PARTITION OFIONIC CONSTITUENTS BETWEEN ORGANS W. Dijkshoorn Inadditiontothephosphateand chloride,the plant accumulatesunchanged nitrateand sulphate anions. Thesum ofequivalents (N0^+C1~+H2P0^+S0=) intheplantrepresents theinorganic anioncontentA. Inthetissuesofhigherplants thesumofequivalentsofthemetallic cationsC (=K++Na++Mg+++Ca"^1") isgreater thanA,and theexcess (C-A)accumulatesin theformof carboxylates,suchasmalates,citrates, oxalates,succinates,etc.ofthemetalliccations. Carboxylatesariseintheleaves fromtheconversionofnitratesand sulphates. Withoutnitratein themedium,bicarbonate isabsorbed alongwiththe metallic cations,andentersorganic combinationto formcarboxylates intheroots. Allotherplantparts receive their carboxylates byredistribution. Thecontrolof thelevelofcarboxylates in heterotrophic plant organs involves importviathe phloem system. Potassium isthemaincationtransferred;itmovesinproportion totheamount oftrans= locateddrymatter and,beingdominant,there islittle 447 y? Ci •*h 448 DIJKSHOORN change intheconcentration of thesumofmilliequivalentsofcations inthedriedmaterial throughout the life oftheorgan. Thelevelofcarboxylates inreserve organsis controlled byboththe import ofionsvia thexylem, and theexport ofpotassium carboxylatesviathe phloem. Theabsorbed calcium andmagnesiumare retained,with theexportofpotassium and drymatter, calciumeventuallybecomesdominant,and theconcentrationofcarboxylates inthedriedmaterialis raised toahighervalue. During thischangethe citrate content isreduced andmalateeventually becomes themaincarboxylate. Young leaveshaveheterotrophic requirementsat first. Later,whenfully expanded,their synthetic capacities aredirected towards export ofassimilates and theleafacquires features typicalofreserve organs. Inplantswithaterminalgrowth,plant compositionmaybecome stratified insuchamanner thatupper leaves arelowincalciumandcarboxylates, while thematured lower leaveshavehigherconcentrations ofcalciumand carboxylates,withmalateas themajor carboxylate. Iftherootsarenotprogrammed toabsorb largerquantities ofcalcium,asincereals and grasses,potassiummay remaindominant and there willbe lesschange inthe levelofcarboxylates inthe wholefoliageduring ageingoftheplant. Maizeplantsgrownonasupply ofnitrate andthe othernutrient saltexhibithigh levelsofnitratebut nocarboxylate inthexylem liquid. If transferred to a nitrate-freemedium thenitrate levelfallsand carboxylate,synthesized intherootsfromabsorbed bicarbonates,substitutesfornitrate inthexylem liquid. From thisitisconcluded thatallthe absorbed nitrateistransferred via thexylem tothe shoot,andentersmetabolism inbalancewithmetallic cations. The carboxylates replacing theconsumed nitrates thendistributevia thephloemalongwith PARTITION OFIONICCONSTITUENTS 449 potassium totheotherplant parts. Xylem transferof carboxylates occursonlywhennitrate isexhaustedand therootsbegin toproduce carboxylates fromabsorbed bicarbonates. A scheme ispresented toaccount for theability ofgrassesandcereals toaccumulateorganicnitrogen inexcessofcarboxylates. Itisbased ontheunique translocation propertiesofpotassium,and ondecarboxylationof thecarboxylates received by therootswith exchangeof thereleased bicarbonate forextranitrate anionsfrom themedium INTRODUCTION Theoccurrenceof inorganic saltsand carboxylates intheplant isduetotheaccumulation and processing ofnutrient ionsthat itabsorbs from themedium. Of themajor routesofanionutilization that leading toorganic phosphatesdoesnotchange theionic stateofthephosphate. Inaddition,plantsaccumulateunchanged nitrate and sulfateanions inexcessofmetabolicrequirements, andallthechloridethat isabsorbed. Thelevelofotherdetectable inorganic anionsis extremely lowsothat thesumofmiliequivalents: (NO?