrano, Santiago Beguería and Juan I. López-Moreno Spanish National Research Council, CSIC, Zaragoza, Spain Challenges for drought analysis and monitoring • Drought is a complex natural phenomena without a general and commonly accepted definition • In contrast to other extreme events such as floods, which are typically restricted to small regions and well-defined temporal intervals, droughts are difficult to pinpoint in time and space, affecting wide areas over long periods of time. • It is very difficult to isolate the beginning of a drought, as drought development is slow and very often the drought is not recognized until human activities, or the environment, are affected. Moreover, the effects of a drought can persist over many years after it has ended. • It is very difficult to objectively quantify their characteristics in terms of intensity, magnitude, duration and spatial extent. • We identify a drought by its effects at different levels, but there is not a physical variable we can measure to quantify droughts. Given the large dificulties to objectively quantify their characteristics (duration, intensity, magnitude, spatial extent, onset, etc.) several drought indices have been developed in the last decades (Heim, 2002: Bulletin of the American Meteorological Society, 83: 1149-1165) At present the two most widely used drought indices are: Palmer Drought Severity Index Palmer (1965) Standardised Precipitation Index McKee et al. (1993) Based on a simplified water balance equation. Incorporates prior precipitation, moisture supply, runoff and evaporation demand at the surface level Based on precipitation anomalies sc-PDSI and 18-month SPI at Indore (India) The importance of time-scales • A critical issue in the study of the drought impacts is the multi-scalar nature of drought, since the response of the hydrological (soil moisture, groundwater, river discharge, reservoir storage, etc) and biological (crops, natural vegetation, etc) systems to water shortage varies markedly and have different response times. • This explains why severe drought conditions can be recorded in one system (e.g., low river flows) whereas other systems in the same region (e.g., crops) have normal or even humid conditions. • The time period from the arrival of water inputs to availability of a given usable resource differs considerably. Thus, the time scale over which water deficits accumulate becomes extremely important, and functionally separates hydrological, environmental, agricultural and other droughts. For this reason, drought indices must be associated with a specific timescale to be useful for monitoring and management of different usable water resources. • This explains the wide acceptance of the SPI. SPI SPI SPI SPI The importance of time-scales 3 2 1 0 -1 -2 -3 3 2 1 0 -1 -2 -3 3 2 1 0 -1 -2 -3 3 2 1 0 -1 -2 -3 1-month 3-month 12-month 48-month 1950 1960 1970 1980 1990 2000 1.0 1.0 0.8 0.8 R-Pearson R-Pearson The importance of time-scales 0.6 0.4 0.2 SPEI SPI Inflows 0.6 0.4 0.2 0.0 SPEI SPI Storages 0.0 0 5 10 15 20 25 30 35 40 45 0 Time-scale 5 10 15 20 25 30 35 40 45 Time-scale 3 z-values 2 1 0 -1 -2 -3 1960 3-months SPEI Inflows 1965 1970 1975 1980 1985 1990 1995 2000 2005 1970 1975 1980 1985 1990 1995 2000 2005 3 z-values 2 1 0 -1 -2 -3 1960 40-months SPEI Reservoir storages 1965 