ESSENTIALS OF GLYCOBIOLOGY LECTURE 4 MONOSACCHARIDE METABOLISM AND SUGAR NUCLEOTIDE TRANSPORTERS Hud Freeze INTRODUCTION •Traditional Approach--Study the enzymes and substrates in cells •Holistic Approach--Add homeostasis and disease considerations •Glucose is the central player, but not the only player •Monosaccharides = sugars First Principles •Meet the players •Source of sugars: •Transport into cells •salvage them •make them in cells •Activate the sugars •Deliver activated sugars to the proper location Xyl GlcA Sia GlcNAc GalNAc Fuc Gal Glc Glc Man Fru-6-P THE SUGAR LEAGUE THREE WAYS TO ACTIVATE A SUGAR NTP PPi 1. Sugar + ATP 2. Sugar(A)-NDP Sugar-P Sugar-NDP Sugar(B)-NDP 3. Sugar(A)-NDP + Sugar(B)-1-P Sugar(B)NDP + Sugar(A)-1-P Activated Sugar Donors Sugar Activated Form Glc Gal GlcNAc UDP-Sugar GalNAc GlcA Xyl Man Fuc Sia GDP-Sugar CMP-Sia MONOSACCHARIDE TRANSPORTERS Type Primary Location Km (Glucose) (mM) Ion Coupled (Na+/glucose) Epithelial C ells SGLT 1 Small intestine 0.1 - 0.8 Some kidney SGLT 2 Kidney co rtex 1.6 Facilitated diffusion GLUT 1 Erythrocytes, blood tissue barrier 5 GLUT 2 Liver, small intestine 6-12 GLUT 3 Neurons, p lacenta 1-2 GLUT 4 Adipose tissue, skeletal muscl e, insulin regulated GLUT 5 Small intestine GLUT 7 Microsomal ? Glc from ER Man Many cell types Fuc Several cell ty pes 5 6 (Fructose) 30-70 µM (Mannose) ~250 µM (Fucose) Isoform Main Tissue Localization Functional Characteristics (Transport) GLUT1 Erythrocytes, brain, ubiquitous Glucose GLUT2 Liver, pancreas, intestine, kidney Glucose (low affinity); Fructose GLUT3 Brain Glucose (high affinity) GLUT4 Heart, muscle, adipose tissue, brain Glucose (high affinity) GLUT5 Intestine, testes, kidney Fructose; Glucose (very low affinity) GLUT6 Brain, spleen, leucocytes Glucose GLUT7 n.d. n.d. GLUT8 Testes, brain and other tissues Glucose GLUT9 Liver, kidney n.d. GLUT10 Liver, pancreas Glucose GLUT11 Heart, muscle Glucose (low affinity); Fructose (long form) GLUT12 Heart, prostate, muscle, small intestine, adipose tissue n.d. GLUT13 Testes specific n.d. GLUT14 Brain H+–myo–inositol * * GLUT11 occurs in two splice variants: a short from (low-affinity glucose transport and a long form (which may be a fructose transporter). Facilitated Diffusion Transporter Topology and Signature Motifs N GR Y G w G G P GRK Y E RG PESPRYL ERVGRR PETKG E NH2 COOH Human Hexose Facilitated Diffusion Transporters SPECIFICITY NAME LOCALIZATION GLUT1 erythrocytes, brain GLUT4 