+ CI - +H2PO4+ S0=)=A represents theinorganic anioncontent,including the phosphateanions inorganiccombination. Theexcessofmiliequivalents ofthecations,obtainedby thesummation: (K++Na ++Mg+++Ca4-1")=C, 450 DIJKSHOORN over theinorganic anions appears tobe inbalancewith carboxylateanions,thecarboxylate content isgivenby (C- A ) . Carboxylates areformed asanecessary concomitant of theconversionofnitratesofthemetallic cations intonon-ionic organicnitrogenand sulfur (Dijkshoorn, 1962). Therefore,ifpotassiumnitratewere toactas thesolesourceoforganicnitrogen,itsequivalentof potassium carboxylatewouldbeformedwithin thetissues. Another sourceofcarboxylates istheuptakeof metallic cationswithbicarbonateasthepartnering anion. Theabsorbed bicarbonates enterorganiccombination toformcarboxylates. Ifinthemedium,the nitratesarereplaced by chlorides orsulfates,bicarbonate (derived fromthedissociationofwaterand carbondioxide)isabsorbed,and carboxylates areaccumulated intheroots. Inryegrassnitrates arereadily transferred to theshootand themetabolism generates carboxylatesin excessofthequantity retained by thefoliage. Butin thecaseofbicarbonate absorption thecarboxylates, produced intheroots,arelessreadily transferred to theshoot,and theplantsmaybe showntobecomeprogressively starved ofcarboxylates. Whencultured onanitratemedium,thelevelof carboxylates, (C - A ) , ishighintheshootandlowin theroots,and thissituation isreversedwhenthenitrateisexhausted (Dijkshoornetal., 1968). Thegreaterpotentialofthenitrate systemin supplying carboxylates seemsafeatureofmanyhigher plants. Fig.1refers toyoungpotatoplantsraised fromwhole tubersplanted insand culture. Whensuppliedwithnutrientsalts containingnitrate,organic nitrogen inthewholeplant increased tomorethan PARTITIONOFIONICCONSTITUENTS 451 me.(C-A) 20 A 16 12 ?y/ 8 0 U 8 12 16 20 me.Norg FIG. 1 Amountsoforganicnitrogen (N o r g),and ofcarboxylates (C-A), insmallpotato plantsgrown insand culturefrom seed tubers withlow (opensymbols)andhigh (solid symbols) nitrogen content. Dataexpressed asionequivalentsofcarboxylateandofnitrate,respectively,perplant including theseedtuber. Squaresdenoteamounts intheseed tuberbefore planting;triangles:plants suppliedwithnitrate inthenutrient salts;circles:plants grownwithallthenitratereplaced bysulfate inthenutrientsalts. twice theamount initially present intheseedtuber. Expressed asionequivalent ofnitrate,theincreasein organicnitrogenwasequal tothatof thecarboxylates, indicatingthat allthecarboxylatereleased by thenitratemetabolismwasretained by theplant. Withadditional sulfate inplaceofnitrate,theamountof 452 DIJKSHOORN organicnitrogen remained unchanged and little increase intheamountofcarboxylates occurred. Itisapparent thatthecontrolofthelevelof carboxylates involves ionuptake,translocationand metabolism. Oneresultof thisprocesswhich isamenabletostudy isthepatternofdistribution over the different tissuesoftheplant. Thispatternwould suggest that ionuptake,availability forreleaseto thexylem,siteofmetabolism,andavailability for release totheconducting elements ofthephloem,are allselectiveandmay greatly influencecomposition. Thepurposeofthepresent communication isto drawattention tothelinksbetweenmigrationand metabolism ofabsorbed ionsand thecarboxylatecontent ofdifferent plantorgans. SELECTIVEUPTAKEOFCATIONS Thefirst selectiveprocess isuptakefromthemedium. Comparedwithdicotyledons,thecerealsand grasses appear toabsorbpreferentially potassium, whilecalcium islessreadily absorbed. Theproportionofpotassium tocalciuminthe bleeding sapofmaizeplantsappeared tobeequalto thatinthebody of theshootandof theroots (Fig.2). Theplantsweregrownonnutrient solutionswitha ratioofequivalents ofpotassium tocalciumof0.5. Sincethisratiowasabout 4inboth thexylem exudate and intheplanttissues,thereseemsnodoubtthat, here,therelativeexclusionofcalcium iscontrolled by theroots,prior toiontransfer tothexylem. Inmanydicotyledons there isno suchgreatpreferenceforpotassiumabsorption,and calciummayaccumulatetohighconcentrations inmatured plantparts. PARTITION OF IONIC CONSTITUENTS 453 to "U o *: o o 1 S" U e 1 e o o fi3 o o CU o o oo o 00 $ V -> m i/i -*-J o c3 c o CU o° ! SE (a) Ca D J S ca o cl •H c e ca 3 e •s H O (-1 60 CO 4-1 c 4-1 ca O i-H PM a M Pu 0) 3 eu U 1) fX en en en •H 4J 4J C 0) 01 i H - G ca 4-1 •H 3 • H u" > c eu 0) J2 4-1 T3 cca 4-1 O O 42 en a) -C 4-1 CH 0 r-l ca •H iH i-t •H •H C ca G. Fi ta Tj ca M Tl .