Lorenzo-Lacruz, J., Vicente-Serrano, S.M., López-Moreno, J.I., Beguería, S., García-Ruiz, J.M., Cuadrat, J.M. (2010) The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain). Journal of Hydrology, 386: 13-26. The importance of time-scales 3 SSI 2 1 0 -1 -2 -3 1950 1954 1958 1962 1966 1970 1975 1979 1983 1987 1991 1995 2000 2004 López-Moreno, J.I., S.M., Vicente-Serrano, J. Zabalza, S. Beguería, J. Lorenzo-Lacruz, C. Azorin-Molina, E. Morán-Tejeda. Hydrological response to climate variability at different time scales: a study in the Ebro basin. Journal of Hydrology. Under review The importance of time-scales 12 11 10 9 Month 8 7 6 PC 1 5 4 3 2 1 5 10 15 20 25 30 35 40 45 SPEI time-scale 12 11 10 9 Month 8 7 6 PC 1 5 4 3 2 1 5 10 15 20 25 30 SPEI time-scale 35 40 45 The importance of time-scales Monthly 8 km. Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index dataset obtained from 25 years of daily NOAA-AVHRR satellite data. March 1993 March 1998 March 2003 March 2006 The importance of time-scales North Mexico 20 18 14 12 10 8 16 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 22 20 18 14 12 10 8 16 20 18 14 12 10 8 16 8 6 4 4 2 2 2 2 Mar Apr May Jun J ul Aug Sep Oct Nov D ec Jan Feb Mar Apr May Month Jun J ul Aug Sep Oct N ov Jan Dec Feb Mar Apr May N-West Australia South Africa 18 18 16 16 22 22 20 20 18 18 14 14 12 12 10 10 8 Sep Oct Nov Dec 16 16 8 8 Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 16 1 6 22 2 2 20 2 0 18 1 8 14 1 4 12 1 2 10 1 0 8 16 1 6 20 20 18 18 14 1 4 12 1 2 10 1 0 8 16 16 6 4 2 2 2 2 Au Aug g Sep O Oct ct No Nov v Dec Jan Feb Mar Ma r Apr Ap r May Ju Jun n J ul Month Aug Sep Se p Oct O ct N ov Dec De c Ja n Jan Feb Ma Marr Apr May Ma y Jun Jul Ju l Month Aug Au g Sep Oct Nov No v Dec Oct N ov Dec Oct O ct N ov Dec De c 8 4 Ju Jull Sep 10 10 4 Month Aug 12 12 4 Jun J ul 14 14 4 May Ma y Jun -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 22 22 6 Apr May Kazakhstan 6 Mar Ma r Apr 24 24 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 6 Feb Mar Month 6 Ja n Jan Feb Argentina 18 1 8 10 10 10 2 Feb 24 2 4 20 2 0 12 12 12 Month 22 2 2 14 14 14 4 Jan 24 2 4 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 SPEI Time-scale (month) 20 20 SPEI Ti me-scale (month) 22 22 Aug East Africa 24 24 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 Jul 16 6 Month Month 24 24 Jun 18 10 4 Feb 20 12 6 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 22 14 6 Jan -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 22 4 6 Ib. Pen.-Morocco 24 SPEI Ti me-scale (month) -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 22 SPEI Time-scale (month) 16 Sahel 24 SPEI Ti me-scale (month) SPEI T ime-scale (month) 18 SPEI Ti me-scale (month) 20 SPEI Time-scale (month) -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 22 SPEI Ti me-scale (month) N-East Brazil 24 24 SPEI Tim Time-scale e-scale (m (month) onth) Canadian praires 24 2 Ja n Jan Feb Ma Marr Apr May Ma y Jun Jul Ju l Month Aug Au g Sep Oct Nov No v Dec Jan Feb Mar Ma r Apr Ap r May Jun Ju n J ul Month Aug Sep Se p The importance of time-scales The importance of time-scales 3.0 3.0 P.halepensis 2.5 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 19501955 1960 1965 1970 1975 1980 1985 1990 199520002005 3.0 Residual indices 2.5 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 Year A.alba 3.0 2.5 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.3 3.0 0.2 J.thurifera 0.1 0.0 0.7 Year P. sylvestris Q. ilex