muscle, fat, heart GLUT3 brain, testis, ovary GLUT14 testis glucose/fructose liver, islets GLUT2 GLUT8 GLUT6 blastocysts, brain, testis spleen, leukocytes, brain GLUT10 liver, pancreas H+-myo-inositol fructose GLUT12 heart, prostate HMIT brain GLUT5 Intestine, testis, kidney GLUT9 liver, kidney GLUT11 heart, muscle Figure 6: Mannose flux in cells. M * ER * M M M M LYS M * M M M G M M * M * M M M M GDP-M M M Gl6P M1P EXTRACELLULAR FLUID fructose Gl glucose M1P mannose-1-p M6P mannose-6-p F6P fructose-6-p Gl6P glucose-6-p M M F Gl M F Gl GUT Gl F M M Gl F F Gl M distal modification transport process enzymatic activity transporter F6P M6P CELL F * M * mannose GDP-M GDP-mannose protein M M M Gl Evidence Favoring Carbohydrate Salvage Pathways Amino Sugars >50% of label reused for new glycoconjugates (GalNAc, GlcNAc) ~70% of 3H-GlcNAc incorporated into sugar nucleotides in rat liver ~30% of 3H-GlcN iv injected into rats is incorporated into plasma glycoproteins 20-30% Sialic acids recycled in some cells GlcNAc/ManNAc kinase present in many tissues GalNAc-1-kinase distinct from Gal-1-kinase Hexose and Fucose Mannose transporter, uses physiological concentrations of M annose Cells lacking UDP-Gal-4-epimerase can use serum OVERVIEW OF SUGAR METABOLISM IN CELLS Glycolysis Gal Glc ATP Man GlcNAc ATP ATP Pi Gal-1-P Glycogen Glc-6-P Man-6-P Fru-6-P NAD UDP-Glc NAD + UDP-GlcA GlcN-6-P Glc-1-P AcCoA GTP GlcNAc-6-P GDP-Man Dol-P ATP Man-l-P Dol-P-Glc NADP -CO2 GlcNAc-l-P GalNAc GalNAc-1-P Dol-P GDP-Fuc UTP UDP-Xyl ATP Fuc-1-P -NH3 Glutamine UTP UDP-Glc UDP-Gal Fuc UTP Dol-P-Man UDP-GalNAc UDP- GlcNAc ManNAc ATP CMP-Neu5Ac ManNAc-6-P PEP NADP CMP-Neu5Ac CTP Neu5Ac Neu5Ac-9-P GTP Remember: 1. Glucose is central 2. Pathways not = in all cel 3. Map is 2-D, not 3-D Glycolysis Gal Glc ATP Man GlcNAc ATP ATP Pi Gal-1-P Glycogen Glc-6-P Man-6-P Fru-6-P Fuc-1-P -NH3 Glutamine UTP UDP-Glc UDP-Gal Fuc NAD UDP-Glc NAD + UDP-GlcA GlcN-6-P Glc-1-P AcCoA GTP GlcNAc-6-P GDP-Man Dol-P ATP Man-l-P Dol-P-Glc NADP -CO2 GalNAc GalNAc-1-P GDP-Fuc UTP UDP-Xyl ATP Dol-P GlcNAc-l-P UTP Dol-P-Man UDP-GalNAc UDP- GlcNAc ManNAc ATP CMP-Neu5Ac ManNAc-6-P PEP NADP CMP-Neu5Ac CTP Neu5Ac Neu5Ac-9-P Biosynthesis and Interconversion o f Monosaccharides. The relative contributions of each und er phys iolog ical cond it ions are unknown. - monos accharides; -control points and - donors; GTP Glycolysis Gal Glc ATP Man GlcNAc ATP ATP Pi Gal-1-P Glycogen Glc-6-P Man-6-P Fru-6-P NAD UDP-Glc