- ». i Ö O •H •U •H i H CJ O 1-1 CO en en ca _ L a • CU 4-1 • u H 0) 3 o CJ Ö O s ca u u 3 ] Ö u Cl) 4J 4-1 • H ca i H C O •1-1 4J "l_ oo M c 3 ai 4-4 O •H T3 O) £ o< - N •H ca 6 o° "O Ol O O S-i ai C •H M C •H Tj 0) 0) •H ,û CD 4J O O U C CD J2 4J •H * VJ C1J 4-1 fi (-1 4) 4J 4-1 ca H > i M TJ fi ^0 6 CÖ U CU O. en 4J C eu i-i ca > T j •H CU 3 • H cr M eu T3 • H iH CU i - l 4= • H 4J 6 C C •H •H 454 DIJKSHOORN Judging fromratesofredistributionoverdifferent plantorgansitseemsthat,here,calciumtransferis restricted by itsslowrelease totheconductingelementsof thephloem,potassium eventually assuming thedominant roleinthesecond stageoftransferwith thestreamofassimilates. SELECTIVEDISTRIBUTIONOFCATIONS Throughout thelifeoftheplantassuccessive organsdevelop,each inturnimportsfrom,orexports to,therestof theplant. Transfer ofassimilates occursvia thephloem,andastudy of iondistribution betweenorgansofallagesandclassesoffersameans ofassessing theselectivity involved inphloemtransport. Thenutritional systemdisplayedby thedeveloping potato tubermayberegarded asbeing typicalofaheterotrophic organ. Assimilates and ionicsubstancesare supplied by theautotrophic shootand this transportis mediated by thephloem. Transport continues throughout thelife-timeofthedeveloping tubers,and potassium contributes for85percent,and calcium forlessthan 5 percent,tothetotalinfluxofcations (Fig.3). Theamountofpotassium entering thetubersincreases fairlywell inproportion tothedrymatter. Theslopeof theline indicatesaconstantconcentrationof0.5me.ofpotassiumpergramdrymatter. The influxoftotalcations (C),being delegatedmainly topotassium,alsoproceedsverynearly inproportion to thedrymaterial. Theextremely lowrateof transferofcalciumsuggests that,here,exclusionofcalcium takesplaceat thesiteswherein theionsarereleased totheconductingelementsofthephloem. Further circumstantial PARTITIONOFIONIC CONSTITUENTS 455 X> 3 S-i ni M eu 0) CU 4-1 °c "D Ul coE 1_ O) _. r— ft XI •H CD r - l 60 r H 3 -H 4J 4-1 cd E •H XI o s o •ri -J > • • ^^ •H 3 4-1 i H 6 0 CO en 4-1 3 VO cd a s •i-l -M œ (U S eu M r H i H S <u u eu 0 , v _ / r-4 & o x i >> cO O 4-1 o 3 U > u o ^-> 21 X) -H P. e cd 2 4-1 s 3 3 o" CU O) o w •1-1 O) X ! X a. o x! •vT 4J cd < o o M 3 Pu -H 0 0 4-1 e o U S 3 O •<3 6 0 SE C •H i w S O O u cd -H 4-1 (30 4-1 •> CO M =1 CU X I XI CU cd X I 42 3 X 4J CU cd X „ 4-1 Ö O >, u X Pu 1 i^ U T3 o (—1 CM M-l (- l/l O fU> o en O xi 3 cd CD o "- •H 4J cd O 00 M-l O 0 > •H •s X) 3 a * u-i CU eu •H -H .H rH 3 u • H CD CU 4-1 4-1 g CU CU O C X XI X I -H 4-1 4-1 4-1 S cd CD O O 4J • H 3 O 4J cfl 4-1 O CU o 3 s 6 M cd M P U eu X! • 4-1 CD 3 H m (-1 4-1 3 X) u eu • M 4-1 0) X I 4-1 6C 4-1 3 Pu cd cd ß X) O M cd X) E o u fa 3• o iH co cd > s ^ r> !ï r H i H 4J X I "-O FÎ CO CT\ 3 U cd 3 3 oc eu i OH . X• H) r-l 3 Xi M-J •H 3 O r! cd 4J u eu o. CD H f^ „ P. 3 CO CD 4-1 E rH 3 *-' CD CU g 3 O CD S cd O s ä •H CU 4-1 4-1 r H cd 3 14-1 3 cd o Xi O 456 DIJKSHOORN support forthisviewcomesfromdataonchangeincompositionofreserveorgansduring exportofmaterialto theotherpartsoftheplants. Fig.4showstheprogressivelossindrymatter andcationsfromthemother tuberofpotatoplantsduringexporttothegrowingplant. Again,thequantity ofpotassiumvariesfairlywellinproportion tothe changeindryweightof thetuber,anddecreasesata constantrateof0.4me.pergramlossindrymatter. Inthemother tubertheothercationsalsomove inwardsviatheuptakesystem,onlyasmallproportion ofthesemoving outwardsagainbecausetheyareless readily available forreleasetothephloem thanpotassium. Asaresult,thefallinpotassium isclosely mirroredbyanincreaseinthequantity ofcalciumretainedbythetuber. Theprogressivegainincalcium andlossindrymaterialraisesthecalciumlevelfrom, initially,0.02me.per gramdrymatter,toafinal levelof1.3me.pergramdrymatter. Formagnesium, theexportisbalancedbyuptake,and itsconcentration increases inproportiontothereciprocaldryweight. Inthedaughter tuberwithpotassiumdominantin theimportofcationsviathephloem,the concentration oftotalcations,C,inthedriedmaterialremains nearlyconstant. Butinthemother tuber,wherecalcium eventually becomesdominant,thequantity oftotalcations,C, fallsatarelatively smallerratethanthedryweight. Here,theconcentrationoftotalcations,C,isincreased throughthecombined effectsofcationretentionandlossindrymaterial,fromtheinitialvalue