ONE RANDOM VARIABLE

ONE RANDOM VARIABLE
The Cumulative Distribution Function (cdf)
cdf is defined as the probability of the event {X  x}:
FX ( x)  P[ X  x]
-
 x  
Applies to discrete as well as continuous RV.
Example: three tosses of a coin
1

x 1

8

 13 1
1 x  2
 8 8 2
FX ( x )  
 133 7
2 x3
 8 8 8 8
1 3 3 1
    1
x3
8 8 8 8
The cdf can be written compactly in terms of the unit step function:
1
3
3
1
FX ( x )  u( x )  u( x  1)  u( x  2)  u( x  3)
8
8
8
8
Example: The Uniform RV in the unit interval [0,1].
x0
0

FX ( x )   x 0  x  1
1
x 1

0 x  0
u( x )  
1 x  0
Example: The waiting time X of a customer at a taxi stand is zero if the customer finds a taxi
parked at the stand, and a uniformly distributed random length of time in the interval [0, 1] (in
hours) if no taxi is found upon arrival. The probability that a taxi is at the stand when the
customer arrives is p. Find the cdf of X.
Use total probability theorem,
FX ( x)  P[ X  x]  P[ X  x | find taxi] p  P[ X  x | no taxi](1  p)
0 x  0
P[ X  x | find taxi]  
1 x  0

x0
0

P[ X  x | no taxi]   x 0  x  1
1
x 1

0
x0


FX ( x )   p  (1  p) x 0  x  1

1
x 1

basic properties of the cdf
(i) 0  FX ( x)  1 .
(ii) lim FX ( x)  1 .
x 
(iii) lim FX ( x)  0 .
x 
(iv) FX ( x ) is a nondecreasing function of x, that is, if a  b, FX (a)  FX (b) (nondecreasing
function).
(v) FX ( x ) is continuous from the right, that is, for h  0, FX (b)  lim FX (b  h)  FX (b ) .
h0
(vi) P[a  X  b]  FX (b)  FX (a)
(vii) P[ X  b]  FX (b)  FX (b ) (if FX ( x ) has a jump at x = b).
(viii) P[ X  x]  1  FX ( x) .
The Three Types of Random Variables
Discrete random variables: have a cdf that is a right-continuous, staircase function of x, with
jumps at a countable set of points x0, x1, x2, ...
FX ( x ) 
p
xk  x
X
( xk )   p X ( xk )u( x  xk )
k
Continuous random variables: is continuous everywhere, and which, is sufficiently smooth
that it can be written as an integral of some nonnegative function f(x):
x
FX ( x ) 

f ( x )dx
 P[ X  x ]  0

Random variable of mixed type: is a random variable with a cdf that has jumps on a
countable set of points x0, x1, x2, ... but that also increases continuously over at least one
interval of values of x.
Cdf:
FX ( x )  pF1 ( x )  (1  p) F2 ( x )
0  p  1,
F1 ( x ) : cdf of a discrete RV; F2 ( x ) : cdf of a cont. RV
The Probability Density Function (pdf)
probability density function of X (pdf) :
f ( x) 
dFX ( x )
dx
The pdf represents the “density” of probability at the point x:
P[ x  X  x  h]  FX ( x  h)  FX ( x ) 
FX ( x  h)  FX ( x )
h
h
Properties:
(i) f X ( x)  0 (FX ( x) is a non-decreasing function of x).
b
(ii) P[a  x  b]   f X ( x )dx probability of an interval [a, b]
a
x
(iii) FX ( x ) 

f X (t )dt .