NAD + UDP-GlcA GlcN-6-P Glc-1-P AcCoA GTP GlcNAc-6-P GDP-Man Dol-P ATP Man-l-P Dol-P-Glc NADP -CO2 GlcNAc-l-P GalNAc GalNAc-1-P Dol-P GDP-Fuc UTP UDP-Xyl ATP Fuc-1-P -NH3 Glutamine UTP UDP-Glc UDP-Gal Fuc UTP Dol-P-Man UDP-GalNAc UDP- GlcNAc ManNAc ATP CMP-Neu5Ac ManNAc-6-P PEP NADP CMP-Neu5Ac CTP Neu5Ac Neu5Ac-9-P GTP Glycolysis Gal Glc ATP Man GlcNAc ATP ATP Pi Gal-1-P Glycogen Glc-6-P Man-6-P Fru-6-P Fuc-1-P -NH3 Glutamine UTP UDP-Glc UDP-Gal Fuc NAD UDP-Glc NAD + UDP-GlcA GlcN-6-P Glc-1-P AcCoA GTP GlcNAc-6-P GDP-Man Dol-P ATP Man-l-P GTP Dol-P-Glc NADP -CO2 GlcNAc-l-P GalNAc GalNAc-1-P GDP-Fuc UTP UDP-Xyl ATP Dol-P UTP Dol-P-Man UDP-GalNAc UDP- GlcNAc ManNAc ATP CMP-Neu5Ac ManNAc-6-P PEP NADP CMP-Neu5Ac CTP Neu5Ac Neu5Ac-9-P Galactosemia is caused by a Failure in Gal-1-P:UDP-Glc Uridyl transferase A. GDP-Man GDP-Fuc - Three reactions, two enzymes: GDP-Man 4,6 dehydratase and GDP-keto-6-deoxymannose 3,5 epimerase/4-reductase GALACTOSE ACTIVATION USES ALL THE OPTIONS GDP-(D)-mannose GDP-4-keto, 6-deoxy (D)-mannose CH2OH O O OH HO O O O NADP H GDP GDP CH3 O OH HO 1. Sugar + ATP NADP+ 2. Sugar(A)-NDP Sugar-P O CH3 HO O NADP H OH GDP CH2OH CH2OH O O OH H H + NAD H O OH UDP-Glc O NADP+ OH GDP Sugar(B)NDP + Sugar(A)-1-P UDP-Gal - Single enzyme: UDP-Gal-4-epimerase B. UDP-Glc HO Sugar-NDP GDP-keto-6-deoxy mannose 3,5 ep imerase/4-reductase 3. Sugar(A)-NDP + Sugar(B)-1-P H HO OH Sugar(B)-NDP GDP-M an 4,6 dehy dratase H GDP-(L)-fucose NTP PPi CH3 O HO GDP-4-keto, 6-deoxy-(L)-glucose UDP NADH + H+ +O H OH CH2OH H + NAD H O H HO UDP OH (4-keto intermediate) H O H H OH H H OH O UDP-Gal UDP GALACTOSE METABOLISM Galactosemia UDP-Glc + Gal-1-P X Glc-1-P + UDP-Gal Inability to metabolize Galactose--potentially lethal Treatment: Galactose restricted diet Even with proper diet: patients have dyspraxic speech, ovarian failure, poor growth, neurological impairment Knockout mouse does not have disease phenotype! Other genes important Glycolysis Gal Glc ATP Man GlcNAc ATP ATP Pi Gal-1-P Glycogen Glc-6-P Man-6-P Fru-6-P Fuc-1-P -NH3 Glutamine UTP UDP-Glc UDP-Gal Fuc NAD UDP-Glc NAD + UDP-GlcA GlcN-6-P Glc-1-P AcCoA GTP GlcNAc-6-P GDP-Man Dol-P ATP Man-l-P GTP Dol-P-Glc NADP -CO2 GlcNAc-l-P GalNAc GalNAc-1-P GDP-Fuc UTP UDP-Xyl ATP Dol-P UTP Dol-P-Man UDP-GalNAc UDP- GlcNAc ManNAc ATP CMP-Neu5Ac Mannose supplements can treat a human disorder: Fru-6-P-->Man-6-P ManNAc-6-P PEP NADP CMP-Neu5Ac CTP Neu5Ac Neu5Ac-9-P Biosynthesis and Interconversion