of0.5,toafinalvalueof2me.pergramdrymatter. Investigationsoncotyledonsofsoyabeanhaverevealed asituation similar tothatofthemother tuber ofpotato. Fig.5showsthequantitiesofcationsin 457 PARTITIONOFIONICCONSTITUENTS me/200 cotyledons i 12 o I — u 10 — f -( M (V p s> C*5 O J i oO c J> (/ ô / '° c? ?" T * . — L —-c$ 4^ •'T -®- ®®3 Mg Ca n 0 4 8 12 16 gramsdm/200cotyledons FIG.5 Changeindryweightand inmilliequivalentsofcationsduring theprogressive exhaustionofsoyabeancotyledonsby thegrowing plant. Cdenotes thesumof cations. FromdataofMCALISTERand KROBER (1951). thecotyledonsforaseriesofstages,inrelationto thefallindryweightduetoexportviathephloemto thegrowingplant. Potassium isfreelyreleased,and varies inproportion tothedryweightataconstant concentrationof0.5me.pergramdrymaterial inthe residualcotyledon. Calciumandmagnesium eventually accumulategreatly inexcessoftheirinitialquantity. Withcalciumassuming thedominantrole,theconcentrationoftotalcations,C,israised from,initially, 0.8me.pergramdrymatter,toafinallevelof3me. DIJKSHOORN 458 pergramdrymatter,duetoretentionofcalciumand magnesiumand exportofdrymaterial. TRANSFERANDRETENTIONOF CARBOXYLATES meinsprouts 2 I | • A N- X 1.0 x' A / i / 1/ / ' (C-A) / / 1 2 grams dry matter FIG.6 Transfer ofendogenousnitrogen (triangles)andcarboxylate (crosses)from unplanted potato tubers todeveloping sprouts inrelation todryweightof thesprouts. Exportofcarboxylates from thepotato tuberto thesproutswasdemonstrated inthefollowingway. Tuberswere leftunplanted inthelightor inthedark, anddeveloped smallgreensprouts,orwhitelarge sprouts,respectively. Thesproutswere excised,and analyzed fornitrogenandash-alkalinity. Sincethere wasnonitrate inthetissue,thesevaluesrepresent organicnitrogenandcarboxylate content,respectively PARTITION OFIONICCONSTITUENTS 459 (vanTuiletal.1964). Thetubershadnoexternal supplyofnutrient ions. Fig.6showsthattheendogenously-supplied carboxylatesmoved into thesprouts atanetrateof0.9 me.pergramdrymatter storedby thesprouts. Accumulation ofcarboxylates inthetuber through thecombined effectofuptakeofionsfromthemedium, and export tothegrowing plant,wasshownbymeansof thefollowing experiment. Uniformly-sized seed tubers (50gramsfreshweight)wereplanted insandculture, and replicatesanalyzed forinitialcomposition. Nutrient salts,with sufficientpotassiumnitratetosupport thegrowth,wereadded tothesand. Theplanted tuberswereremovedafter 3or4weeks ofgrowth,separated fromtheplants,andanalyzed. Totalnitrogen and ash-alkalinitywerecorrected fornitratesoasto obtainnitrogenand carboxylate content (vanTuilet al. 1964). Nitratewaslowcomparedwith thatinthe plantsremoved fromthetubers. Thedryweightsandmilliequivalentspertuberare shown inFig.7. Twosetsoftuberswereused,one high innitrogen (solid triangles),theother lowin nitrogen (opentriangles). Therewasnodifferencein carboxylate content (crosses)ofthetwo. Fig. 7shows thatnitrogenwasexported atarelatively fasterratethanthedrymaterialand,consequently,theconcentrationofnitrogen intheresidual drymatter felltoaround onehalf theinitiallevel. But thenet loss incarboxylateswassmallcompared with thatofthedrymatter. Thepointsforcarboxylatefitadecrement of0.3me.pergramlossindry weightwhich isthesameasthatoftotalcationsin Fig. 4. Theretentionofcarboxylates relativetothe drymaterialraised thecarboxylate concentrationfrom itsinitialvalueof0.5 me.pergramdrymatter,toa levelof0.8me.pergramdrymatter. 460 DIJKSHOORN me. in mother tuber U me. in mother tuber li, _. . -- A / / 1*> -- J f *' / y, > / 1 —L 1 ' L \ i J j 6— \ - ^ L— / -- — S -j ! A* I! "T * A-A J I — j . . 8 .J— 10 -1 n 1 / — —— -- 12 • — 10 b — 12 16 20 grams dry matter -f- ..... I 12 16 20 grams dry matter FIG.7 Milliequivalents oforganicnitrogen (triangles)and carboxylates (crosses) inrelation todrymatter inthemother tuber ofpotatoplants,during exhaustionbythe growing plant. Notetherapid releaseofN, andretentionofcarboxylates,relativetodry matter. Thesolid trianglesrefer totubers ofhighernitrogen content. Resultsoftwo experiments. Afurtherpoint tobeconsidered istheprogressivesubstitutionofmalateforcitrateinthemother tuberwhen itsreservesareexhaustedby thegrowing plant. Citrateisthemainconstituent of thecarboxylatesbut,afterplanting,malateaccumulates steadily and citratesteadily disappears (Fig.8 ) . 