(iv)

f X ( x )dx  1 .

pdf of Discrete Random Variables
f X ( x) 
dFX ( x )
  p X ( xk ) ( x  xk )
dx
k
f X ( x )h
Conditional cdf’s and pdf’s
conditional cdf of X given C
FX ( x | C ) 
P[{ X  x} C ]
P[C ]
f X ( x | C) 
conditional pdf of X given C :
P[C ]  0
dFX ( x | C )
dx
Example:
The lifetime X of a machine has a continuous cdf FX ( x ) . Conditional cdf and pdf given the
event C = {X > t} (machine still working at time t)
conditional cdf:
FX ( x | X  t ) 
P[{ X  x} { X  t}]
P[ X  t ]
0

P[{ X  x} { X  t}]  
 P[t  X  x ]  FX ( x )  FX (t )
xt
xt
P[ X  t ]  1  P[ X  t ]  1  FX (t )

0


FX ( x | X  t )   FX ( x )  FX (t )
 1  F (t )

X
f X ( x | X  t) 
conditional pdf:
cdf of X in terms of the conditional cdf’s;
f X ( x)
1  FX (t )
xt
xt
xt
partition of S: B1, B2, ..., Bn
n
n
i 1
i 1
FX ( x )  P[ X  x ]   P[ X  x | Bi ]P[ Bi ]   FX ( x | Bi ]P[ Bi ]

n
f X ( x )   f X ( x | Bi ]P[ Bi ]
i 1
Example:
A binary transmission system sends a “0” bit by transmitting a (–v) voltage signal, and a “1”
bit by transmitting a (+v). Received signal corrupted by Gaussian noise:
Y=X+N
X: the transmitted signal, N is a noise voltage with pdf f N ( x )
Assume P[“1”] = p = 1 P[“0”]. Find the pdf of Y.
B0 = {“0” is transmitted} B1 = {“1” is transmitted}.
FY ( x )  FY ( x | B0 ]P[ B0 ]  FY ( x | B1 ]P[ B1 ]
 P[Y  x | X  v ](1  p)  P[Y  x | X  v ] p
P[Y  x | X  v ]  P[ N  x  v ]  FN ( x  v )
P[Y  x | X  v ]  P[ N  x  v ]  FN ( x  v )

FY ( x )  FN ( x  v )(1  p)  FN ( x  v ) p
dFY ( x )
 f N ( x  v )(1  p)  f N ( x  v ) p
dx
x2
( x  v )2
( x  v )2 
 2

1
1 
  2 2

2
2
f N ( x) 
e
 fY ( x ) 
(1  p)  e 2 p 
e
2 
2  




fY ( x ) 
THE EXPECTED VALUE
expected value or mean of a random variable X:

E[ X ] 
tf

X
exists if E[ X ] 
(t )dt

Example:
t
f X (t )dt  

Mean of a Uniform Random Variable
1
1 b2  a 2 a  b
E[ X ] 
t dt 


ba a
2 ba
2
b
f X (m  x)  f X (m  x) then E [X] = m.
If the pdf is symmetric about a point m:
Example: Mean of Exponential Random Variable
f X ( x)  e
 x

x  0  E[ X ]   x e
 x
0


 1
 x 
dx    xe
  e   x dx  
0
0

 
Expected Value of Y = g (X) :

E[Y ] 
 g ( x) f
X
( x )dx

Example: Expected Values of a Sinusoid with Random Phase
Y  a cos(t  )
where a,  and t are constants;  is uniform in [0,2 ].
expected value of Y and expected value of the power of Y, Y 2:
E[Y ]  E[a cos(t  )] 
1
2
2
1
 a cos(t   )d  2 a sin(t   )
2
0
0
0
1

E[Y 2 ]  E[a 2 cos2 (t  )]  E  a 2 1  cos(2t  2) 
2


1 
1
 a 2 1 
2  2
2

1
 cos(2t  2 )d   2 a
2
0
Some properties:
(i) E[c]  c where c is constant.
(ii) E[cX ]  cE[ X ]

n

n

k 1
(iii) E   gk ( X )    E[ gk ( X )]
 k 1
Variance of X
VAR[ X ]  E ( X  mX )2   E[ X 2 ]  mX2
Standard Deviation:
m X  E[ X ]
STD[ X ]  VAR[ X ]
Example: Variance of uniform RV
mX 
ab
2
E ( X  mX )2  
1 
ab
(b  a ) 2
x

dx



b  a a 
2 
12
2
b
Example: Variance of the Gaussian RV



1
f X ( x )dx 
2 

e

( x  m )2
2 2

dx  1
e



( x  m )2
2 2
dx  2 

Differentiate with respect to :