P. nigra Q. faginea J. thurifera 0.6 0.5 0.4 0.3 0.2 0.1 0.0 1950 1955196019651970 1975 1980 1985 1990 1995 2000 2005 2.5 0.4 195019551960 1965 19701975198019851990199520002005 1950 1955196019651970 1975 1980 1985 1990 1995 2000 2005 2.5 0.5 1950 1955 1960 1965 1970 1975 1980198519901995 2000 2005 2.0 3.0 0.6 3.0 P.nigra P. pinea P. halepensis 0.7 0.0 0.0 2.5 0.8 P. pinea Correlation 2.5 1950 1955 1960 1965 1970 1975 1980198519901995 2000 2005 0.0 3.0 Q.faginea 2.5 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 Q.ilex 0.7 P. sylvestris A. alba 0.6 0.5 0.4 0.0 1950 1955196019651970 1975 1980 1985 1990 1995 2000 2005 1950 1955 1960 1965197019751980 1985 1990 1995 2000 2005 Years Years 0.3 0.2 0.1 0.0 -0.1 0 5 10 15 20 25 30 35 40 45 Months Pasho, E., J. Julio Camarero, Martín de Luis and Sergio M. Vicente-Serrano: Drought impacts on forest growth in a semi arid region in north-eastern Spain. Agricultural and Forest meteorology. Under review. The importance of time-scales Promedio por especies P. halepensis Quercus sp. Pasho, E., J. Julio Camarero, Martín de Luis and Sergio M. Vicente-Serrano: Drought impacts on forest growth in a semi arid region in north-eastern Spain. IAgricultural and Forest meteorology. Under review. The SPI calculation is based on two assumptions: 1. the variability of precipitation is much higher than that of other variables, such as temperature and potential evapotranspiration (PET) 2. the other variables (PET) are stationary (i.e. they have no temporal trend). In this scenario droughts are controlled by the temporal variability in precipitation. However, some authors have warned against systematically neglecting the importance of the effect of temperature on drought conditions. There has been a general temperature increase (0.5-2°C) during the last past 150 years (Jones and Moberg, 2003), and climate change models predict a marked increase during the 21st century (IPCC, 2007). It is expected that this will have dramatic consequences for drought conditions, with an increase in water demand due to evapotranspiration (Sheffield and Wood, 2008; Dubrovsky et al., 2008). The use of drought indices which include temperature data in their formulation (such as the PDSI) is preferable, especially for applications involving future climate scenarios. However, the PDSI lacks the multi-scalar character essential for both assessing drought in relation to different hydrological systems, and differentiating among different drought types. We need a new drought index based on precipitation and PET and combining the sensitivity of PDSI to changes in evaporation demand and the multi-temporal nature of the SPI. The index must be suited to detecting, monitoring and exploring the consequences of global warming on drought conditions. The importance of the evapotranspiration processes on droughts Syed et al. (2008): Water Resources Research, VOL. 44, W02433, doi:10.1029/2006WR005779, 2008 The importance of the evapotranspiration processes on droughts Lobo, A. and Maisongrande, P., 2006. Hydrology and Earth System Sciences, 10: 151-164 The importance of the evapotranspiration processes on droughts 3 2 1 0 -1 -2 -3 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 3 2 1 0 -1 -2 -3 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 3 3 2 2 1 1 SPEI SPI SPEI SPI 47ºN – 2º E 0 0 -1 -1 -2 -2 -3 -3 2002 2003 2004 2005 2002 2003 2004 2005 