461 PARTITION OF IONIC CONSTITUENTS d.t. me.intuber 3 2 J-I •"M < - / / • mal. rv y \ \ j^citr. 0.1 ^*— Y • L 8 weeks FIG. 8 Milliequivalents of citrate and malate in themother tuber of potato. The tubers were planted at zero time,and replicates harvested 4, 6 and 8weeks after planting. Column at the right of the figure gives citrate and malate in the daughter tubers of theplants. Data of JOLIVOT (1959). To test the findings some of the tubers were also analyzed for carboxylates. Their free acids were liberated by decationization, extracted with water, isolated by passing the extract through an anion exchange column, and elution of the carboxylate anions with formic acid. After evaporation to dryness invacuo, the residue was transferred to a silica gel column and submitted to quantitative partition chromatography. The procedure has been described elsewhere (Dijkshoorn and Lampe, 1962). •Ö M tu 3 Cu r t rt V n >-( • -^ q tu rt rt (D i-i " rt O rt tu M O (U l-l O4 o K r> K- en H- 0 O 1-1 (H (U cn m CL • ?ö (t> co c M rt cn O Hl rt t, O m X -o n> •i H- H (D 3 rt en O H- H- ^^ v£> 3 CL tu i-t h-"-< o H- C S CU 13 M tu rt rt rt f( CL g fu M Co rt m 10 ^M c cr 0) fini M O cn co en rt Hrt o i-h C o 3 • 3 o n o 3 H- 3 " 1-1 fu ^~s S I-! "< h- tu rt tu rt rt C C r t a* n> rt> Hrt 1 a> ro en CO ^ - N o n H^ HCL i-( v—^ O o o H- •~X e-h i-j n H O i-i t J •ö M o O O CD co r t r t en co tu tu \ — • n> en r t en co O tu v—/ H3 C CL CL XI C CC Ö o (D tu ri3 r t M tu CL O tu CD r t en O CD ( l HHC rt 3* R tu co i-( CU C o •—\ r t CO M O n> r t H - X) H - C L n> tu O 3 3 3 CO CL Xi o 4 V a HC VJ tu l-i l-i i-f o ( l r t n> M M 3 * CO CU CD en v-^ rt H - [W si X i-i H - D O r t tu s: 3 * M r r H1 O 09 ># s ^^ ^^ • < rt> 3 rt> ! ' I \ C \ *s in • 3 in co Q. 1y ®m S \S cr X i"^ k O v * 1 > V c> i > «# — \ 1 ao X s~\ i-h tt ! en ! \ O tu 1-1 o en \ a. o 3 rt CO CO \ H- rt 3* (I) rt 3* fû ri Isj M 09 0> n> a co V* Ü 462 "1 M 3 • b n // y* 'V 7 i 1r~ K) ! x CO jO X 1 1 PARTITION OF IONICCONSTITUENTS 463 TheresultsareshowninFig.9. With thereduction indryweight duetopartialexhaustionbythe growingplant,thequantity ofpotassium andofcitrate inthemother tuberdecreased. Thereisatpresentno evidenceforpotassiumbeing exported aspotassiumcitrate,and thesignificanceoftheirdecrementsbeing equalcannotyetbeassessed. Thepointsforpotassium areclosetotheproportionality linethroughtheorigin,and suggest constancy ofconcentration inthe driedmaterial. Thedisproportional slopeforcarboxylates, (C-A), showsthatalthough thequantityfalls, theconcentration inthedriedmaterialisincreased withexhaustion ofthetuber. Theincrease incarboxylateconcentration isbrought aboutbyanincreasein calcium,andmalatesubstitutes forcitrateinthe stored carboxylates. Sofar,theresults showthatdepletion ofreserves fromplant organsexogenously suppliedwith nutrient ionstendstoincrease theconcentrationof calciumandmalate,tomaintain theconcentrationof potassium,and todiminish thecitrateconcentrationin thedriedmaterialoftheorgan,and thatthischange isamanifestation ofselectivity iniontransferby thephloem. TRANSFERANDLEAF COMPOSITION Topleaveshaveatfirstanabsoluterequirement forassimilatesdonatedby theolder leaves. Theyare mainly subtainedbyphloemtransferofmaterials,and willreceiveaproportional amountofpotassiumand littlecalcium. Iftheleavesarefullyexpanded theywillprovide assimilates and ionic substances totheyounger leaves and otherorgansoftheplant. Theexportpresumably takesplaceinthephloem,whereas exogenously-supplied 464 DIJKSHOORN me./g dm 10 me/g dm 10 (a) org ^ ^oK (C-A) X ®Ca \ »(C-A) mal. citr. 0.1 I I I L _ 12 (a) (b) FIG.10 Compositionofleavesofdifferent positiononthestem. Leavesarenumbered frombase toapexof theshoot. Organic nitrogen (triangles),sumofcationsC (largecircles), potassium (smallcircles),carboxylates (crosses), malate (solid squares),calcium (encircled dots), citrate (soliddots)inionmilliequivalentsper gramofdrymaterial, tobacco,dataofVICKERY (1961). Brussels sprouts,dataofKIRKBY and DEKOCK (1965). PARTITION