 ( x  m) 2  
   3  e
 
( x  m )2
2 2
dx  2

The nth moment of the random variable X:

E[ X n ] 
x

n
f X ( x )dx
1
2

 ( x  m) e
2


( x  m )2
2 2
dx   2
IMPORTANT RVs
The uniform RV
 1

f X ( x)   b  a
 0
Pdf:
a xb
x  a, x  b
 0
 x  a
FX ( x )  
b  a
 1
Cdf
xa
a xb
xb
mean and variance:
ab
2
E[ X ] 
VAR[ X ] 
(b  a ) 2
12
The exponential RV
Pdf:
 0
f X ( x)    x
 e
Cdf:
 0
FX ( x )  
 x
1  e
x0
x0
x0
x0
mean and variance:
E[ X ] 
memoryless property:
proof:
1

VAR[ X ] 
1
2
P[ X  t  h | X  t ]  P[ X  h]
P[ X  t  h | X  t ] 
P[{ X  t  h} { X  t}] P[ X  t  h] e   ( t h )

  t  e  h  P[ X  h]
P[ X  t ]
P[ X  t ]
e
The Gaussian (Normal) Random Variable
Pdf:

1
f X ( x) 
e
2 
( x  m )2
2 2
 x  
1
FX ( x )  P[ X  x ] 
2 
Cdf:
x
e

( u  m )2
2 2
1
t  u  m  FX ( x ) 
2 
1
  x 
2
where
x
e

t2
2
dt
du

( x  m )/


t2
2
 xm
e dt   

  

pdf of a Gaussian RV with m = 0 and  = 1.

Example: Show that Gaussian pdf integrates to one.
 1

 2

e


x  r cos ,

1
2
x2
2
2



1   x2   y2  1
dx  
e dy  
  e dx 
 

2  

 
 2
2
y  r sin 
 
 e

( x2  y2 )
2
 

2
x2  y2  r2
1
dxdy 
2
2 
 e

r2
2
 
 e

( x2  y2 )
2
 
dxdy  rdrd

rdrd   e
0 0

r2
2
rdr  1
0
The Q-function:

2
t

1
2
Q( x )  1  ( x ) 
e
dt
2 x
The Gamma Random Variable
Pdf:
For   0,   0
f X ( x) 
 ( x ) 1 e  x
( )
0 x

where
( z )   x z 1e  x dx
z0
the Gamma function
0
properties:
1
   
2
( z  1)  z( z )
(m  1)  m!
When   m, integer  0 :
z0
m nonnegative integer.
m-Erlang RV
dxdy


f X ( x )dx 
0
    1   x
x e dx
( ) 0
y  x 
1



y
 1  y
e dy 
( )
0


f

X
( x )dx  1
0
The Cauchy Random Variable
f X ( x) 
1/ 
1  x2
X has no moments because the integrals do not converge.
FUNCTIONS OF A RANDOM VARIABLE
Given Y = g(X)
Example:
problem is to find the pdf of Y in terms of the pdf of X.
Y  aX  b
FY ( y )  P[Y  y ]  P[aX  b  y ]  P[ X 
 P[ X 
1  y b
fX 

a  a 

1
 y b
fY ( y ) 
fX 

a  a 
fY ( y ) 
y b
 y b
]  FX 

a
 a 
if a  0
y b
 y b
]  1  FX 

a
 a 
a0
a0






if a  0
fY ( y ) 
1
 y b
fX 

a
 a 
Example: Y = X2
y0
0


P[Y  y ]  

P  y  X 

y 
y0
0


FY ( y )  

