Advanced Digital Signal Processing Prof. Nizamettin AYDIN [email protected] http://www.yildiz.edu.tr/~naydin 1 Fourier Series Coefficients 2 • Work with the Fourier Series Integral ak 1 T0 T0 x ( t )e j ( 2 k / T0 ) t dt 0 • ANALYSIS via Fourier Series – For PERIODIC signals: x(t+T0) = x(t) – Spectrum from the Fourier Series 3 HISTORY • Jean Baptiste Joseph Fourier – 1807 thesis (memoir) • On the Propagation of Heat in Solid Bodies – Heat ! – Napoleonic era • http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Fourier.html 4 5 SPECTRUM DIAGRAM • Recall Complex Amplitude vs. Freq 1 2 X 4e * k j / 2 –250 7e j / 3 10 7e Xk Ake –100 N x(t ) Xa0 { aXkk e k 1 4e j k 0 1 2 j / 3 100 j 2 f k t 1 2 1 2 X k ak j / 2 250 * j 2 f k t aXkk e f (in Hz) 6 Harmonic Signal x (t ) ak e j 2 k f 0 t k PERIOD/FREQUENCY of COMPLEX EXPONENTIAL: 2 2 f 0 0 T0 1 or T0 f0 7 Fourier Series Synthesis x (t ) ak e j 2 k f 0 t k ak X k Ak e 1 2 1 2 j k N x (t ) A0 Ak cos( 2 kf0t k ) k 1 X k Ak e j k COMPLEX AMPLITUDE 8 Harmonic Signal (3 Freqs) a1 a3 a5 T = 0.1 9 SYNTHESIS vs. ANALYSIS • SYNTHESIS – Easy – Given (k,Ak,fk) create x(t) • Synthesis can be HARD – Synthesize Speech so that it sounds good • ANALYSIS – Hard – Given x(t), extract (k,Ak,fk) – How many? – Need algorithm for computer 10 STRATEGY: x(t) ak • ANALYSIS – Get representation from the signal – Works for PERIODIC Signals • Fourier Series – Answer is: an INTEGRAL over one period ak 1 T0 T0 x (t )e j0k t dt 0 11 INTEGRAL Property of exp(j) • INTEGRATE over ONE PERIOD T0 e 0 T0 e 0 T0 T0 j ( 2 / T0 ) m t dt e j 2 m 0 T0 j 2 m (e 1) j 2 m j ( 2 / T0 ) m t j ( 2 / T0 ) m t dt 0 2 0 T0 m0 12 ORTHOGONALITY of exp(j) • PRODUCT of exp(+j ) and exp(-j ) 0 k 1 j ( 2 / T0 ) t j ( 2 / T0 ) kt e e dt T0 0 1 k T0 T0 1 j ( 2 / T0 )( k ) t e dt T0 0 13 Isolate One FS Coefficient x (t ) ak e j ( 2 / T0 ) k t k T0 1 T0 x (t )e j ( 2 / T0 ) t 0 1 T0 T0 j ( 2 / T0 ) t j ( 2 / T ) k t j ( 2 / T ) t 1 e 0 0 a x ( t ) e dt a e dt k T0 k 0 0 Integral is zero T0 1 T0 dt j ( 2 / T0 ) k t j ( 2 / T0 ) t e ak e dt k 0 T0 ak T0 1 T0 j ( 2 / T0 ) k t x ( t ) e dt except for k 0 14 SQUARE WAVE EXAMPLE 1 0 t 12 T0 x (t ) 1T t T 0 2 0 0 for T0 0.04 sec. x(t) 1 –.02 0 .01 .02 0.04 t 15 FS for a SQUARE WAVE {ak} 1 ak T0 T0 x (t )e j ( 2 / T0 ) kt dt ( k 0) 0 .02 .02 1 j ( 2 / .04) kt j ( 2 / . 