o f Monosaccharides. The relative contributions of each und er phys iolog ical cond it ions are unknown. - monos accharides; -control points and - donors; Glycolysis Gal Glc ATP Man GlcNAc ATP ATP Pi Gal-1-P Glycogen Glc-6-P Man-6-P Fru-6-P Fuc-1-P -NH3 Glutamine UTP UDP-Glc UDP-Gal Fuc NAD UDP-Glc NAD + UDP-GlcA GlcN-6-P Glc-1-P AcCoA GTP GlcNAc-6-P GDP-Man Dol-P ATP Man-l-P GTP Dol-P-Glc NADP -CO2 GlcNAc-l-P GalNAc GalNAc-1-P GDP-Fuc UTP UDP-Xyl ATP Dol-P UTP Dol-P-Man UDP-GalNAc UDP- GlcNAc ManNAc ATP CMP-Neu5Ac ManNAc-6-P PEP NADP CMP-Neu5Ac CTP Neu5Ac Neu5Ac-9-P Oral fucose supplements used to treat a human genetic disorder A. GDP-Man GDP-Fuc - Three reactions, two enzymes: GDP-Man 4,6 dehydratase and GDP-keto-6-deoxymannose 3,5 epimerase/4-reductase GDP-mannose GDP-4-keto, 6-deoxy-mannose CH 2OH GDP-4-keto, 6-deoxy-glucose CH 3 O O O + NAD P OH HO HO GDP-fucose O NAD PH O O OH HO CH 3 O O CH 3 HO O GDP GDP-Man 4,6 dehydratase OH O OH NAD PH GDP GDP GDP-keto-6-deoxymannose 3,5 epimerase/4-reductase HO + NAD P OH GDP Glycolysis Gal Glc ATP Man GlcNAc ATP ATP Pi Gal-1-P Glycogen Glc-6-P Man-6-P Fru-6-P NAD UDP-Glc NAD + UDP-GlcA GlcN-6-P Glc-1-P AcCoA GTP GlcNAc-6-P GDP-Man Dol-P ATP Man-l-P Dol-P-Glc NADP -CO2 GlcNAc-l-P GalNAc GalNAc-1-P Dol-P GDP-Fuc UTP UDP-Xyl ATP Fuc-1-P -NH3 Glutamine UTP UDP-Glc UDP-Gal Fuc UTP Dol-P-Man UDP-GalNAc UDP- GlcNAc ManNAc ATP CMP-Neu5Ac ManNAc-6-P PEP NADP CMP-Neu5Ac CTP Neu5Ac Neu5Ac-9-P GTP Glycolysis Gal Glc ATP Man GlcNAc ATP ATP Pi Gal-1-P Glycogen Glc-6-P Man-6-P Fru-6-P NAD UDP-Glc NAD + UDP-GlcA GlcN-6-P Glc-1-P AcCoA GTP GlcNAc-6-P GDP-Man Dol-P ATP Man-l-P Dol-P-Glc NADP -CO2 GlcNAc-l-P GalNAc GalNAc-1-P Dol-P GDP-Fuc UTP UDP-Xyl ATP Fuc-1-P -NH3 Glutamine UTP UDP-Glc UDP-Gal Fuc UTP Dol-P-Man UDP-GalNAc UDP- GlcNAc ManNAc ATP CMP-Neu5Ac ManNAc-6-P PEP NADP CMP-Neu5Ac CTP Neu5Ac Neu5Ac-9-P GTP Glycolysis Gal Glc ATP Man GlcNAc ATP ATP Pi Gal-1-P Glycogen Glc-6-P Man-6-P Fru-6-P Fuc-1-P -NH3 Glutamine UTP UDP-Glc UDP-Gal Fuc NAD UDP-Glc NAD + UDP-GlcA GlcN-6-P Glc-1-P AcCoA GTP GlcNAc-6-P GDP-Man Dol-P ATP Man-l-P GTP Dol-P-Glc NADP -CO2 GlcNAc-l-P GalNAc GalNAc-1-P GDP-Fuc UTP UDP-Xyl ATP Dol-P UTP Dol-P-Man UDP-GalNAc UDP- GlcNAc ManNAc ATP CMP-Neu5Ac ManNAc-6-P PEP NADP CMP-Neu5Ac CTP Neu5Ac Neu5Ac-9-P UDP-GlcNAc epimerase/kinase Defective in two human diseases Are the enzymes and substrates in the cytosol really “soluble”? Glycolysis Gal Glc ATP Man GlcNAc ATP ATP Pi Gal-1-P