 FX ( y )  FX (  y )
y0

y0
 y  d  y   dF   y  d  y 
dy
dy
d y
d y
1
1

f  y
f  y 
y0
2 y
2 y
fY ( y ) 
dFX
X
X
X
If X is Gaussian with mean m = 0, and SD  = 1,
2
1  x2
f X ( x) 
e
2


fX  y 
1  2y
e
2

fY ( y ) 
y

1
e 2
2 y
y0
(chi-square rv with one degree of freedom)
General Case
Solutions of y0  g ( x ) :
Let n = 3,
x0 , x1 , ...., xn
P[ y  Y  y  dy ]  P[ x1  X  x1  dx1 ]  P[ x2  dx2  X  x1 ]  P[ x3  X  x3  dx3 ]
fY ( y ) dy  f X ( x1 ) dx1  f X ( x2 ) dx2  f X ( x3 ) dx3

fY ( y ) 
f X ( x1 )
f X ( x2 )
f X ( x3 )


dy / dx x  x
dy / dx x  x
dy / dx x  x
1

In general,
2
n
fY ( y )  
k 1
Previous example: Y = X2
y  x2
3
f X ( xk )
g ( xk )
 2 solutions for y  0 :
g ( x )  2 x  g ( x1 )  2 y
g ( x2 )  2 y


y
x1  y
g ( x1 )  g ( x2 )  2 y

y

y
f (x )
f (x )
1 e 2
1 e 2
1 e 2
fY ( y )  X 1  X 2 


g ( x1 )
g ( x2 )
2 2 y
2 2 y
2 y
Example: Y = cos(X) X: uniformly distributed in [0,2],
y  cos( x)
Two solutions in [0,2 ]
f X ( x) 
 x1  cos1 ( y )
g ( x)   sin( x)  g ( x1 )   sin cos1 ( y )
1
2
g ( x1 )  g ( x2 )  1  y 2
0  x  2
x2  2  cos1 ( y)
g ( x2 )  sin cos1 ( y ) 
  cos1 ( y )  y  cos( )  sin( )  1  cos2 ( )  1  y 2

x2   y
fY ( y ) 
1
1
1
1
1


2
2
2 1  y
2 1  y
 1  y2
1  y  1
THE MARKOV AND CHEBYSHEV INEQUALITIES
Markov inequality:
P[ X  a ] 
E[ X ]
a
X is non-negative.
This bound is useful if we don’t have any information about the RV except its mean value.
Proof:

E[ X ]   t f X (t )dt
0
a




0
a
a
a
a
  t f X (t )dt   t f X (t )dt   t f X (t )dt   a f X (t )dt  a  f X (t )dt  aP[ X  a ]
If only the mean and variance are known:
The Chebyshev inequality:
Proof: Let D 2  ( X  m)2
2
P  X  m  a   2
a
Markov inequality 
a tighter bound than Markov.
E[ D 2  a 2 ] 
E[ D 2 ]  2
 2
a2
a
Example: Multi-user computer system;
mean response time m = 15 s
standard deviation  = 3 s
Estimate the probability that the response time is more than 5 seconds from the mean.
Chebyshev inequality a  5 s
9
 P  X  15  5 
 0.36
25
The Chernoff bound: Let A = {t  a}. Indicator function of A,
1 t  a
I A (t )  
0 t  a

P[ X  a ]   I A (t ) f X (t )dt
0
Choose the bound for the indicator function as


 I A (t ) f X (t )dt 

t
a f
0
X
(t )dt 
0
I A (t ) 
E[ X ]
a
t
for all t  0
a
: Markov inequality.
Let the bound be
I A (t )  e s ( t a )
s0



0


s ( t a )
 sa
st
 sa
sX
 I A (t ) f X (t )dt   e f X (t )dt  e  e f X (t )dt  e E[e ]
0
P[ X  a ]  e
 sa
0
sX
E [e ]
: the Chernoff bound
The Characteristic Function:
Continuous RVs


