Monitoring soil mineral nitrogen concentration in Germany: Preliminary results and some methodical challenges P. Schweigert* and R.R. van der Ploeg Institute of Soil Science, University of Hannover, Hannover, Germany N surplus of agricultural land in Germany 140 nitrogen (kg ha-1) 120 100 80 60 40 20 0 1950 1960 1970 1980 time (calendar year) 1990 2000 Consequences of N surplus • Soil mineral nitrogen increased Consequences of N surplus • Soil mineral nitrogen increased • Nitrate leaching increased Consequences of N surplus • Soil mineral nitrogen increased • Nitrate leaching increased • Nitrate concentration in groundwater often increased over 50 mg l-1 • Problem for drinking water supliers, because: 50 mg l-1 is the upper limit in drinking water Consequences of N surplus • Soil mineral nitrogen increased • Nitrate leaching increased • Nitrate concentration in groundwater often increased over 50 mg l-1 • Problem for drinking water supliers, because: 50 mg l-1 is the upper limit in drinking water 80 % of the drinking water comes from groundwater Measures to reduce nitrate leaching • Prevention of overfertilization • Promotion of cover crop cultivation during fall Result check: Monitoring programs • In drinking water catchments • Soil mineral nitrogen (NO3-N) in 0-90 cm depth • In fall before leaching begins Result check: Monitoring programs Baden-Württemberg: - Since 1987 - First program in Germany - 60000 samples per year Trend of soil mineral nitrogen in Baden-Württemberg 70 60 50 40 30 y = -2.2x + 61.0 2 r = 0.58 20 10 time (calendar year) 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 0 1987 NO3-N content (kg ha-1) 80 Trend of soil mineral nitrogen in Baden-Württemberg 70 60 50 40 30 y = -2.2x + 61.0 2 r = 0.58 20 10 time (calendar year) 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 0 1987 NO3-N content (kg ha-1) 80 Trend of soil mineral nitrogen in Baden-Württemberg 70 60 50 40 30 y = -2.2x + 61.0 2 r = 0.58 20 10 time (calendar year) 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 0 1987 NO3-N content (kg ha-1) 80 Preliminary result - Soil nitrate concentration decreases - Nitrate leaching probably decreases Methodical challenges? Are there still problems, that should be solved? Are there anyhow methodical challenges? Trend of soil mineral nitrogen in Baden-Wuerttemberg 70 60 50 40 30 y = -2.2x + 61.0 2 r = 0.58 20 10 time (calendar year) 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 0 1987 NO3-N content (kg ha-1) 80 Trend of soil mineral nitrogen in Baden-Wuerttemberg 70 60 50 40 30 y = -1.3x + 55.6 2 r = 0.19 20 10 time (calendar year) 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 0 1987 NO3-N-content (kg ha-1) 80 Methodical challenge: Quantification of the influences of the weather on the mineral N content of the soils Result check: Monitoring programs Liebenau - Since 1992 - 100 samples per year Soil mineral nitrogen in Liebenau 70 60 50 40 y = -1.3x + 58.4 2 r = 0.09 30 20 10 time (calendar year) 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 0 1992 NO3-N content (kg ha -1) 80 400 70 350 60 300 50 250 NO3-N 40 200 precipitation 30 150 time (calendar year) 2002 2001 2000 1999 1998 0 1997 0 1996 50 1995 10 1994 100 1993 20 precipitation (mm) 80 1992 NO3-N content (kg ha -1) Soil mineral nitrogen and the precipitation until sampling date 400 70 350 60 300 50 250 NO3-N 40 200 precipitation 30 150 time (calendar year) 2002 2001 2000 1999 1998 0 1997 0 1996 50 1995 10 1994 100 1993 20 precipitation (mm) 80 1992 NO3-N content (kg ha -1) Soil mineral nitrogen and the precipitation until sampling date 400 70 350 60 300 50 250 NO3-N 40 200 precipitation 30 150 time (calendar year) 2002 2001 2000 1999 1998 0 1997 0 1996 50 1995 10 1994 100 1993 20 precipitation (mm) 80 1992 NO3-N content (kg ha -1) Soil mineral nitrogen and the precipitation until sampling date 400 70 350 60 300 50 250 NO3-N 40 200 precipitation 30 150 time (calendar year) 2002 2001 2000 1999 1998 0 1997 0 1996 50 1995 10 1994 100 1993 20 precipitation (mm) 80 1992 NO3-N content (kg ha -1) Soil mineral nitrogen and the precipitation until sampling date 400 70 350 60 300 50 250 NO3-N 