Glycogen Glc-6-P Man-6-P Fru-6-P Fuc-1-P -NH3 Glutamine UTP UDP-Glc UDP-Gal Fuc NAD UDP-Glc NAD + UDP-GlcA GlcN-6-P Glc-1-P AcCoA GTP GlcNAc-6-P GDP-Man Dol-P ATP Man-l-P GTP Dol-P-Glc NADP -CO2 GlcNAc-l-P GalNAc GalNAc-1-P GDP-Fuc UTP UDP-Xyl ATP Dol-P UTP Dol-P-Man UDP-GalNAc UDP- GlcNAc ManNAc ATP CMP-Neu5Ac ManNAc-6-P PEP NADP CMP-Neu5Ac CTP Neu5Ac Neu5Ac-9-P Fru-6-P is the only freely soluble glycolytic intermediate If all the sugars can be inter-converted, how can you follow just one? Glycolysis Gal Glc ATP Man GlcNAc ATP ATP Pi Gal-1-P Glycogen Glc-6-P Man-6-P Fru-6-P NAD UDP-Glc NAD + UDP-GlcA GlcN-6-P Glc-1-P AcCoA GTP GlcNAc-6-P GDP-Man Dol-P ATP Man-l-P Dol-P-Glc NADP -CO2 GlcNAc-l-P GalNAc GalNAc-1-P Dol-P GDP-Fuc UTP UDP-Xyl ATP Fuc-1-P -NH3 Glutamine UTP UDP-Glc UDP-Gal Fuc UTP Dol-P-Man UDP-GalNAc UDP- GlcNAc ManNAc ATP CMP-Neu5Ac ManNAc-6-P PEP NADP CMP-Neu5Ac CTP Neu5Ac Neu5Ac-9-P GTP Remains as [2-3H]Mannose [2-3H]Man PO4 PO4 OH PMI O HO HO TRICKS OF THE TRADE G6P O HO HO OH 3H OH OH [2-3H]M6P H2O 3HOH F6P PMM [2-3H]M1P Glycolysis Glycoproteins Remains as [4-3H]Galactose UDP-Gal - Single enzyme: UDP-Gal-4-epimeras e B. UDP-Glc CH 2OH H HO O H OH H CH 2OH O H + NAD H O OH UDP-Glc UDP NADH + H+ +O H OH CH 2OH H + NAD H O H HO UDP OH (4-keto intermediate) H O H OH H H OH H O UDP-Gal UDP Glycolysis Gal Glc ATP Man GlcNAc ATP ATP Pi Gal-1-P Glycogen Glc-6-P Man-6-P Fru-6-P NAD UDP-Glc NAD + UDP-GlcA GlcN-6-P Glc-1-P AcCoA GTP GlcNAc-6-P GDP-Man Dol-P ATP Man-l-P Dol-P-Glc NADP -CO2 GlcNAc-l-P GalNAc GalNAc-1-P Dol-P GDP-Fuc UTP UDP-Xyl ATP Fuc-1-P -NH3 Glutamine UTP UDP-Glc UDP-Gal Fuc UTP Dol-P-Man UDP-GalNAc UDP- GlcNAc ManNAc ATP CMP-Neu5Ac ManNAc-6-P PEP NADP CMP-Neu5Ac CTP Neu5Ac Neu5Ac-9-P GTP Some Control Points for Sugar Nucleotide Synthesis Enzyme Inhibitor UDP-Glc dehydrogenase UDP-Xyl GDP-Man 4,6-dehyd ratase GDP-Fuc Glutamine:fructose-6-P acetyltransferase UDP-GlcNAc UDP-GlcNAc epimerase/kinase CMP-Sia Glycolysis Gal Glc ATP Man GlcNAc ATP ATP Pi Gal-1-P Glycogen Glc-6-P Man-6-P Fru-6-P NAD UDP-Glc NAD + UDP-GlcA GlcN-6-P Glc-1-P AcCoA GTP GlcNAc-6-P GDP-Man Dol-P ATP Man-l-P Dol-P-Glc NADP -CO2 GlcNAc-l-P GalNAc GalNAc-1-P Dol-P GDP-Fuc UTP UDP-Xyl ATP Fuc-1-P -NH3 Glutamine UTP UDP-Glc UDP-Gal Fuc UTP GTP ?’s Dol-P-Man UDP-GalNAc UDP- GlcNAc ManNAc ATP CMP-Neu5Ac ManNAc-6-P PEP NADP CMP-Neu5Ac CTP Neu5Ac Neu5Ac-9-P These are the Major Leaguers, how about life in the Minors? BIOSYNTHESIS OF UNUSUAL SUGARS