 X ( )  E[e j X ] 
f X ( x )e j x dx
Fourier transform of the pdf

f X ( x) 
1
2


X
( )e  j x d 
Inverse Fourier transform

Discrete RVs:
 X ( )   p X ( xk )e j xk
k
 X ( )   p X ( k )e jk
: integer-valued RVs
k
p X (k ) 
1
2
2

X
( )e  jk d 
0
Example: Exponential RV


0
0
 X ( )    e   x e j x dx    e  (   j ) x dx 

  j
Example: Geometric RV


k 0
k 0
 X ( )   pqk e jk  p  ( qe j )k 
p
1  qe j
The moment Theorem:
E[ X n ] 
Proof:
1 dn
 X ( )
j n d n
 0
Taylor series expansion of e j x
( j x )2
 ....
2!



( j x )2
j x
f X ( x )e dx   f X ( x )  1  j x 
 ...  dx
2!



e j x  1  j x 
 X ( ) 




 1  j  x f X ( x)dx 

( j )2
2!

x
2
f X ( x )dx  ....

( j )2
( j)n
E[ X 2 ]  ..... 
E[ X n ]  ....
2!
n!
Compare with the Taylor series expansion of  X ( ) about  = 0 :
 X ( )  1  j E[ X ] 
 (Xn ) (0) n ( j )n
 
E[ X n ]
n!
n!

E[ X n ] 
1 (n)
1 dn

(0)

 X ( )
X
jn
j n d n
 0
Example: mean and variance of an exponentially distributed random variable
 X ( ) 

j
 E[ X ] 
(  j )2
1
2
 E[ X 2 ]  2 X (0)  2 
j

X ( ) 
  j
2
X ( ) 
(  j )3
1
1
X (0) 
j

VAR[ X ] 
2

2

1

2

1
2
RELIABILITY
The reliability at time t is defined as the probability that the component, subsystem, or system
is still functioning at time t:
R(t )  P[T  t ]
T: lifetime of system
R(t )  1  P[T  t ]  1  FT (t )
 R(t )   fT (t )
FT (t ) : cdf of T.
The mean time to failure (MTTF) is given by the expected value of T:



0
0
0
E[T ]   t f T (t )dt    t R(t )dt   R(t )dt
The conditional cdf of T given that T > t :
xt
0


FT ( x | T  t )  P[T  x | T  t ]   FT ( x )  FT (t )
 1  F (t )

T
fT ( x | T  t ) 
fT ( x )
1  FT (t )
xt
xt
r (t )  f T (t | T  t )  
The failure rate function r(t) :
R(t )
R (t )
r(t) dt = the probability that a component that has functioned up to time t will fail in the next
dt seconds.
Example: Exponential Failure Law
constant failure rate function :
r (t )  


R(t )
 
R (t )
initial condition R(0)  1
dR
  dt
R
 R (t ) 
ln 
   t
 R(0) 
f T (t )   e   t
t 0
R( t )  e   t
t0
: T is an exponentially distributed RV.
Reliability of Systems
As : the event “ system functioning at time t ”
Aj : the event “jth component is functioning at time t ”
Series Connection:
P[ As ]  P[ A1
A2
.... An ]  P[ A1 ]P[ A2 ]....P[ An ]
 R(t )  R1 (t ) R2 (t )....Rn (t )
If systems have constant failure rates: Ri (t )  e t
i

R(t )  e( 1 2 ....n ) t
Parallel Connection:
The system will not be functioning if and only if all the components have failed.
P[ Asc ]  P[ A1c ]P[ A2c ]....P[ Anc ]
 1  R(t )  1  R1 (t ) 1  R2 (t )  .... 1  Rn (t ) 
R(t )  1  1  R1 (t ) 1  R2 (t ) .... 1  Rn (t ) 
Example: Compare the reliability of a single-unit system against that of a system that operates
two units in parallel. Assume all units have exponentially distributed lifetimes with rate 1.
single-unit system:
Rs (t )  e t
two units in parallel:
R p (t )  1  (1  e  t )(1  e  t )  e  t (2  e  t )  e  t
 R p (t )  Rs (t )