OF IONICCONSTITUENTS inorganic saltscontinue tomoveintotheleafviathe xylem. Potassiumbeing readily availableforexport thendistributes ratheruniformlywith thedrymatter, whereascalcium isnot re-exported andaccumulatesto higherconcentrations. Muchevidencehasaccumulated tosuggest thatthis patternofredistributiondetermines leaf composition inrelation topositiononthestem. Iftheabsorption ofcalciumisnotmuchrestricted by theselectivityof theuptakesystem intheroots,calciummay accumulate tohighconcentrations intheolderleaves. Fig.10showsdataonthecomposition ofsuccessiveleavesof twoplant species. Fromtheapex'ofthe shoottothebase,thelevelofcalcium,carboxylates (C-A),andmalate intheleavesincreases steadily, withcalciumandmalateassuming thedominant rolein themake-up of thecarboxylates inthematuredbottom leaves. Thereis,indeed,agradientakintothat foundbetween theexpanding daughter tubersand the depletedmother tuberofpotatoplants. COMPOSITION OFTRANSPORTLIQUIDS Withnutrient saltssupplied asthenitrates, chlorides,primary phosphates,and sulfates ofpotassium,sodium,magnesium and calcium insolutionculture, themedium isamixtureof inorganic,neutral salts with (C-A)zero. But thewaterdissociates and,with carbondioxide,itsuppliesH+andHCO3atlowconcentrationbut inunlimited quantity. Wholeplantanalysis,including theorganic forms ofNand Sand expressed inequivalentsof thesupplied ions,reveals theionicbalanceofuptake. Withnitrateasnitrogen source,thecerealsand grassesabsorb theanionsofthenutrient saltsgreatly inexcess 465 466 DIJKSHOORN oftheircations,anduptakeofH alongwith theexcessofanionswould beconsistentwithelectroneutrality. If,inthemedium,allthenitrate isreplacedby sulfateorchloride,theplantabsorbsmetallic cations inexcessoftheanionsofthenutrient salts,andthis excess isbalancedbyuptakeofHCO3. Ingeneraltheassumption seemsvalid forbicarbonateuptakeintheabsenceofnitrate. However, thereisevidence tosuggest caution intheapplication oftheassumptionofIF"uptake inthepresenceofnitrate. Theform theabsorbed nutrient ionsmoveviathe xylemtotheshootwasstudied inmaize. Plantsweregrownoncompletenutrient solution withnitrateandnochloride. Atanappropriate time anumberofplantsweredecapitated andexudatewas collected fromthecutstems. Themedium of theother plantswasreplaced byonecontaining additional sulfateinplaceofthenitrate. During thesubsequent period ofnitratestarvationwherein theplantsconsumed theirpoolofnitrate thathadaccumulatedunchanged inthetissues,anumberofplantsweredecapitated every fewdays,theexudate collected fora period oftwohourscentered onnoon,and theplants discarded. Measured quantitiesof theliquidsweretransferred toplatincrucibles,mixedwithash-freecellulosepowder (1.5gramsper10mlof exudate),dried on awaterbath,and ashed at500°C. The ash-alkalinity wasdetermined byadding standard acid and titrating theexcesstopH5. Testswithmixturesofauthentic saltsrevealed thattheash-alkalinity thusobtained agrees fairly PARTITION OFIONICCONSTITUENTS 467 wellwith thesumofmilliequivalents ofnitrate,bicarbonateand carboxylateanionsbalancedbymetallic cationsintheexudationliquid. Another subsampleoftheexudatewasanalyzed for nitrateanion,and subtractionof thisvaluefromthe ash-alkalinity gavethevalue formilliequivalentsof bicarbonate orcarboxylateanioninbalancewiththe metallic cations,which is (C-A)of thexylemliquid. If,withhighnitrateand lowchloridelevels, (C-A)isnegative,thereisnobicarbonate (carboxylate),andpartof theinorganic anionequivalentsA isbalancedby H+,thexylem liquid containing free mineralacid. With (C-A)zero,thetotalofmetallic cations equalsthetotalof inorganicanionsderived fromthe nutrient salts,thexylemliquid isfreefromIT*",HCO3 and carboxylateanions. Of course,withineachgroup theproportionoftheionsmaydiffer fromthatinthe mediumowing toselectiveuptake (KT1"entersfaster than Ca++andNOJfaster thanCa*"1"andNOJ faster than S0=), but thexylem liquidhas incommonwiththemediumthat itrepresentsasolutionofneutral,inorganic salts withnobicarbonates. If (C-A)ispositive,thexylemtransfersbicarbonatesorcarboxylates alongwith theinorganicsalts, theirpresencebeingdueeither touptakeofHCO3,or tometabolism ofnitratesofthemetallic cationsin