Sc-PDSI 6 4 2 0 -2 -4 -6 -8 Sc-PDSI Under precipitation changes both the PDSI and the SPI are equally sensitive 6 4 2 0 -2 -4 -6 -8 Sc-PDSI-Original 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 4 Sc-PDSI 2010 Sc-PDSI-Precipitat ion change 2010 Difference 2 0 -2 -4 -6 SPI 3 2 1 0 -1 -2 -3 SPI 1910 3 2 1 0 -1 -2 -3 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 SPI (18 months)-Original 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 SPI (18 months)-Precipitat ion change 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 1.0 2010 Difference SPI 0.5 0.0 -0.5 -1.0 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 PDSI and 18-month SPI at the Albuquerque (New Mexico, USA) observatory (1910−2007). Both indices were calculated from precipitation series containing a linear reduction of 15% between 1910 and 2007. The difference between the indices is also shown. Sc-PDSI 6 4 2 0 -2 -4 -6 -8 Sc-PDSI But under temperature changes only the PDSI is sensitive 6 4 2 0 -2 -4 -6 -8 Sc-PDSI-Original 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 Sc-PDSI-Temperature change (2ºC) 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 4 Sc-PDSI 2010 2010 Difference 2 0 -2 -4 -6 Sc-PDSI 1910 1920 1930 1940 1950 1960 1970 1980 6 4 2 0 -2 -4 -6 -8 1990 2000 Sc-PDSI-Temperature change (4ºC) 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 4 Sc-PDSI 2010 2010 Difference 2 0 -2 -4 -6 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Evolution of the sc-PDSI at Albuquerque (New Mexico, USA) between 1910 and 2007, and under lineal temperature increase scenarios of 2ºC and 4ºC during the same period. The difference between the indices is also shown. The Standardized Precipitation Evapotranspiration Index (SPEI) We describe here a simple multi-scalar drought index (the Standardised Precipitation Evapotranspiration Index) that combines precipitation and temperature data. The SPEI uses the monthly (or weekly) difference between precipitation and PET. This represents a simple climatic water balance (Thornthwaite, 1948) which is calculated at different time scales to obtain the SPEI. We followed the simplest approach to calculate PET (Thornthwaite, 1948), which has the advantage of only requiring data on monthly mean temperature. With a value for PET, the difference between the precipitation (P) and PET for the month i is calculated according to: Di = Pi-PETi, The calculated D values are aggregated at different time scales: k −1 D = ∑ Pn −i − PETn −i k n i =0 where k (months) is the timescale of the aggregation and n is the calculation month. The probability density function of a three parameter Log-logistic distributed variable is expressed as: β ⎛ x −γ ⎞ f ( x) = ⎜ ⎟ α⎝ α ⎠ β −1 ⎛ ⎛ x −γ ⎞ ⎞ ⎟ ⎜1 + ⎜ ⎜ ⎝ α ⎟⎠ ⎟ ⎠ ⎝ β −2 where a, β and γ are scale, shape and origin parameters, respectively, for D values in the range (γ > D <∞ ). Parameters of the Log-logistic distribution can be obtained following different procedures. Among them, the Lmoment procedure is the most robust and easy approach (Ahmad et al., 1988). When L-moments are calculated, the parameters of the Pearson III distribution can be obtained following Singh et al. (1993): 2w1 − w0 β= 6w1 − w0 − 6w2 α= where Γ(β) is the gamma function of β. ( w0 − 2 w1 )β Γ(1 + 1 β )Γ (1 − 1 β ) γ = w0 − αΓ (1 + 1 β )Γ (1 − 1 β ) The probability distribution function of the D series according to the Log-logistic distribution is given by: ⎡ ⎛ α F ( x ) = ⎢1 + ⎜⎜ ⎢⎣ ⎝ x − γ ⎞ ⎟⎟ ⎠ β ⎤ ⎥ ⎥⎦ −1 F(x) values for the D series at different time scales adapt very well to the empirical F(x) values at the different observatories, independently of the climate characteristics and the time scale of the analysis. 