Tensors: theory and applications Shmuel Friedland Univ. Illinois at Chicago TTI-C, March 2, 2009 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 1 / 18 Overview Ranks of 3-tensors Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 2 / 18 Overview Ranks of 3-tensors 1 Basic facts. Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 2 / 18 Overview Ranks of 3-tensors 1 Basic facts. 2 Complexity. Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 2 / 18 Overview Ranks of 3-tensors 1 Basic facts. 2 Complexity. 3 Matrix multiplication Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 2 / 18 Overview Ranks of 3-tensors 1 Basic facts. 2 Complexity. 3 Matrix multiplication 4 Results and conjectures Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 2 / 18 Overview Ranks of 3-tensors 1 Basic facts. 2 Complexity. 3 Matrix multiplication 4 Results and conjectures Approximations of tensors Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 2 / 18 Overview Ranks of 3-tensors 1 Basic facts. 2 Complexity. 3 Matrix multiplication 4 Results and conjectures Approximations of tensors 1 Rank one approximation. Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 2 / 18 Overview Ranks of 3-tensors 1 Basic facts. 2 Complexity. 3 Matrix multiplication 4 Results and conjectures Approximations of tensors 1 Rank one approximation. 2 Perron-Frobenius theorem Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 2 / 18 Overview Ranks of 3-tensors 1 Basic facts. 2 Complexity. 3 Matrix multiplication 4 Results and conjectures Approximations of tensors 1 Rank one approximation. 2 Perron-Frobenius theorem 3 Rank (R1 , R2 , R3 ) approximations Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 2 / 18 Overview Ranks of 3-tensors 1 Basic facts. 2 Complexity. 3 Matrix multiplication 4 Results and conjectures Approximations of tensors 1 Rank one approximation. 2 Perron-Frobenius theorem 3 Rank (R1 , R2 , R3 ) approximations 4 CUR approximations Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 2 / 18 Overview Ranks of 3-tensors 1 Basic facts. 2 Complexity. 3 Matrix multiplication 4 Results and conjectures Approximations of tensors 1 Rank one approximation. 2 Perron-Frobenius theorem 3 Rank (R1 , R2 , R3 ) approximations 4 CUR approximations List of applications Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 2 / 18 Basic notions scalar a ∈ F, vector x = (x1 , . . . , xn )> ∈ Fn , matrix A = [aij ] ∈ Fm×n , 3-tensor T = [ti,j,k ] ∈ Fm×n×l , p-tensor T = [ti1 ,...,ip ] ∈ Fn1 ×...×np Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 3 / 18 Basic notions scalar a ∈ F, vector x = (x1 , . . . , xn )> ∈ Fn , matrix A = [aij ] ∈ Fm×n , 3-tensor T = [ti,j,k ] ∈ Fm×n×l , p-tensor T = [ti1 ,...,ip ] ∈ Fn1 ×...×np Abstractly U := U1 ⊗ U2 ⊗ U3 dim Ui = mi , i = 1, 2, 3, dim U = m1 m2 m3 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 3 / 18 Basic notions scalar a ∈ F, vector x = (x1 , . . . , xn )> ∈ Fn , matrix A = [aij ] ∈ Fm×n , 3-tensor T = [ti,j,k ] ∈ Fm×n×l , p-tensor T = [ti1 ,...,ip ] ∈ Fn1 ×...×np Abstractly U := U1 ⊗ U2 ⊗ U3 dim Ui = mi , i = 1, 2, 3, dim U = m1 m2 m3 Tensor τ ∈ U1 ⊗ U2 ⊗ U3 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 3 / 18 Basic notions scalar a ∈ F, vector x = (x1 , . . . , xn )> ∈ Fn , matrix A = [aij ] ∈ Fm×n , 3-tensor T = [ti,j,k ] ∈ Fm×n×l , p-tensor T = [ti1 ,...,ip ] ∈ Fn1 ×...×np Abstractly U := U1 ⊗ U2 ⊗ U3 dim Ui = mi , i = 1, 2, 3, dim U = m1 m2 m3 Tensor τ ∈ U1 ⊗ U2 ⊗ U3 HISTORY: Tensors-as now W. Voigt 1898 Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 3 / 18 Basic notions scalar a ∈ F, vector x = (x1 , . . . , xn )> ∈ Fn , matrix A = [aij ] ∈ Fm×n , 3-tensor T = [ti,j,k ] ∈ Fm×n×l , p-tensor T = [ti1 ,...,ip ] ∈ Fn1 ×...×np Abstractly U := U1 ⊗ U2 ⊗ U3 dim Ui = mi , i = 1, 2, 3, dim U = m1 m2 m3 Tensor τ ∈ U1 ⊗ U2 ⊗ U3 HISTORY: Tensors-as now W. Voigt 1898 Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915 Rank one tensor ti,j,k = xi yj zk , (i, j, k ) = (1, 1, 1), . . . , (m1 , m2 , m3 ) or decomposable tensor x ⊗ y ⊗ z Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 3 / 18 Basic notions scalar a ∈ F, vector x = (x1 , . . . , xn )> ∈ Fn , matrix A = [aij ] ∈ Fm×n , 3-tensor T = [ti,j,k ] ∈ Fm×n×l , p-tensor T = [ti1 ,...,ip ] ∈ Fn1 ×...×np Abstractly U := U1 ⊗ U2 ⊗ U3 dim Ui = mi , i = 1, 2, 3, dim U = m1 m2 m3 Tensor τ ∈ U1 ⊗ U2 ⊗ U3 HISTORY: Tensors-as now W. Voigt 1898 Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915 Rank one tensor ti,j,k = xi yj zk , (i, j, k ) = (1, 1, 1), . . . , (m1 , m2 , m3 ) or decomposable tensor x ⊗ y ⊗ z basis of Uj : basis of U: [u1,j , . . . , umj ,j ] j = 1, 2, 3 ui1 ,1 ⊗ ui2 ,2 ⊗ ui3 ,3 , ij = 1, . . . , mj , j = 1, 2, 3, Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 3 / 18 Basic notions scalar a ∈ F, vector x = (x1 , . . . , xn )> ∈ Fn , matrix A = [aij ] ∈ Fm×n , 3-tensor T = [ti,j,k ] ∈ Fm×n×l , p-tensor T = [ti1 ,...,ip ] ∈ Fn1 ×...