therootsand subsequent releaseof theformed carboxylatestotheconducting elementsofthexylem. Resultsof theexperimentsareshowninFig.11. Withnitrate inthemedium thelevelofnitratein thezylemliquidwasabout 16me/liter,and thevalue for (C-A)waspractically zero. Whentheplantswere starved onthemedium thatcontainednonitrate,the DIJKSHOORN 468 N0 3 me./liter 20 16 12 I \ \ X X 8 X 12 16 20 (C-A) me./liter FIG.11 Changes inthelevelofnitrateand ofcarboxylates, (C-A), inxylemexudateofmaizefollowing thetransfer tonitrate-freemedium. levelofnitrate inthexylemliquid felleventually to zero,and thevaluefor (C-A)increased fromzeroto about10me./liter. Afurtherinvestigation intothenatureofthe (C-A)fractionof thexylemliquidwasmadebyisolatingtheanionsoffreshlycollected exudatesviaion exchangecolumns,and submitting themtoquantitative partition chromatography onsilicagel. Resultsare showninFig.12. Thetotalamountofcarboxylate anionsdeveloped offthesilicagelcolumnagreed fairlywellwiththe valuefor (C-A)calculated fromash-alkalinity and nitrate. 469 froetionno. FIG. 12 Integrated chromatograms of organic acids from xylem exudate of maize plants. Ordinates: quantities that have passed the column, expressed as m e . per liter exudate; abscissae: fraction number on a log scale. m = malate; c = citrate; p = phosphate, indicated by the broken terminal sections of the curves and given as trivalent. The full lines integrate the carboxylate anions of (C-A) in the exudate, when the corresponding solvents blanks (lower broken lines) are subtracted. The upper curve high in (C-A) refers to nitrate-starved plants, the lower curve low in (C-A) to plants with a continuous full supply of nitrate in the medium. 470 DIJKSHOORN Dataof thistypehave shownthelikelihood that intactplants,raised innitrate-containing medium, transferallnutrient anionsinbalancewithmetallic cationsvia theconducting elementsof thexylemtothe shoot,and thattheshootalonemakesorganicNand receivesnocarboxylates from theroots. During itsconversion allthenitratesupplied to metabolism inbalancewith themetallic cations isreplacedbycarboxylates: K ++NOJ+8H->K++OH -+ 2H20+ (NH3) C0 2 +0H~+RH•>RCOO-+H 2 0 where (NH3)denotesorganicN,andRHametabolite transformed intocarboxylate (RCOO-)bycarboxylation. Sulfatemetabolismoperatesalongasimilarformulation,but itscontribution isvery small (Dijkshoorn, 1962)and canbeneglected forthepresentconsiderations. Sinceallthenitrateentersmetabolism inbalance withmetallic cations,thecarboxylates (C-A)wouldbe expected toaccumulate inanamountequivalent toorganicN,and thiswasvalid for thepotatoplant. But maizeplantsaccumulateorganicNatmuchhigherlevels than (C-A). Onlywhen thenitratesupply isdiscontinued,organicNisdiluted toasimilar levelbythe growth (Fig.13). Butthenthecarboxylate ismade fromabsorbedbicarbonatesbycarboxylation inthe roots: K ++HC07+RH-»•K ++ RC00~+H 2 0 and isnotderived fromnitratemetabolism. Formally,itispossible toassumethat,inadditiontothenitratesofthemetallic cationsreleased PARTITION OFIONICCONSTITUENTS 471 tothexylemvessels,therootsabsorb and assimilate nitrateanionsalongwith IT1". Thiscombination yields organicNbutnocarboxylate: H ++N07+8H -y(NH3)+ 3H20 and therootscould supply theplantwith extraorganic Nthatmovesvia thexylem totheshoot. Withnitrate inthemedium,thexylemexudatewas found tocontainsome10me.perliteroforganicN. However,this isnoevidencefornitratemetabolismin theroots. Theamountreleased byexudation isonly 1percentofthetotalpooloforganicNintheroots, and itspresence intheexudatecouldmerelybedueto mobility oforganicN. Moreover,theorganicNlevel ismore than twicethelevelof (C-A),and itseems unlikely thatsomuchnitrate isabsorbed alongwithH"1" andmetabolized intheroots. Instead,thereareconstant indications thatpracticallyallthenitrate ismetabolized intheleaves. Thiswouldmeanthatmetabolism provides alargeexcess ofcarboxylates over thepoolnormally retainedbythe plantas (C-A),and thatthisexcess iscontinuously removed during growthand ionutilization. Themainpathwaybywhich carboxylates canescape istheconducting systemofthephloemwhichtranslocatespotassium carboxylate alongwith thecarbohydrates andaminoacids totheroots (PeelandWeatherley, 1959). Oncereceived bytheroots,thecarboxylates canfunctionastheendogenous sourceofHCOJbydecarboxylation,and ofexogenousNOJbyanionexchange,nitrateinthemediumbeingreplaced bybicarbonateand potassium carboxylate intherootsbypotassiumnitrate, thelatterbeing released tothexylemand transferred totheshoot formetabolism. 