1.0 1.0 1.0 Albuquerque Albuquerque 0.8 Albuquerque (12 months) 0.6 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.0 -300 -200 -100 0.0 -400 0 -300 P-PET -200 -100 0.0 -700 0 -500 -200 0.0 -1200 -100 Sao Paulo (6 months) (12 months) 0.8 0.8 0.4 0.2 0.2 0.2 0.2 0.0 0.0 0.0 -200 800 1000 -200 0 200 400 P-PET 200 400 600 800 1000 1200 1400 1600 0.8 0.6 F(x) F(x) 0.6 0.4 0.4 0.4 0.2 0.2 0.2 100 P-PET 200 300 0.0 -200 0.0 0 200 P-PET 400 (24 months) 0.8 0.2 0 2000 Helsinki (12 months) 0.4 0.0 -100 1500 1.0 Helsinki (6 months) 0.6 F(x) 0.6 1000 F(x) 0.8 500 P-PET 1.0 Helsinki (3 months) 0 P-PET 1.0 Helsinki (24 months) 0.0 0 P-PET 1.0 0.8 600 800 1000 1200 1400 -200 F(x) F(x) 0.4 600 -400 0.6 0.4 400 -600 Sao Paulo 0.8 0.4 200 -800 P-PET 0.6 F(x) 0.6 0 -1000 1.0 Sao Paulo (3 months) F(x) -300 1.0 Sao Paulo 0.6 -400 P-PET 1.0 0.8 -600 P-PET 1.0 (24 months) 0.8 0.6 F(x) 0.6 F(x) 0.6 1.0 Albuquerque (6 months) 0.8 F(x) (3 months) F(x) 0.8 0.0 0 200 400 P-PET 600 800 0 200 400 600 800 1000 1200 1400 P-PET Theoretical according the Log-logistic distribution (black line) vs. empirical (dots) F(x) values for D series at time scales of 3, 6, 12 and 24 months for the observatories at Albuquerque, Sao Paulo and Helsinki. With F(x) the SPEI can easily be obtained as the standardized values of F(x). For example, following the classical approximation of Abramowitz and Stegun (1965). Sc-PDSI 3 2 1 0 -1 -2 -3 1930 1940 1950 1960 SPEI SPI 3 2 1 0 -1 -2 -3 1920 3 2 1 0 -1 -2 -3 SPEI SPI 3 2 1 0 -1 -2 -3 SPI 1910 3 2 1 0 -1 -2 -3 SPEI Sc-PDSI 6 4 2 0 -2 -4 -6 3 2 1 0 -1 -2 -3 SPI (3 months) 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1990 2000 2010 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 SPEI (12 months) 1910 SPI (24 months) 1980 SPEI (3 months) 1910 SPI (12 months) 1910 1970 1920 1930 1940 1950 1960 SPEI (24 months) 1910 1920 1930 1940 1950 1960 sc-PDSI, 3-, 12- and 24-month SPI and SPEI at Sao Paulo (1910−2007). Under warming conditions… 0.8 1. 0 Albuquer que (3 months) 0. 8 (6 months) 0.8 F(x) 0.4 0. 4 0.4 0.2 0. 2 0.2 0.0 0. 0 0.0 -800 -50 0 50 100 -300 -200 P-PET 0.8 0 1. 0 Sao Paulo (3 months) 0. 8 1.0 Sao Paulo (6 months) 0.8 F(x) F(x) 0. 4 0.4 0.2 0. 2 0.2 200 400 0. 0 -200 600 0 200 400 P -PE T 0.8 1. 0 (3 months) 0. 8 600 800 1000 1.0 1.0 ( 6 months) 500 0.8 1. 0 Helsinki (12 months) F(x) 0. 2 0.0 -100 0. 0 -200 0.0 300 400 1. 0 (3 months) 0. 8 1.0 Albuquerque 0.8 200 400 600 800 0 1.0 Albuquerque (12 months) 0.8 F(x) F(x) 0. 4 0.4 0.4 0.2 0. 2 0.2 0.2 0.0 0. 0 0.0 -150 -100 -50 0 50 -600 -400 -200 P -P E T 0.8 -800 0 -600 -400 P-P E T 1. 0 Sao Paulo (3 months) 0. 8 (6 months) 0.8 -200 Sao Paulo (12 months) 0.4 0.4 0. 2 0.2 0.2 0.0 -400 0. 0 -400 0.0 -400 -200 400 600 -200 0 200 0.8 600 800 1000 1. 0 Helsinki (3 months) 0. 8 1.0 ( 6 months) 0.8 0.4 0. 4 0.4 0.2 0. 2 0.2 0.0 -100 0 100 P -P E T 200 400 200 300 600 800 1000 1200 1400 0. 0 -200 -500 1. 0 Helsinki (12 months) 0 100 P-P E T 500 200 300 400 1000 1500 2000 Helsinki ( 24 months) 0. 8 0. 6 0. 4 0. 2 0.0 -100 0 P -P ET 0.6 F(x) 0. 