Mathematics for Computer Science MIT 6.042J/18.062J Expected Number of Heads Albert R Meyer, May 8, 2013 lec 12F.1 Expected #Heads n independent flips of a coin with bias p for Heads. How many Heads expected? E[# Heads] = E[B n,p ] Albert R Meyer, May 8, 2013 lec 12F.3 Expected #Heads n independent flips of a coin with bias p for Heads. How many Heads expected? ænæ k n-k E[B n,p ] ::= æ k æ æp (1 - p) k=0 ækæ n Albert R Meyer, May 8, 2013 lec 12F.4 Expected #Heads n independent flips of a coin with bias p for Heads. How many Heads expected? ænæ k n-k E[B n,p ] ::= æ k æ æp q k=0 ækæ n Albert R Meyer, May 8, 2013 lec 12F.5 Expected #Heads Binomial theorem and differentiating gives a closed formula Albert R Meyer, May 8, 2013 lec 12F.6 Binomial Expectation (x + y) n =æ take / x : n x y n 1 n k=0 ænæ k n-k æ æx y ækæ n k n k 1 k x y x k 0 k Albert R Meyer, n May 8, 2013 lec 12F.7 Binomial Expectation ænæ k n-k æ æ E B n,p ::= æ k æ æp q æ æ k=0 ækæ n ( n x+y ) n-1 ænæ k n-k = æ k æ æx y x k=0 ækæ 1 Albert R Meyer, n May 8, 2013 lec 12F.8 Binomial Expectation ænæ k n-k E æB n,p æ::= æ k æ æp q æ æ k=0 ækæ n ( ) n p+q n-1 ænæ k n-k = æ k æ æp q p k=0 ækæ 1 Albert R Meyer, n May 8, 2013 lec 12F.9 Binomial Expectation n k n k E Bn,p :: k p q k 0 k n n ænæ k n-k = æ k æ æp q p k=0 ækæ 1 Albert R Meyer, n May 8, 2013 lec 12F.10 Binomial Expectation n k n k E Bn,p :: k p q k 0 k n n 1 æ æ = E B n,p p æ æ æ æ np = E B n,p æ æ Albert R Meyer, May 8, 2013 lec 12F.11
© Copyright 2026 Paperzz