472 DIJKSHOORN g d.m. per plant FIG.13 Accumulationoforganicnitrogen (No)and carboxylates (C-A)inrelation tothedry matterduringthegrowthofmaizeplants. (a) plantsstarved ofnitrate inanearlystage ofgrowth. At1.3 gramsdrymatterthe mediumwasagainreplacedbyonecontaining nitrate. PARTITION OFIONIC CONSTITUENTS 473 gdm.perplant 7 8 9 10 me.perplant FIG.13 (cont.) (b) plantssuppliedwithnitrateduring earlygrowth. Atalevelof1.3 gramsdrymatter,thenitrate inthemediumwasreplaced byadditionalsulfate. Itwasnotuntil thenitrateinthetissueswas exhausted that synthesisoforganicNstopped. Values inmilliequivalents and ingramsdry matterperwholeplant. Thestraightbroken lines indicate concentrations at0.5,1.0and 2.0me./g d.m., respectively. Filledsymbols: nonitrate inthesupply;opensymbols:medium containingnitrateasnitrogensource. 474 DIJKSHOORN Insuchasituation theshootexportspotassium carboxylate totheroots,and thelatter exportspotassiumnitrate inturntotheshoot,withalimited poolofK"*"thatcirculatesdownward inthephloemas carboxylate,andupward inthexylemasnitrate. Thispicture forthecompleteplant thataccumulatesorganicNinexcessover (C-A)givesthebest measureofagreementwiththeevidence. Attempts tocollectphloemsapwereunsuccessful. Instead,testswerecarriedoutonthecompositionof honeydewfromaphidsfeedingontheleavesofmaize plants. TheratioofKtoCawasabout40. Ash-alkalinity and chromatograms showed thatavariety ofcarboxylatesoccurred asthemajor saltatalevelof around 1.5me.pergramdrymaterial. Inmaizethe carboxylatecontentofhoneydewwaslittle influenced bysubstitutionofsulfatefornitrate inthemedium, and thelevelof (C-A)intheplantmaterialalsoremained unchanged (Fig.13). Inwheat plants,thevalue for (C-A)inthetissuesand inthehoneydewwasreduced toonehalf thevalue fortheplants receiving nitrate. Fromdataofthetypereported inthepresent communicationonlyqualitativeevidence isobtained. Unfortunately,there isasyetnodatafrommoredirect approaches thatcouldbeinterpreted intermsofrates oftranslocation. ACKNOWLEDGEMENTS Theauthorgratefully acknowledges financialassistance fromtheCommissiesvoor Bijstand inzakehet Stikstof-enKali-onderzoek. Healsowishestothank Mrs. Drs.J.Jonker-Smid andMr.J.E.M.Lampe forhelpfulcooperation. PARTITIONOFIONICCONSTITUENTS 475 REFERENCES 1. DIJKSHOORN,W. (1962)Metabolic regulationofthe alkaline effectofnitrateutilization inplants. Nature 194:165-167. 2. DIJKSHOORN,W.andLAMPE,J.E.M. (1962)Theseparationoforganic acidsfrom Lolium perenne L. Jaarboek I.B.S. 3. 1962: 135-139. DIJKSHOORN,W.andLAMPE,J.E.M. (1962)Partition chromatography oftheorganicacidsof Lolium perenne L. onsilicagelcolumns. Jaarboek 1962: 141-148. I.B.S. 4. DIJKSHOORN,W.,LATHWELL,J.D. andDEWIT,C.T. (1968)Temporalchanges incarboxylatecontent with stepwisechange innutrition. Plant Soil 29: 369-390. 5. HAGEMANN,C. (1961)Mineralstoffernährungund MineralstoffumsatzderKartoffel. Kuhn Archiv 225-258. 6. J0LIV0T,M.E. (1959)Variationsdesacidesorganiquesdansletuberculedesemencedepommede terreaucoursdesaconservationhivernaleet aprèsplantation. C.R. Aaad. Soi. Paris 248: 3208-3210. 7. KIRKBY,E.A.andDEKOCK,P.C. (1965)Influenceof ageonthecation-anionbalance inBrussels sprouts. Z. Pflanzenern. Düngung Bodenk. 197-203. 8. McALISTER,D.F.andKROBER,0. (1951)Translocationof food reserves fromsoybean cotyledons and theirinfluenceonthedevelopment ofthe Ill: 78: 476 DIJKSHOORN plant. Plant Physiol. 9. 26:525-538. PEEL,A.J.andWEATHERLEY,P.E. (1959)Composition ofsievetubesap. Nature 184: 1955-1966. 10. VANTUIL,H.D.W.,LAMPE,J.E.M,andDIJKSHOORN,W. (1964)Thepossibility ofrelating ash-alkalinity to theorganic saltcontent. Jaarboek I.B.S. 1964: 157160. 11. VICKERY,H.B. (1961)Chemical investigationsof thetobaccoplantXI.Compositionofthegreen leaf inrelation topositiononthestalk. Conneot. Agrio. Res. Sta. Bull. 640 (1961).
© Copyright 2026 Paperzz