6 F(x) 0.6 (24 months) P -P ET Helsinki -200 0.0 0 P -P E T F(x) 1.0 400 -400 F(x) 200 -600 0.6 0. 4 P -PE T 1400 Sao Paulo 0.8 0.2 0 1200 P -PE T 1.0 0.4 -200 1000 (24 months) 0.0 -1600 -1400 -1200 -1000 -800 0 0.6 F(x) 0. 6 F(x) 0.6 1.0 Sao Paulo 800 Albuquerque P -PE T F(x) 1.0 600 F(x) -200 400 0.6 0.4 -250 200 P -P E T 0.6 0. 6 F(x) 0.6 ( 24 months) P -P E T (6 months) 2000 0. 0 0 P-P E T Albuquer que 1500 F(x) 0.8 200 1000 0. 6 0. 4 1.0 500 Helsinki 0. 8 0.2 100 0 P -P ET 0.4 0 (24 months) 0.0 -500 1000 0.6 -100 -200 0.2 0 0. 2 300 -400 0.4 0. 4 200 -600 0.6 0.2 100 -800 P -P ET Helsinki P -P E T -1000 Sao Paulo 0.8 0.4 0 -1200 P -P E T (12 months) 0.0 -500 1200 0. 6 F(x) 0.6 0. 0 -1400 0 Sao Paulo P -P E T Helsinki -200 F(x) 1.0 -400 F(x) 0 0. 2 -600 0.6 0.4 -200 0. 4 P -P E T 0. 6 0.0 ( 24 months) 0. 6 P-P E T 0.6 B) -100 Albuquerque 0. 8 F(x) 1.0 (12 months) F(x) -100 1. 0 Albuquer que 0.6 0. 6 F(x) 0.6 1.0 Albuquerque F(x) 1.0 F(x) A) 0. 0 0 200 400 P -P E T 600 800 0 200 400 600 800 1000 1200 1400 P -P E T Theoretical according the log-logistic distribution (black line) vs. empirical (dots) F(x) values for D series at time scales of 3, 6, 12 and 24 months for the observatories at Albuquerque, Sao Paulo and Helsinki. A) Temperature increase of 2ºC. B) Temperature increase of 4 ºC. Sc-PDSI 8 6 4 2 0 -2 -4 -6 -8 Sc-PDSI 8 6 4 2 0 -2 -4 -6 -8 Sc-PDSI 8 6 4 2 0 -2 -4 -6 -8 SPI 3 2 1 0 -1 -2 -3 SPEI 3 2 1 0 -1 -2 -3 SPEI 3 2 1 0 -1 -2 -3 SPEI 3 2 1 0 -1 -2 -3 Sc-PDSI 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Sc-PDSI + 2ºC 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Sc-PDSI + 4ºC 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 SPI (18 months) 1910 1920 1930 1940 1950 1960 SPEI (18 months) 1910 1920 1930 1940 1950 1960 SPEI (18 months) + 2ºC 1910 1920 1930 1940 1950 1960 SPEI (18 months) + 4ºC 1910 1920 1930 1940 1950 1960 Evolution of the sc-PDSI, and 18-month SPI and SPEI in Abashiri (Japan). The original series (1910−2007) and the sc-PDSI and SPEI were calculated for a temperature series with a lineal increase of 2ºC and 4ºC throughout the analyzed period. Sc-PDSI 8 6 4 2 0 -2 -4 -6 -8 SPEI 3 2 1 0 -1 -2 -3 SPEI 3 2 1 0 -1 -2 -3 SPEI 3 2 1 0 -1 -2 -3 SPEI 3 2 1 0 -1 -2 -3 SPEI 3 2 1 0 -1 -2 -3 SPEI 3 2 1 0 -1 -2 -3 Sc-PDSI 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 SPEI (1 month) 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 SPEI (3 month) 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 SPEI (6 month) 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 SPEI (12 month) 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 SPEI (18 month) 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 SPEI (24 month) 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Evolution of the sc-PDSI, and 1-, 3-, 6-, 12-, 18- and 24-month SPEI at Tampa (Florida, USA) under a 4ºC temperature increase scenario relative to the origin • According to the sc-PDSI, under global warming temperature will play a more important role than precipitation in explaining drought conditions. This phenomenon can also be assessed using the SPEI, which was very similar to the sc-PDSI under the two temperature increase scenarios tested. This suggests that the SPEI should be used in preference to the sc-PDSI, given the former index’s simplicity, lower data requirements and multi-scalar properties. • The SPEI can account for the possible effects of temperature variability