×np Abstractly U := U1 ⊗ U2 ⊗ U3 dim Ui = mi , i = 1, 2, 3, dim U = m1 m2 m3 Tensor τ ∈ U1 ⊗ U2 ⊗ U3 HISTORY: Tensors-as now W. Voigt 1898 Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915 Rank one tensor ti,j,k = xi yj zk , (i, j, k ) = (1, 1, 1), . . . , (m1 , m2 , m3 ) or decomposable tensor x ⊗ y ⊗ z basis of Uj : [u1,j , . . . , umj ,j ] j = 1, 2, 3 basisPof U: ui1 ,1 ⊗ ui2 ,2 ⊗ ui3 ,3 , ij = 1, . . . , mj , j = 1, 2, 3, 1 ,m2 ,m3 τ= m i1 =i2 =i3 =1 ti1 ,i2 ,i2 ui1 ,1 ⊗ ui2 ,2 ⊗ ui3 ,3 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 3 / 18 Ranks of tensors Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 4 / 18 Ranks of tensors Unfolding tensor: in direction 1: T = [ti,j,k ] view as a matrix A1 = [ti,(j,k ) ] ∈ Fm1 ×(m2 ·m3 ) Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 4 / 18 Ranks of tensors Unfolding tensor: in direction 1: T = [ti,j,k ] view as a matrix A1 = [ti,(j,k ) ] ∈ Fm1 ×(m2 ·m3 ) R1 := rank A1 : dimension of row or column subspace spanned in direction 1 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 4 / 18 Ranks of tensors Unfolding tensor: in direction 1: T = [ti,j,k ] view as a matrix A1 = [ti,(j,k ) ] ∈ Fm1 ×(m2 ·m3 ) R1 := rank A1 : dimension of row or column subspace spanned in direction 1 m2 ,m3 m2 ×m3 , i = 1, . . . , m Ti,1 := [ti,j,k ]j,k 1 =1 ∈ F Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 4 / 18 Ranks of tensors Unfolding tensor: in direction 1: T = [ti,j,k ] view as a matrix A1 = [ti,(j,k ) ] ∈ Fm1 ×(m2 ·m3 ) R1 := rank A1 : dimension of row or column subspace spanned in direction 1 m2 ,m3 m2 ×m3 , i = 1, . . . , m Ti,1 := [ti,j,k ]j,k 1 =1 ∈ F Pm1 T = i=1 Ti,1 ei,1 (convenient notation) Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 4 / 18 Ranks of tensors Unfolding tensor: in direction 1: T = [ti,j,k ] view as a matrix A1 = [ti,(j,k ) ] ∈ Fm1 ×(m2 ·m3 ) R1 := rank A1 : dimension of row or column subspace spanned in direction 1 m2 ,m3 m2 ×m3 , i = 1, . . . , m Ti,1 := [ti,j,k ]j,k 1 =1 ∈ F Pm1 T = i=1 Ti,1 ei,1 (convenient notation) R1 := dim span(T1,1 , . . . , Tm1 ,1 ). Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 4 / 18 Ranks of tensors Unfolding tensor: in direction 1: T = [ti,j,k ] view as a matrix A1 = [ti,(j,k ) ] ∈ Fm1 ×(m2 ·m3 ) R1 := rank A1 : dimension of row or column subspace spanned in direction 1 m2 ,m3 m2 ×m3 , i = 1, . . . , m Ti,1 := [ti,j,k ]j,k 1 =1 ∈ F Pm1 T = i=1 Ti,1 ei,1 (convenient notation) R1 := dim span(T1,1 , . . . , Tm1 ,1 ). Similarly, unfolding in directions 2, 3 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 4 / 18 Ranks of tensors Unfolding tensor: in direction 1: T = [ti,j,k ] view as a matrix A1 = [ti,(j,k ) ] ∈ Fm1 ×(m2 ·m3 ) R1 := rank A1 : dimension of row or column subspace spanned in direction 1 m2 ,m3 m2 ×m3 , i = 1, . . . , m Ti,1 := [ti,j,k ]j,k 1 =1 ∈ F Pm1 T = i=1 Ti,1 ei,1 (convenient notation) R1 := dim span(T1,1 , . . . , Tm1 ,1 ). Similarly, unfolding in directions 2, 3 rank T minimal r : T = fr (x1 , y1 , z1 , . . . , xr , yr , zr ) := Shmuel Friedland Univ. Illinois at Chicago () Pr i=1 xi ⊗ yi ⊗ zi , Tensors: theory and applications TTI-C, March 2, 2009 4 / 18 Ranks of tensors Unfolding tensor: in direction 1: T = [ti,j,k ] view as a matrix A1 = [ti,(j,k ) ] ∈ Fm1 ×(m2 ·m3 ) R1 := rank A1 : dimension of row or column subspace spanned in direction 1 m2 ,m3 m2 ×m3 , i = 1, . . . , m Ti,1 := [ti,j,k ]j,k 1 =1 ∈ F Pm1 T = i=1 Ti,1 ei,1 (convenient notation) R1 := dim span(T1,1 , . . . , Tm1 ,1 ). Similarly, unfolding in directions 2, 3 rank T minimal r : T = fr (x1 , y1 , z1 , . . . , xr , yr , zr ) := (CANDEC, PARFAC) Shmuel Friedland Univ. Illinois at Chicago () Pr i=1 xi ⊗ yi ⊗ zi , Tensors: theory and applications TTI-C, March 2, 2009 4 / 18 Basic facts Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 5 / 18 Basic facts FACT I: rank T ≥ max(R1 , R2 , R3 ) Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 5 / 18 Basic facts FACT I: rank T ≥ max(R1 , R2 , R3 ) Reason U2 ⊗ U3 ∼ Fm2 ×m3 ≡ Fm2 m3 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 5 / 18 Basic facts FACT I: rank T ≥ max(R1 , R2 , R3 ) Reason U2 ⊗ U3 ∼ Fm2 ×m3 ≡ Fm2 m3 Note: R1 , R2 , R3 are easily computable It is possible that R1 6= R2 6= R3 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 5 / 18 Basic facts FACT I: rank T ≥ max(R1 , R2 , R3 ) Reason U2 ⊗ U3 ∼ Fm2 ×m3 ≡ Fm2 m3 Note: R1 , R2 , R3 are easily computable It is possible that R1 6= R2 6= R3 FACT II : For τ = T = [ti,j,k ] let m1 ×m2 , k = 1, . . . , m . Then rank T = 1 ,m2 Tk ,3 := [ti,j,k ]m 3 i,j=1 ∈ F minimal dimension of subspace L ⊂ Fm1 ×m2 spanned by rank one matrices containing T1,3 , . . . , Tm3 ,3 . Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 5 / 18 Basic facts FACT I: rank T ≥ max(R1 , R2 , R3 ) Reason U2 ⊗ U3 ∼ Fm2 ×m3 ≡ Fm2 m3 Note: R1 , R2 , R3 are easily computable It is possible that R1 6= R2 6= R3 FACT II : For τ = T = [ti,j,k ] let m1 ×m2 , k = 1, . . . , m . Then rank T = 1 ,m2 Tk ,3 := [ti,j,k ]m 3 i,j=1 ∈ F minimal dimension of subspace L ⊂ Fm1 ×m2 spanned by rank one matrices containing T1,3 , . . . , Tm3 ,3 . COR rank T ≤ min(mn, ml, nl) Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 5 / 18 Complexity of rank of 3-tensor Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 6 / 18 Complexity of rank of 3-tensor Hastad 1990: Tensor rank is NP-complete for any finite field and NP-hard for rational numbers Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 6 / 18 Complexity of rank of 3-tensor Hastad 1990: Tensor rank is NP-complete for any finite field and NP-hard for rational numbers PRF: 3-sat with n variables m clauses satisfiable iff rank T = 4n + 2m, T ∈ F(2n+3m)×(3n)×(3n+m) ) otherwise rank is larger Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 6 / 18 Generic rank Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 7 / 18 Generic rank Rr (m, n, l) ⊂ Fm×n×l all tensors of rank ≤ r Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 7 / 18 Generic rank Rr (m, n, l) ⊂ Fm×n×l all tensors of rank ≤ r Rr (m, n, l) not closed variety for r ≥ 2 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 7 / 18 Generic rank Rr (m, n, l) ⊂ Fm×n×l all tensors of rank ≤ r Rr (m, n, l) not closed variety for r ≥ 2 generic rank=border rank=typical rank: grankF (m, n, l) the rank of a random tensor T ∈ Fm×n×l Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 7 / 18 Generic rank Rr (m, n, l) ⊂ Fm×n×l all tensors of rank ≤ r Rr (m, n, l) not closed variety for r ≥ 2 generic rank=border rank=typical rank: grankF (m, n, l) the rank of a random tensor T ∈ Fm×n×l THM: grankC (m, n, l) = min(l, mn) for (m − 1)(n − 1) ≤ l. Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 7 / 18 Generic rank Rr (m, n, l) ⊂ Fm×n×l all tensors of rank ≤ r Rr (m, n, l) not closed variety for r ≥ 2 generic rank=border rank=typical rank: grankF (m, n, l) the rank of a random tensor T ∈ Fm×n×l THM: grankC (m, n, l) = min(l, mn) for (m − 1)(n − 1) ≤ l. COR: grankC (2, n, l) = min(l, 2n) for 2 ≤ n ≤ l Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 7 / 18 Generic rank Rr (m, n, l) ⊂ Fm×n×l all tensors of rank ≤ r Rr (m, n, l) not closed variety for r ≥ 2 generic rank=border rank=typical rank: grankF (m, n, l) the rank of a random tensor T ∈ Fm×n×l THM: grankC (m, n, l) = min(l, mn) for (m − 1)(n − 1) ≤ l. COR: grankC (2, n, l) = min(l, 2n) for 2 ≤ n ≤ l Dimension count for F = C and 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1): Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 7 / 18 Generic rank Rr (m, n, l) ⊂ Fm×n×l all tensors of rank ≤ r Rr (m, n, l) not closed variety for r ≥ 2 generic rank=border rank=typical rank: grankF (m, n, l) the rank of a random tensor T ∈ Fm×n×l THM: grankC (m, n, l) = min(l, mn) for (m − 1)(n − 1) ≤ l. COR: grankC (2, n, l) = min(l, 2n) for 2 ≤ n ≤ l Dimension count for F = C and 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1): fr : (Cm × Cn × Cl )r → Cm×n×l , x ⊗ y ⊗ z = (ax) ⊗ (by) ⊗ ((ab)−1 z) Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 7 / 18 Generic rank Rr (m, n, l) ⊂ Fm×n×l all tensors of rank ≤ r Rr (m, n, l) not closed variety for r ≥ 2 generic rank=border rank=typical rank: grankF (m, n, l) the rank of a random tensor T ∈ Fm×n×l THM: grankC (m, n, l) = min(l, mn) for (m − 1)(n − 1) ≤ l. COR: grankC (2, n, l) = min(l, 2n) for 2 ≤ n ≤ l Dimension count for F = C and 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1): fr : (Cm × Cn × Cl )r → Cm×n×l , x ⊗ y ⊗ z = (ax) ⊗ (by) ⊗ ((ab)−1 z) mnl grankC (m, n, l)(m + n + l − 2) ≥ mnl ⇒ grankC (m, n, l) ≥ d (m+n+l−2) e Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 7 / 18 Generic rank Rr (m, n, l) ⊂ Fm×n×l all tensors of rank ≤ r Rr (m, n, l) not closed variety for r ≥ 2 generic rank=border rank=typical rank: grankF (m, n, l) the rank of a random tensor T ∈ Fm×n×l THM: grankC (m, n, l) = min(l, mn) for (m − 1)(n − 1) ≤ l. COR: grankC (2, n, l) = min(l, 2n) for 2 ≤ n ≤ l Dimension count for F = C and 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1): fr : (Cm × Cn × Cl )r → Cm×n×l , x ⊗ y ⊗ z = (ax) ⊗ (by) ⊗ ((ab)−1 z) mnl grankC (m, n, l)(m + n + l − 2) ≥ mnl ⇒ grankC (m, n, l) ≥ d (m+n+l−2) e mnl Conjecture grankC (m, n, l) = d (m+n+l−2) e for 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1) and (3, n, l) 6= (3, 2p + 1, 2p + 1) Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 7 / 18 Generic rank Rr (m, n, l) ⊂ Fm×n×l all tensors of rank ≤ r Rr (m, n, l) not closed variety for r ≥ 2 generic rank=border rank=typical rank: grankF (m, n, l) the rank of a random tensor T ∈ Fm×n×l THM: grankC (m, n, l) = min(l, mn) for (m − 1)(n − 1) ≤ l. COR: grankC (2, n, l) = min(l, 2n) for 2 ≤ n ≤ l Dimension count for F = C and 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1): fr : (Cm × Cn × Cl )r → Cm×n×l , x ⊗ y ⊗ z = (ax) ⊗ (by) ⊗ ((ab)−1 z) mnl grankC (m, n, l)(m + n + l − 2) ≥ mnl ⇒ grankC (m, n, l) ≥ d (m+n+l−2) e mnl Conjecture grankC (m, n, l) = d (m+n+l−2) e for 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1) and (3, n, l) 6= (3, 2p + 1, 2p + 1) 2 Fact: grankC (3, 2p + 1, 2p + 1) = d 3(2p+1) 4p+3 e + 1 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 7 / 18 Bilinear maps and product of matrices bilinear map: φ : U × V → W Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 8 / 18 Bilinear maps and product of matrices bilinear map: φ : U × V → W [u1 , . . . , um ], [v1 , . . . , vn ], [w1 , . . . , wl ] bases in U, V, W Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 8 / 18 Bilinear maps and product of matrices bilinear map: φ : U × V → W [u1 , . . . , um ], [v1 , . . . , vn ], [w1 , . . . , wl ] bases in U, V, W φ(ui , vj ) = P k =1 ti,j,k wk , Shmuel Friedland Univ. Illinois at Chicago () T := [ti,j,k ] ∈ Fm×n×l Tensors: theory and applications TTI-C, March 2, 2009 8 / 18 Bilinear maps and product of matrices bilinear map: φ : U × V → W [u1 , . . . , um ], [v1 , . . . , vn ], [w1 , . . . , wl ] bases in U, V, W φ(ui , vj ) = T = Pr P a=1 xa k =1 ti,j,k wk , T := [ti,j,k ] ∈ Fm×n×l ⊗ ya ⊗ za , r = rank T Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 8 / 18 Bilinear maps and product of matrices bilinear map: φ : U × V → W [u1 , . . . , um ], [v1 , . . . , vn ], [w1 , . . . , wl ] bases in U, V, W φ(ui , vj ) = T = P Pr a=1 xa φ(c, d) = Pr k =1 ti,j,k wk , T := [ti,j,k ] ∈ Fm×n×l ⊗ ya ⊗ za , r = rank T a=1 (c > x)(d> y)z , a Shmuel Friedland Univ. Illinois at Chicago () c= Pm i=1 ci ui , d Tensors: theory and applications = Pn j=1 dj vj TTI-C, March 2, 2009 8 / 18 Bilinear maps and product of matrices bilinear map: φ : U × V → W [u1 , . . . , um ], [v1 , . . . , vn ], [w1 , . . . , wl ] bases in U, V, W φ(ui , vj ) = T = Pr P a=1 xa k =1 ti,j,k wk , T := [ti,j,k ] ∈ Fm×n×l ⊗ ya ⊗ za , r = rank T P P Pn φ(c, d) = ra=1 (c> x)(d> y)za , c = m i=1 ci ui , d = j=1 dj vj Complexity: r -products Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 8 / 18 Bilinear maps and product of matrices bilinear map: φ : U × V → W [u1 , . . . , um ], [v1 , . . . , vn ], [w1 , . . . , wl ] bases in U, V, W φ(ui , vj ) = T = Pr P a=1 xa k =1 ti,j,k wk , T := [ti,j,k ] ∈ Fm×n×l ⊗ ya ⊗ za , r = rank T P P Pn φ(c, d) = ra=1 (c> x)(d> y)za , c = m i=1 ci ui , d = j=1 dj vj Complexity: r -products Matrix product τ : FM×N × FN×L → FM×L , (A, B) 7→ AB Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 8 / 18 Bilinear maps and product of matrices bilinear map: φ : U × V → W [u1 , . . . , um ], [v1 , . . . , vn ], [w1 , . . . , wl ] bases in U, V, W φ(ui , vj ) = T = Pr P a=1 xa k =1 ti,j,k wk , T := [ti,j,k ] ∈ Fm×n×l ⊗ ya ⊗ za , r = rank T P P Pn φ(c, d) = ra=1 (c> x)(d> y)za , c = m i=1 ci ui , d = j=1 dj vj Complexity: r -products Matrix product τ : FM×N × FN×L → FM×L , (A, B) 7→ AB 4×4×4 M = N = L = 2, grankC (4, 4, 4) = d 4+4+4−2 e = d6.4e = 7 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 8 / 18 Bilinear maps and product of matrices bilinear map: φ : U × V → W [u1 , . . . , um ], [v1 , . . . , vn ], [w1 , . . . , wl ] bases in U, V, W φ(ui , vj ) = T = Pr P a=1 xa k =1 ti,j,k wk , T := [ti,j,k ] ∈ Fm×n×l ⊗ ya ⊗ za , r = rank T P P Pn φ(c, d) = ra=1 (c> x)(d> y)za , c = m i=1 ci ui , d = j=1 dj vj Complexity: r -products Matrix product τ : FM×N × FN×L → FM×L , (A, B) 7→ AB 4×4×4 M = N = L = 2, grankC (4, 4, 4) = d 4+4+4−2 e = d6.4e = 7 Product of two 2 × 2 matrices is done by 7 multiplications Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 8 / 18 Known cases of rank conjecture Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 9 / 18 Known cases of rank conjecture 2 2 12p grank(3, 2p, 2p) = d 4p+1 e and grank(3, 2p − 1, 2p − 1) = d 3(2p−1) 4p−1 e + 1 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 9 / 18 Known cases of rank conjecture 2 2 12p grank(3, 2p, 2p) = d 4p+1 e and grank(3, 2p − 1, 2p − 1) = d 3(2p−1) 4p−1 e + 1 (n, n, n + 2) if n 6= 2 (mod 3), Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 9 / 18 Known cases of rank conjecture 2 2 12p grank(3, 2p, 2p) = d 4p+1 e and grank(3, 2p − 1, 2p − 1) = d 3(2p−1) 4p−1 e + 1 (n, n, n + 2) if n 6= 2 (mod 3), (n − 1, n, n) if n = 0 (mod 3), Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 9 / 18 Known cases of rank conjecture 2 2 12p grank(3, 2p, 2p) = d 4p+1 e and grank(3, 2p − 1, 2p − 1) = d 3(2p−1) 4p−1 e + 1 (n, n, n + 2) if n 6= 2 (mod 3), (n − 1, n, n) if n = 0 (mod 3), (4, m, m) if m ≥ 4, Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 9 / 18 Known cases of rank conjecture 2 2 12p grank(3, 2p, 2p) = d 4p+1 e and grank(3, 2p − 1, 2p − 1) = d 3(2p−1) 4p−1 e + 1 (n, n, n + 2) if n 6= 2 (mod 3), (n − 1, n, n) if n = 0 (mod 3), (4, m, m) if m ≥ 4, (n, n, n) if n ≥ 4 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 9 / 18 Known cases of rank conjecture 2 2 12p grank(3, 2p, 2p) = d 4p+1 e and grank(3, 2p − 1, 2p − 1) = d 3(2p−1) 4p−1 e + 1 (n, n, n + 2) if n 6= 2 (mod 3), (n − 1, n, n) if n = 0 (mod 3), (4, m, m) if m ≥ 4, (n, n, n) if n ≥ 4 2lp (l, 2p, 2q) if l ≤ 2p ≤ 2q and and l+2p+2q−2 is integer Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 9 / 18 Known cases of rank conjecture 2 2 12p grank(3, 2p, 2p) = d 4p+1 e and grank(3, 2p − 1, 2p − 1) = d 3(2p−1) 4p−1 e + 1 (n, n, n + 2) if n 6= 2 (mod 3), (n − 1, n, n) if n = 0 (mod 3), (4, m, m) if m ≥ 4, (n, n, n) if n ≥ 4 2lp (l, 2p, 2q) if l ≤ 2p ≤ 2q and and l+2p+2q−2 is integer Easy to compute grankC (m, n, l): Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 9 / 18 Known cases of rank conjecture 2 2 12p grank(3, 2p, 2p) = d 4p+1 e and grank(3, 2p − 1, 2p − 1) = d 3(2p−1) 4p−1 e + 1 (n, n, n + 2) if n 6= 2 (mod 3), (n − 1, n, n) if n = 0 (mod 3), (4, m, m) if m ≥ 4, (n, n, n) if n ≥ 4 2lp (l, 2p, 2q) if l ≤ 2p ≤ 2q and and l+2p+2q−2 is integer Easy to compute grankC (m, n, l): Pick at random wr := (x1 , y1 , z1 , . . . , xr , yr , zr ) ∈ (Rm × Rn × Rl )r Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 9 / 18 Known cases of rank conjecture 2 2 12p grank(3, 2p, 2p) = d 4p+1 e and grank(3, 2p − 1, 2p − 1) = d 3(2p−1) 4p−1 e + 1 (n, n, n + 2) if n 6= 2 (mod 3), (n − 1, n, n) if n = 0 (mod 3), (4, m, m) if m ≥ 4, (n, n, n) if n ≥ 4 2lp (l, 2p, 2q) if l ≤ 2p ≤ 2q and and l+2p+2q−2 is integer Easy to compute grankC (m, n, l): Pick at random wr := (x1 , y1 , z1 , . . . , xr , yr , zr ) ∈ (Rm × Rn × Rl )r mnl e s.t. rank J(fr )(wr ) = mnl The minimal r ≥ d (m+n+l−2) is grankC (m, n, l) (Terracini Lemma 1915) Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 9 / 18 Known cases of rank conjecture 2 2 12p grank(3, 2p, 2p) = d 4p+1 e and grank(3, 2p − 1, 2p − 1) = d 3(2p−1) 4p−1 e + 1 (n, n, n + 2) if n 6= 2 (mod 3), (n − 1, n, n) if n = 0 (mod 3), (4, m, m) if m ≥ 4, (n, n, n) if n ≥ 4 2lp (l, 2p, 2q) if l ≤ 2p ≤ 2q and and l+2p+2q−2 is integer Easy to compute grankC (m, n, l): Pick at random wr := (x1 , y1 , z1 , . . . , xr , yr , zr ) ∈ (Rm × Rn × Rl )r mnl e s.t. rank J(fr )(wr ) = mnl The minimal r ≥ d (m+n+l−2) is grankC (m, n, l) (Terracini Lemma 1915) Avoid round-off error: wr ∈ (Zm × Zn × Zl )r find rank J(fr )(wr ) exact arithmetic Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 9 / 18 Known cases of rank conjecture 2 2 12p grank(3, 2p, 2p) = d 4p+1 e and grank(3, 2p − 1, 2p − 1) = d 3(2p−1) 4p−1 e + 1 (n, n, n + 2) if n 6= 2 (mod 3), (n − 1, n, n) if n = 0 (mod 3), (4, m, m) if m ≥ 4, (n, n, n) if n ≥ 4 2lp (l, 2p, 2q) if l ≤ 2p ≤ 2q and and l+2p+2q−2 is integer Easy to compute grankC (m, n, l): Pick at random wr := (x1 , y1 , z1 , . . . , xr , yr , zr ) ∈ (Rm × Rn × Rl )r mnl e s.t. rank J(fr )(wr ) = mnl The minimal r ≥ d (m+n+l−2) is grankC (m, n, l) (Terracini Lemma 1915) Avoid round-off error: wr ∈ (Zm × Zn × Zl )r find rank J(fr )(wr ) exact arithmetic I checked the conjecture up to m, n, l ≤ 14 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 9 / 18 Generic rank III - the real case Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 10 / 18 Generic rank III - the real case For mn ≤ l grankR (m, n, l) = mn. Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 10 / 18 Generic rank III - the real case For mn ≤ l grankR (m, n, l) = mn. For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1 , . . . , Vc(m,n,l) ⊂ Rm×n×l pairwise distinct open connected semi-algebraic sets s.t. Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 10 / 18 Generic rank III - the real case For mn ≤ l grankR (m, n, l) = mn. For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1 , . . . , Vc(m,n,l) ⊂ Rm×n×l pairwise distinct open connected semi-algebraic sets s.t. c(m,n,l) Closure(∪i=1 ) = Rm×n×l Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 10 / 18 Generic rank III - the real case For mn ≤ l grankR (m, n, l) = mn. For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1 , . . . , Vc(m,n,l) ⊂ Rm×n×l pairwise distinct open connected semi-algebraic sets s.t. c(m,n,l) Closure(∪i=1 ) = Rm×n×l rank T = grankC (m, n, l) for each T ∈ V1 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 10 / 18 Generic rank III - the real case For mn ≤ l grankR (m, n, l) = mn. For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1 , . . . , Vc(m,n,l) ⊂ Rm×n×l pairwise distinct open connected semi-algebraic sets s.t. c(m,n,l) Closure(∪i=1 ) = Rm×n×l rank T = grankC (m, n, l) for each T ∈ V1 rank T = ρi for each T ∈ Vi Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 10 / 18 Generic rank III - the real case For mn ≤ l grankR (m, n, l) = mn. For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1 , . . . , Vc(m,n,l) ⊂ Rm×n×l pairwise distinct open connected semi-algebraic sets s.t. c(m,n,l) Closure(∪i=1 ) = Rm×n×l rank T = grankC (m, n, l) for each T ∈ V1 rank T = ρi for each T ∈ Vi ρi ≥ grankC (m, n, l) for i = 2, . . . , c(m, n, l) Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 10 / 18 Generic rank III - the real case For mn ≤ l grankR (m, n, l) = mn. For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1 , . . . , Vc(m,n,l) ⊂ Rm×n×l pairwise distinct open connected semi-algebraic sets s.t. c(m,n,l) Closure(∪i=1 ) = Rm×n×l rank T = grankC (m, n, l) for each T ∈ V1 rank T = ρi for each T ∈ Vi ρi ≥ grankC (m, n, l) for i = 2, . . . , c(m, n, l) For l = (m − 1)(n − 1) ∃m, n: c(m, n, l) > 1, ρc(m,n,l) ≥ grankC (m, n, l) + 1 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 10 / 18 Generic rank III - the real case For mn ≤ l grankR (m, n, l) = mn. For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1 , . . . , Vc(m,n,l) ⊂ Rm×n×l pairwise distinct open connected semi-algebraic sets s.t. c(m,n,l) Closure(∪i=1 ) = Rm×n×l rank T = grankC (m, n, l) for each T ∈ V1 rank T = ρi for each T ∈ Vi ρi ≥ grankC (m, n, l) for i = 2, . . . , c(m, n, l) For l = (m − 1)(n − 1) ∃m, n: c(m, n, l) > 1, ρc(m,n,l) ≥ grankC (m, n, l) + 1 Examples [1] m = n ≥ 2, l = (m − 1)(n − 1) + 1. m = n = 4, l = 11, 12 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 10 / 18 Rank one approximations Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 11 / 18 Rank one approximations Rm×n×l IPS: hA, Bi = Pm,n,l Shmuel Friedland Univ. Illinois at Chicago () i=j=k ai,j,k bi,j,k , kT k = Tensors: theory and applications p hT , T i TTI-C, March 2, 2009 11 / 18 Rank one approximations p Pm,n,l Rm×n×l IPS: hA, Bi = i=j=k ai,j,k bi,j,k , kT k = hT , T i hx ⊗ y ⊗ z, u ⊗ v ⊗ wi = (u> x)(v> y)(w> z) Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 11 / 18 Rank one approximations p Pm,n,l Rm×n×l IPS: hA, Bi = i=j=k ai,j,k bi,j,k , kT k = hT , T i hx ⊗ y ⊗ z, u ⊗ v ⊗ wi = (u> x)(v> y)(w> z) X subspace of Rm×n×l , X1 , . . . , Xd an orthonormal basis of X Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 11 / 18 Rank one approximations p Pm,n,l Rm×n×l IPS: hA, Bi = i=j=k ai,j,k bi,j,k , kT k = hT , T i hx ⊗ y ⊗ z, u ⊗ v ⊗ wi = (u> x)(v> y)(w> z) m×n×l , X , . . . , X an orthonormal basis of X X subspace 1 d P Pd of R PX (T ) = i=1 hT , Xi iXi , kPX (T )k2 = di=1 hT , Xi i2 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 11 / 18 Rank one approximations p Pm,n,l Rm×n×l IPS: hA, Bi = i=j=k ai,j,k bi,j,k , kT k = hT , T i hx ⊗ y ⊗ z, u ⊗ v ⊗ wi = (u> x)(v> y)(w> z) m×n×l , X , . . . , X an orthonormal basis of X X subspace 1 d P Pd of R PX (T ) = i=1 hT , Xi iXi , kPX (T )k2 = di=1 hT , Xi i2 kT k2 = kPX (T )k2 + kT − PX (T )k2 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 11 / 18 Rank one approximations p Pm,n,l Rm×n×l IPS: hA, Bi = i=j=k ai,j,k bi,j,k , kT k = hT , T i hx ⊗ y ⊗ z, u ⊗ v ⊗ wi = (u> x)(v> y)(w> z) m×n×l , X , . . . , X an orthonormal basis of X X subspace 1 d P Pd of R PX (T ) = i=1 hT , Xi iXi , kPX (T )k2 = di=1 hT , Xi i2 kT k2 = kPX (T )k2 + kT − PX (T )k2 Best rank one approximation of T : Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 11 / 18 Rank one approximations p Pm,n,l Rm×n×l IPS: hA, Bi = i=j=k ai,j,k bi,j,k , kT k = hT , T i hx ⊗ y ⊗ z, u ⊗ v ⊗ wi = (u> x)(v> y)(w> z) m×n×l , X , . . . , X an orthonormal basis of X X subspace 1 d P Pd of R PX (T ) = i=1 hT , Xi iXi , kPX (T )k2 = di=1 hT , Xi i2 kT k2 = kPX (T )k2 + kT − PX (T )k2 Best rank one approximation of T : minx,y,z kT − x ⊗ y ⊗ zk = minkxk=kyk=kzk=1,a kT − a x ⊗ y ⊗ zk Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 11 / 18 Rank one approximations p Pm,n,l Rm×n×l IPS: hA, Bi = i=j=k ai,j,k bi,j,k , kT k = hT , T i hx ⊗ y ⊗ z, u ⊗ v ⊗ wi = (u> x)(v> y)(w> z) m×n×l , X , . . . , X an orthonormal basis of X X subspace 1 d P Pd of R PX (T ) = i=1 hT , Xi iXi , kPX (T )k2 = di=1 hT , Xi i2 kT k2 = kPX (T )k2 + kT − PX (T )k2 Best rank one approximation of T : minx,y,z kT − x ⊗ y ⊗ zk = minkxk=kyk=kzk=1,a kT − a x ⊗ y ⊗ zk Equivalent: maxkxk=kyk=kzk=1 Shmuel Friedland Univ. Illinois at Chicago () Pm,n,l i=j=k ti,j,k xi yj zk Tensors: theory and applications TTI-C, March 2, 2009 11 / 18 Rank one approximations p Pm,n,l Rm×n×l IPS: hA, Bi = i=j=k ai,j,k bi,j,k , kT k = hT , T i hx ⊗ y ⊗ z, u ⊗ v ⊗ wi = (u> x)(v> y)(w> z) m×n×l , X , . . . , X an orthonormal basis of X X subspace 1 d P Pd of R PX (T ) = i=1 hT , Xi iXi , kPX (T )k2 = di=1 hT , Xi i2 kT k2 = kPX (T )k2 + kT − PX (T )k2 Best rank one approximation of T : minx,y,z kT − x ⊗ y ⊗ zk = minkxk=kyk=kzk=1,a kT − a x ⊗ y ⊗ zk Equivalent: maxkxk=kyk=kzk=1 Pm,n,l i=j=k ti,j,k xi yj zk Lagrange multipliers: T × y ⊗ z := T × x ⊗ z = λy, T × x ⊗ y = λz Shmuel Friedland Univ. Illinois at Chicago () P j=k =1 ti,j,k yj zk Tensors: theory and applications = λx TTI-C, March 2, 2009 11 / 18 Rank one approximations p Pm,n,l Rm×n×l IPS: hA, Bi = i=j=k ai,j,k bi,j,k , kT k = hT , T i hx ⊗ y ⊗ z, u ⊗ v ⊗ wi = (u> x)(v> y)(w> z) m×n×l , X , . . . , X an orthonormal basis of X X subspace 1 d P Pd of R PX (T ) = i=1 hT , Xi iXi , kPX (T )k2 = di=1 hT , Xi i2 kT k2 = kPX (T )k2 + kT − PX (T )k2 Best rank one approximation of T : minx,y,z kT − x ⊗ y ⊗ zk = minkxk=kyk=kzk=1,a kT − a x ⊗ y ⊗ zk Equivalent: maxkxk=kyk=kzk=1 Pm,n,l i=j=k ti,j,k xi yj zk P Lagrange multipliers: T × y ⊗ z := j=k =1 ti,j,k yj zk = λx T × x ⊗ z = λy, T × x ⊗ y = λz λ singular value, x, y, z singular vectors Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 11 / 18 Rank one approximations p Pm,n,l Rm×n×l IPS: hA, Bi = i=j=k ai,j,k bi,j,k , kT k = hT , T i hx ⊗ y ⊗ z, u ⊗ v ⊗ wi = (u> x)(v> y)(w> z) m×n×l , X , . . . , X an orthonormal basis of X X subspace 1 d P Pd of R PX (T ) = i=1 hT , Xi iXi , kPX (T )k2 = di=1 hT , Xi i2 kT k2 = kPX (T )k2 + kT − PX (T )k2 Best rank one approximation of T : minx,y,z kT − x ⊗ y ⊗ zk = minkxk=kyk=kzk=1,a kT − a x ⊗ y ⊗ zk Equivalent: maxkxk=kyk=kzk=1 Pm,n,l i=j=k ti,j,k xi yj zk P Lagrange multipliers: T × y ⊗ z := j=k =1 ti,j,k yj zk = λx T × x ⊗ z = λy, T × x ⊗ y = λz λ singular value, x, y, z singular vectors How many distinct singular values are for a generic tensor? Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 11 / 18 `p maximal problem and Perron-Frobenius Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 12 / 18 `p maximal problem and Perron-Frobenius 1 P k(x1 , . . . , xn )> kp := ( ni=1 |xi |p ) p Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 12 / 18 `p maximal problem and Perron-Frobenius 1 P k(x1 , . . . , xn )> kp := ( ni=1 |xi |p ) p Problem: maxkxkp =kykp =kzkp =1 Shmuel Friedland Univ. Illinois at Chicago () Pm,n,l i=j=k ti,j,k xi yj zk Tensors: theory and applications TTI-C, March 2, 2009 12 / 18 `p maximal problem and Perron-Frobenius 1 P k(x1 , . . . , xn )> kp := ( ni=1 |xi |p ) p Problem: maxkxkp =kykp =kzkp =1 Pm,n,l i=j=k ti,j,k xi yj zk Lagrange multipliers: T × y ⊗ z := Shmuel Friedland Univ. Illinois at Chicago () P j=k =1 ti,j,k yj zk Tensors: theory and applications = λxp−1 TTI-C, March 2, 2009 12 / 18 `p maximal problem and Perron-Frobenius 1 P k(x1 , . . . , xn )> kp := ( ni=1 |xi |p ) p Problem: maxkxkp =kykp =kzkp =1 Pm,n,l i=j=k ti,j,k xi yj zk P Lagrange multipliers: T × y ⊗ z := j=k =1 ti,j,k yj zk = λxp−1 2t T × x ⊗ z = λyp−1 , T × x ⊗ y = λzp−1 (p = 2s−1 , t, s ∈ N) Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 12 / 18 `p maximal problem and Perron-Frobenius 1 P k(x1 , . . . , xn )> kp := ( ni=1 |xi |p ) p Problem: maxkxkp =kykp =kzkp =1 Pm,n,l i=j=k ti,j,k xi yj zk P Lagrange multipliers: T × y ⊗ z := j=k =1 ti,j,k yj zk = λxp−1 2t T × x ⊗ z = λyp−1 , T × x ⊗ y = λzp−1 (p = 2s−1 , t, s ∈ N) p = 3 is most natural in view of homogeneity Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 12 / 18 `p maximal problem and Perron-Frobenius 1 P k(x1 , . . . , xn )> kp := ( ni=1 |xi |p ) p Problem: maxkxkp =kykp =kzkp =1 Pm,n,l i=j=k ti,j,k xi yj zk P Lagrange multipliers: T × y ⊗ z := j=k =1 ti,j,k yj zk = λxp−1 2t T × x ⊗ z = λyp−1 , T × x ⊗ y = λzp−1 (p = 2s−1 , t, s ∈ N) p = 3 is most natural in view of homogeneity Assume that T ≥ 0. Then x, y, z ≥ 0 For which values of p we have an analog of Perron-Frobenius theorem? Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 12 / 18 `p maximal problem and Perron-Frobenius 1 P k(x1 , . . . , xn )> kp := ( ni=1 |xi |p ) p Problem: maxkxkp =kykp =kzkp =1 Pm,n,l i=j=k ti,j,k xi yj zk P Lagrange multipliers: T × y ⊗ z := j=k =1 ti,j,k yj zk = λxp−1 2t T × x ⊗ z = λyp−1 , T × x ⊗ y = λzp−1 (p = 2s−1 , t, s ∈ N) p = 3 is most natural in view of homogeneity Assume that T ≥ 0. Then x, y, z ≥ 0 For which values of p we have an analog of Perron-Frobenius theorem? Yes, for p = 3, and probably for p > 3 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 12 / 18 `p maximal problem and Perron-Frobenius 1 P k(x1 , . . . , xn )> kp := ( ni=1 |xi |p ) p Problem: maxkxkp =kykp =kzkp =1 Pm,n,l i=j=k ti,j,k xi yj zk P Lagrange multipliers: T × y ⊗ z := j=k =1 ti,j,k yj zk = λxp−1 2t T × x ⊗ z = λyp−1 , T × x ⊗ y = λzp−1 (p = 2s−1 , t, s ∈ N) p = 3 is most natural in view of homogeneity Assume that T ≥ 0. Then x, y, z ≥ 0 For which values of p we have an analog of Perron-Frobenius theorem? Yes, for p = 3, and probably for p > 3 No, for p = 2, and probably for p < 3 Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 12 / 18 (R1 , R2 , R3 )-rank approximation of 3-tensors Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 13 / 18 (R1 , R2 , R3 )-rank approximation of 3-tensors Fundamental problem in applications: Approximate well and fast T ∈ Rm1 ×m2 ×m3 by rank (R1 , R2 , R3 ) 3-tensor. Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 13 / 18 (R1 , R2 , R3 )-rank approximation of 3-tensors Fundamental problem in applications: Approximate well and fast T ∈ Rm1 ×m2 ×m3 by rank (R1 , R2 , R3 ) 3-tensor. Best (R1 , R2 , R3 ) approximation problem: Find Ui ⊂ Fmi of dimension Ri for i = 1, 2, 3 with maximal ||PU1 ⊗U2 ⊗U3 (T )||. Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 13 / 18 (R1 , R2 , R3 )-rank approximation of 3-tensors Fundamental problem in applications: Approximate well and fast T ∈ Rm1 ×m2 ×m3 by rank (R1 , R2 , R3 ) 3-tensor. Best (R1 , R2 , R3 ) approximation problem: Find Ui ⊂ Fmi of dimension Ri for i = 1, 2, 3 with maximal ||PU1 ⊗U2 ⊗U3 (T )||. Relaxation method: Optimize on U1 , U2 , U3 by fixing all variables except one at a time Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 13 / 18 (R1 , R2 , R3 )-rank approximation of 3-tensors Fundamental problem in applications: Approximate well and fast T ∈ Rm1 ×m2 ×m3 by rank (R1 , R2 , R3 ) 3-tensor. Best (R1 , R2 , R3 ) approximation problem: Find Ui ⊂ Fmi of dimension Ri for i = 1, 2, 3 with maximal ||PU1 ⊗U2 ⊗U3 (T )||. Relaxation method: Optimize on U1 , U2 , U3 by fixing all variables except one at a time This amounts to SVD (Singular Value Decomposition) of matrices: Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 13 / 18 (R1 , R2 , R3 )-rank approximation of 3-tensors Fundamental problem in applications: Approximate well and fast T ∈ Rm1 ×m2 ×m3 by rank (R1 , R2 , R3 ) 3-tensor. Best (R1 , R2 , R3 ) approximation problem: Find Ui ⊂ Fmi of dimension Ri for i = 1, 2, 3 with maximal ||PU1 ⊗U2 ⊗U3 (T )||. Relaxation method: Optimize on U1 , U2 , U3 by fixing all variables except one at a time This amounts to SVD (Singular Value Decomposition) of matrices: Fix U2 , U3 . Then V = U1 ⊗ (U2 ⊗ U3 ) ⊂ Rm1 ×(m2 ·m3 ) Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 13 / 18 (R1 , R2 , R3 )-rank approximation of 3-tensors Fundamental problem in applications: Approximate well and fast T ∈ Rm1 ×m2 ×m3 by rank (R1 , R2 , R3 ) 3-tensor. Best (R1 , R2 , R3 ) approximation problem: Find Ui ⊂ Fmi of dimension Ri for i = 1, 2, 3 with maximal ||PU1 ⊗U2 ⊗U3 (T )||. Relaxation method: Optimize on U1 , U2 , U3 by fixing all variables except one at a time This amounts to SVD (Singular Value Decomposition) of matrices: Fix U2 , U3 . Then V = U1 ⊗ (U2 ⊗ U3 ) ⊂ Rm1 ×(m2 ·m3 ) maxU1 kPV (T )k is an approximation in 2-tensors=matrices Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 13 / 18 Fast low rank approximation I: Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 14 / 18 Fast low rank approximations II: Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 15 / 18 Fast low rank approximations II: Approximate A ∈ Rm×n by CUR where C ∈ Rm×p , R ∈ Rq×n for some submatrices of A. Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 15 / 18 Fast low rank approximations II: Approximate A ∈ Rm×n by CUR where C ∈ Rm×p , R ∈ Rq×n for some submatrices of A. minU∈Cp×q kA − CURkF achieved for U = C † AR † Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 15 / 18 Fast low rank approximations II: Approximate A ∈ Rm×n by CUR where C ∈ Rm×p , R ∈ Rq×n for some submatrices of A. minU∈Cp×q kA − CURkF achieved for U = C † AR † Faster choice: U = A[I, J]† Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 15 / 18 Fast low rank approximations II: Approximate A ∈ Rm×n by CUR where C ∈ Rm×p , R ∈ Rq×n for some submatrices of A. minU∈Cp×q kA − CURkF achieved for U = C † AR † Faster choice: U = A[I, J]† (corresponds to best CUR approximation on the entries read) Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 15 / 18 Fast low rank approximations II: Approximate A ∈ Rm×n by CUR where C ∈ Rm×p , R ∈ Rq×n for some submatrices of A. minU∈Cp×q kA − CURkF achieved for U = C † AR † Faster choice: U = A[I, J]† (corresponds to best CUR approximation on the entries read) For given A ∈ Rm×n×l , F ∈ Rm×p , E ∈ Rn×q , G ∈ Rl×r , Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 15 / 18 Fast low rank approximations II: Approximate A ∈ Rm×n by CUR where C ∈ Rm×p , R ∈ Rq×n for some submatrices of A. minU∈Cp×q kA − CURkF achieved for U = C † AR † Faster choice: U = A[I, J]† (corresponds to best CUR approximation on the entries read) For given A ∈ Rm×n×l , F ∈ Rm×p , E ∈ Rn×q , G ∈ Rl×r , where hpi ⊂ hni × hli, hqi ⊂ hmi × hli, hr i ⊂ hmi × hli Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 15 / 18 Fast low rank approximations II: Approximate A ∈ Rm×n by CUR where C ∈ Rm×p , R ∈ Rq×n for some submatrices of A. minU∈Cp×q kA − CURkF achieved for U = C † AR † Faster choice: U = A[I, J]† (corresponds to best CUR approximation on the entries read) For given A ∈ Rm×n×l , F ∈ Rm×p , E ∈ Rn×q , G ∈ Rl×r , where hpi ⊂ hni × hli, hqi ⊂ hmi × hli, hr i ⊂ hmi × hli minU ∈Cp×q×r kA − U × F × E × GkF achieved for U = A × E † × F † × G† Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 15 / 18 Fast low rank approximations II: Approximate A ∈ Rm×n by CUR where C ∈ Rm×p , R ∈ Rq×n for some submatrices of A. minU∈Cp×q kA − CURkF achieved for U = C † AR † Faster choice: U = A[I, J]† (corresponds to best CUR approximation on the entries read) For given A ∈ Rm×n×l , F ∈ Rm×p , E ∈ Rn×q , G ∈ Rl×r , where hpi ⊂ hni × hli, hqi ⊂ hmi × hli, hr i ⊂ hmi × hli minU ∈Cp×q×r kA − U × F × E × GkF achieved for U = A × E † × F † × G† CUR approximation of A obtained by choosing E, F , G submatrices of unfolded A in the mode 1, 2, 3. Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 15 / 18 List of applications Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 16 / 18 List of applications Face recognition Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 16 / 18 List of applications Face recognition Video tracking Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 16 / 18 List of applications Face recognition Video tracking Factor analysis Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 16 / 18 References I S. Friedland, On the generic rank of 3-tensors, arXiv: 0805.3777v2. S. Friedland, V. Mehrmann, A. Miedlar, and M. Nkengla, Fast low rank approximations of matrices and tensors, submitted, www.matheon.de/preprints/4903. S.A. Goreinov, E.E. Tyrtyshnikov, N.L. Zmarashkin, Pseudo-skeleton approximations of matrices, Reports of the Russian Academy of Sciences 343(2) (1995), 151-152. S.A. Goreinov, E.E. Tyrtyshnikov, N.L. Zmarashkin, A theory of pseudo-skeleton approximations of matrices, Linear Algebra Appl. 261 (1997), 1-21. L.H. Lim, Singular values and eigenvalues of tensors: a variational approach, CAMSAP 05, 1 (2005), 129-132. Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 17 / 18 References II M.W. Mahoney and P. Drineas, CUR matrix decompositions for improved data analysis, PNAS 106, (2009), 697-702. Shmuel Friedland Univ. Illinois at Chicago () Tensors: theory and applications TTI-C, March 2, 2009 18 / 18
© Copyright 2026 Paperzz