40 200 precipitation 30 150 time (calendar year) 2002 2001 2000 1999 1998 0 1997 0 1996 50 1995 10 1994 100 1993 20 precipitation (mm) 80 1992 NO3-N content (kg ha -1) Soil mineral nitrogen and the precipitation until sampling date Soil mineral nitrogen as a function of precipitation until sampling date NO3-N content (kg ha -1) 80 70 60 50 40 30 20 10 0 0 50 100 150 200 precipitation (mm) 250 300 Soil mineral nitrogen as a function of precipitation until sampling date NO3-N content (kg ha -1) 80 70 60 50 40 30 y = -0.15x + 66.7 r2 = 0.46 20 10 0 0 50 100 150 200 precipitation (mm) 250 300 Simple regression with 1 variable NO3-N = - 0.15 P10 + 66.7 r2 = 0.46* NO3-N = mean NO3-N fall content of all soils (kg ha-1), 0-90 cm depth P10 = Precipitation since 1. October, until date of sampling (mm) NO3-N = - 0.15 P10 + 66.7 r2 = 0.46* 70 60 50 40 30 NO3-N measured 20 NO3-N calculated 10 time (calendar year) 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 0 1992 NO3-N content (kg ha -1) 80 NO3-N = - 0.15 P10 + 66.7 r2 = 0.46* 70 60 50 40 30 NO3-N measured 20 NO3-N calculated 10 time (calendar year) 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 0 1992 NO3-N content (kg ha -1) 80 NO3-N = - 0.15 P10 + 66.7 r2 = 0.46* 70 60 50 40 30 NO3-N measured 20 NO3-N calculated 10 time (calendar year) 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 0 1992 NO3-N content (kg ha -1) 80 Multiple regression with 2 variables NO3-N = - 0.20 P10 - 2.8 Y + 86.6 r r2 = 0.86 *** NO3-N = mean NO3-N fall content of all soils (kg ha-1), 0-90 cm depth P10 Y = Precipitation since 1. October, until date of sampling (mm) = Year (1992 = 0; 1993 = 1; 1994 = 2; etc.), temporal trend Multiple regression with 2 variables NO3-N = - 0.20 P10 - 2.8 Y + 86.6 r2 = 0.86 *** NO3-N = mean NO3-N fall content of all soils (kg ha-1), 0-90 cm depth P10 Y = Precipitation since 1. October, until date of sampling (mm) = Year (1992 = 0; 1993 = 1; 1994 = 2; etc.), temporal trend r2 = 0.86 *** NO3-N = - 0.20 P10 - 2.8 Y + 86.6 70 60 50 40 30 NO3-N measured 20 NO3-N calculated 10 time (calendar year) 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 0 1992 NO3-N content (kg ha -1) 80 Multiple regression with 4 variables NO3-N = - 0.17 P10 - 3.2 Y - 0.08 P9 + 3.1 T10 + 52.3 r2 = 0.97 *** NO3-N = mean NO3-N fall content of all soils (kg ha-1), 0-90 cm depth Y P10 P9 T10 = = = = Year (1992 = 0; 1993 = 1; 1994 = 2; etc.), temporal trend Precipitation since 1. October until date of sampling (mm) Precipitation of September (mm) Mean air temperature at 2 p.m. in October (° C) Multiple regression with 4 variables NO3-N = - 0.17 P10 - 3.2 Y - 0.08 P9 + 3.1 T10 + 52.3 r2 = 0.97 *** NO3-N = mean NO3-N fall content of all soils (kg ha-1), 0-90 cm depth Y P10 P9 T10 = = = = Year (1992 = 0; 1993 = 1; 1994 = 2; etc.), temporal trend Precipitation since 1. October until date of sampling (mm) Precipitation of September (mm) Mean air temperature at 2 p.m. in October (° C) Multiple regression with 4 variables NO3-N = - 0.17 P10 - 3.2 Y - 0.08 P9 + 3.1 T10 + 52.3 r2 = 0.97 *** NO3-N = mean NO3-N fall content of all soils (kg ha-1), 0-90 cm depth Y P10 P9 T10 = = = = Year (1992 = 0; 1993 = 1; 1994 = 2; etc.), temporal trend Precipitation since 1. October until date of sampling (mm) Precipitation of September (mm) Mean air temperature at 2 p.m. in October (° C) NO3-N = - 0.17 P10 - 3.2 Y - 0.08 P9 + 3.1 T10 + 52.3 r2 = 0.97 *** 70 60 50 NO3-N measured 40 NO3-N calculated 30 20 10 time (calendar year) 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 0 1992 NO3-N content (kg ha -1) 80 160 140 120 100 80 60 40 20 0 time (calendar year) 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 y = -9.4x + 18959 r2 = 0.76 1988 NO3 concentration (mg l -1) Decrease of nitrate in groundwater Conclusions Preliminary results: - Measures to reduce the nitrate leaching are successful Conclusions Methodical challenge: - Values of soil nitrate are superimposed by atmospheric influences Conclusions Methodical challenge: - Values of soil nitrate are superimposed by atmospheric influences - Multiple regression models can detect these influences
© Copyright 2026 Paperzz