KDN--2-keto-3-deoxy-D-glycero-D-galactonononic acid a sialic acid analog found mostly in fish eggs Man--->Man-6-P---> KDN---> CMP-KDN + + PEP CTP Glycoproteins, glycolipids Galactofuranose--Galf, found in bacteria and lower eukaryotes UDP-Galp---->UDP-Galf----> Glycoconjugates mutase Galactofuranosyl transferases SYNTHESIS OF DOLICHYL PHOSPHATE QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. From: Schenk et al Glycobiol 11, 61R, 2001 All of the precursors are made in the cytoplasm or nucleus-BUT, most glycoconjugates are made in the Golgi or ER Glycolysis Gal Glc ATP Man GlcNAc ATP ATP Pi Gal-1-P Glycogen Glc-6-P Man-6-P Fru-6-P NAD UDP-Glc NAD + UDP-GlcA GlcN-6-P Glc-1-P AcCoA GTP GlcNAc-6-P GDP-Man Dol-P ATP Man-l-P Dol-P-Glc NADP -CO2 GlcNAc-l-P GalNAc GalNAc-1-P Dol-P GDP-Fuc UTP UDP-Xyl ATP Fuc-1-P -NH3 Glutamine UTP UDP-Glc UDP-Gal Fuc UTP Dol-P-Man UDP-GalNAc UDP- GlcNAc ManNAc ATP CMP-Neu5Ac ManNAc-6-P PEP NADP CMP-Neu5Ac CTP Neu5Ac Neu5Ac-9-P GTP : Nucleotide Transport in Golgi & ER Nucleotide ER Golgi CMP - Sia - +++ GDP - Fuc - ++++ UDP - Gal - ++++ PAPS - ++++ GDP - Man - ++++ UDP - GlcNAc ++ ++++ UDP - GalNAc ++ ++++ UDP - Xyl ++ ++++ ATP +++ ++++ UDP - GlcA ++++ ++++ UDP - Glc ++++ + TRANSPORTERS IN THE GOLGI Mammals PAP S AT P Mammals AMP o r AD P ? Pi Leishmania Mammals Yeast UDP-Galactos e Mammals, yeast UDP N-Acetylglucosamin e Pi Mammals UDP N-Acetylgalactosamin UMP -2 CMPSialic Aci d CMP Mammals GMP GDP-Fucos e Mammals GDPMannos e Leishmania Yeast e Mammals, Plants UDP-Glucos e UDP-Xylos e Mammals UDPGlucuronic Aci d Ma m m a l s Freeze: 6.3 TRANSPORTERS IN THE ENDOPLASMIC RETICULUM ? HOW IT WORKS TRANSPORTERS: A FAMILY IN LOVE WITH ITS MEMBRANES DONORS AND CARRIERS FOR GLYCAN MODIFICATIONS MODIFICATION Phosphate Sulfate Methyl Acetyl Pyruvate Acyl Succinyl PRECURSOR TRANSPORTER ATP PAPS AdoMet Acetyl-CoA PEP Acyl-CoA (?) Succinyl-CoA (?) Yes Yes ? Yes ? ? ? SUMMARY AND TAKE HOME MESSAGES Glucose can be made into all sugars (monosaccharides) All sugars require activation and most require transport of the activated forms Transporters deliver the sugars to cells Salvaged and imported sugars can contribute to glycoconjugate synthesis The relative contributions of each source may be cell/tissue specific Some disorders in sugar metabolism can be treated with dietary modifications Hard to know specificity of sugar nucleotide and monosaccharide transporters Sugar is good for you---mostly
© Copyright 2025 Paperzz