04 ) kt 1 ak 1 e dt e .04( j 2 k / .04) 0 .04 0 1 1 ( 1) j ( ) k (e 1) ( j 2 k ) j 2 k k 16 DC Coefficient: a0 1 ak T0 1 a0 T0 T0 x (t )e j ( 2 / T0 ) kt ( k 0) dt 0 T0 1 x(t )dt T0 ( Area ) 0 .02 1 1 a0 1 dt (.02 0) .04 0 .04 1 2 17 Fourier Coefficients ak • ak is a function of k – Complex Amplitude for k-th Harmonic – This one doesn’t depend on the period, T0 1 j k k 1 ( 1) ak 0 j 2 k 1 2 k 1,3, k 2,4, k 0 18 Spectrum from Fourier Series 0 2 /( 0.04) 2 (25) j k ak 0 12 k 1,3, k 2,4, k 0 19 Fourier Series Integral • HOW do you determine ak from x(t) ? ak T0 1 T0 x (t )e 0 a0 T0 1 T0 j ( 2 / T0 ) k t dt Fundamenta l Frequency f 0 1 / T0 x(t )dt * ak ak when x(t ) is real (DC component) 0 20 Fourier Series & Spectrum 21 Example x (t ) sin (3 t ) 3 j j 9 t 3 j j 3 t 3 j j 3 t j j 9 t x ( t ) e e e e 8 8 8 8 22 Example x (t ) sin (3 t ) 3 j j 9 t 3 j j 3 t 3 j j 3 t j j 9 t x ( t ) e e e e 8 8 8 8 In this case, analysis just requires picking off the coefficients. k 3 ak k 1 k 1 k 3 23 STRATEGY: x(t) ak • ANALYSIS – Get representation from the signal – Works for PERIODIC Signals • Fourier Series – Answer is: an INTEGRAL over one period ak 1 T0 T0 x (t )e j0k t dt 0 24 FS: Rectified Sine Wave {ak} T0 1 ak T0 ak j ( 2 / T0 ) kt x ( t ) e dt (k 1) 0 Half-Wave Rectified Sine T0 / 2 j ( 2 / T0 ) kt 2 sin( t ) e dt T 1 T0 0 0 T0 / 2 1 T0 0 e j ( 2 / T0 ) t e j ( 2 / T0 ) t j ( 2 / T0 ) kt e dt 2j T0 / 2 1 j 2T0 e j ( 2 / T0 )(k 1) t dt T0 / 2 1 j 2T0 0 e j ( 2 / T0 )( k 1) t e j ( 2 / T0 )(k 1) t dt 0 T0 / 2 j 2T0 ( j ( 2 / T0 )( k 1)) 0 e j ( 2 / T0 )( k 1) t T0 / 2 j 2T0 ( j ( 2 / T0 )( k 1)) 0 25 FS: Rectified Sine Wave {ak} ak e j 2T0 ( j ( 2 / T0 )( k 1)) 1 4 ( k 1) 1 4 ( k 1) T0 / 2 j ( 2 / T0 )( k 1) t e e k 1 ( k 1) 4 ( k 2 1) 0 j ( 2 / T0 )( k 1)T0 / 2 j ( k 1) e j ( 2 / T0 )( k 1) t j 2T0 ( j ( 2 / T0 )( k 1)) 0 1 4 (1k 1) e j ( 2 / T0 )( k 1)T0 / 2 1 1 4 (1k 1) e j ( k 1) 1 0 1 k (1) 1 ?j 4 1 ( k 2 1) T0 / 2 k odd k 1 k even 26 Fourier Coefficients ak • ak is a function of k – Complex Amplitude for k-th Harmonic – This one doesn’t depend on the period, T0 1 j k k 1 ( 1) ak 0 j 2 k 1 2 k 1,3, k 2,4, k 0 27 Fourier Series Synthesis • HOW do you APPROXIMATE x(t) ? ak T0 1 T0 x (t )e j ( 2 / T0 ) k t dt 0 • Use FINITE number of coefficients x (t ) N ak e j 2 k f 0 t ak ak* when x(t ) is real k N 28 Fourier Series Synthesis 29 Synthesis: 1st & 3rd Harmonics 1 2 2 y (t ) cos( 2 ( 25)t 2 ) cos( 2 (75)t 2 ) 2 3 30 Synthesis: up to 7th Harmonic 1 2 2 2 2 y (t ) cos(50 t 2 ) sin( 150 t ) sin( 250 t ) sin( 350 t ) 2 3 5 7 31 Fourier Synthesis 1 2 2 x N (t ) sin( 0t ) sin( 30t ) 2 3 32 Gibbs’ Phenomenon • Convergence at DISCONTINUITY of x(t) – There is always an overshoot – 9% for the Square Wave case 33 Fourier Series Demos • Fourier Series Java Applet – Greg Slabaugh • Interactive – http://users.ece.gatech.edu/mcclella/2025/Fsdemo_Slabaugh/fourier.html • MATLAB GUI: fseriesdemo – http://users.ece.gatech.edu/mcclella/matlabGUIs/index.html 34
© Copyright 2026 Paperzz