and temperature extremes beyond the context of global warming. Therefore, given the minor additional data requirements of the SPEI relative to the SPI, use of the former is preferable for the identification, analysis and monitoring of droughts in any climate region of the world. • The SPEI fulfils the requirements of a drought index since its multi-scalar character enables it to be used by different scientific disciplines/sectors to detect, monitor and analyze droughts. Like the sc-PDSI and the SPI, the SPEI can measure drought severity according to its intensity and duration, and can identify the onset and end of drought episodes. The SPEI allows comparison of drought severity through time and space, since it can be calculated over a wide range of climates, as can the SPI. The SPEI is statistically robust and easily calculated, and has a clear and comprehensible calculation procedure. • A crucial advantage of the SPEI over the most widely used drought indices that consider the effect of PET on drought severity is that its multi-scalar characteristics enable identification of different drought types and impacts in the context of global warming. Advantages of the SPEI Moscow (Russia) 3 2 SPI 1 0 -1 -2 -3 1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010 3 SPEI 2 1 0 -1 -2 -3 2000 2010 2000 2010 Advantages of the SPEI Advantages of the SPEI Advantages of the SPEI Advantages of the SPEI 3 2 1 0 -1 -2 -3 SSI PDSI z-units Mississippi 6 4 2 0 -2 -4 -6 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 z-units z-units 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 3 2 1 0 -1 -2 -3 (sc)PDSI 4-month SPEI 3 2 1 0 -1 -2 -3 17-months SPEI 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 3 2 1 0 -1 -2 -3 SSI PDSI z-units St. Lawrence 6 4 2 0 -2 -4 -6 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 z-units z-units 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 3 2 1 0 -1 -2 -3 31-month SPEI 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 (sc)PDSI 3 2 1 0 -1 -2 -3 14-months SPEI 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 Tools and datasets http://sac.csic.es/spei/ Tools and datasets http://sac.csic.es/spei/ Tools and datasets Updates and improvements: Method of calculation of the log-logistic parameters: unbiased estimator, maximum likelihood. Including different options to obtain the PET (Hargreaves, Penmann). Dataset updated to 2009. Real time monitoring from global products. References: Vicente-Serrano S.M., Santiago Beguería, Juan I. López-Moreno, (2010) A Multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index – SPEI. Journal of Climate 23: 1696-1718. Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., Angulo, M., El Kenawy, A. (2010): A new global 0.5° gridded dataset (1901-2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. Journal of Hydrometeorology. 11: 1033–1043 Beguería, S., Vicente-Serrano, S.M. Angulo, M., (2010): A multi-scalar global drought data set: the SPEIbase: A new gridded product for the analysis of drought variability and impacts. Bulletin of the American Meteorological Society. 91, 1351-1354 Vicente-Serrano, S.M., Juan I. López-Moreno, Santiago Beguería, Jorge Lorenzo-Lacruz, Cesar Azorin-Molina and Enrique Morán-Tejeda (2011): Accurate computation of a streamflow index. Journal of Hydrologic Engineering doi:10.1061/(ASCE)HE.1943-5584.0000433
© Copyright 2026 Paperzz