Design digital filter:
1. Draw unit circle+ mark freqs
π
π2ππ
π
2. Place poles + zeros (using Ξ±π
π
where Ξ± usually < 1, 2π = angle)
General form of transfer func.
Linear phase if zeros on
Symmetry about x-axis β if
H(z)=N(z)/D(z)
unit circle and/or
pole exists at z=AejΞ± there must
Unit circle
Zeros
when
H(z)ο 0
Shift theorem: zeros/poles at origin
be one at z=Ae-jΞ±
Poles when H(z)ο β
π(π§) = π§ βπ π(π§)
2ππ
Angle of pth
When zn=1, π§ = π π π where
π
Frequency response of a
shift of m samples
root = 2π
π
π
from X(z) to Y(z)
p starts from 0, 1..., n
digital filter = H(ej2ΟfT)
Z-transform:
π2π
β
π§ = π ππ
Fourier transform =
e.g. 0.7y[n-1]ο 0.7z-1Y(z)
π(π§) = β π₯[π]π§ βπ
X(ej2ΟfT) of X(z)
Convolution theorem:
β
π=ββ
Discrete convolution:
Latches delay
β
π£π (π‘) = β« β(π‘ β π)π£π (π)ππ
ππ (ππ) = π»(ππ)ππ (ππ)
signal by T
(j2Οf for cyclical frequency response)
π£π [π] = β β[π β π]π£π [π]
ββ
π=ββ
If p1 is between 0 and ½N, plot in DFT;
Amplitude of
4. Spectrum frequency represented if not, use periodicity property of DFT:
π΄π
ππ
peak =
If a peak occurs at p, it will occur at p±N,
by pth harmonic, ππ = π
2
π
p±2N... do same for all p1, p2...
πβ1
βπ2πππβ
1. Sample original signal (with duration T seconds)
π
π[π] = β π₯(π)π
2. Make signal periodic to T seconds (may need window
π=0
function* if there are discontinuities)
3. Expand as a Fourier series
4. Amplitude + phase spectra exist as discrete frequencies and
form the DFT.
FFT has log2(N) *
Periodically
*windowing
N calculations
reduces leakage but
1
extended signal
ππ =
worsens resolution
NO overlapping
π
between adjacent
bands
1. Periodic
Realities:
All signals have β BW so aliasing occurs
Non-ideal filters so no sharp cut-offs
discrete signal
Sampled signal
X(f)
anti-aliasing filter (LPF)
β to reduce noise
-(f+2fs) -(2fs βf) -(f+fs)
-(fs βf)
-f
0
f
fs β f
f+fs
2fs βf
f+2fs
Xs(j2Οf) consists of X(j2Οf)
plus sidebands centred at nfs
A/D
(sampling)
Shannonβs
sampling
theorem:
Analogue
signal
fs β₯ 2fmax
5
π/2
π
0 (π) = β«
Bode plot for
amplitude
response, AdB(Ο) =
20πππ(|π»(ππ)|)
4
π (π‘)π¦(π‘)ππ‘
βπ/2
A peak indicates frequency
of wave:
3
2
1
π
π
ππ
3. Transfer function, H(z)
End with y[n]
6
Transfer function, H(s)
Frequency response, H(jΟ)
Amplitude response, |H(jΟ)| or |H(ejΟT)|
πππ
Phase response, β π»(ππ) = π‘ππβ1 ( )
R0
Zero close to unit circle, Zero on unit For stability, all poles must
Finite Impulse Response
|H(ejΟT)| is at a minimum
circle ο
be inside unit circle (β¨
filter if just zeros on plane
jΟT
|H(e )|=0 at
coincident pole-zero pair
Multiple
(and ole at origin) β linear
notch filter
corresponding
cancels each other out)
phase response
frequency
IIR if there are poles in circle (sharp amplitude
Pole close to unit circle,
response if close to circle)
|H(ejΟT)| becomes very large
If R0 > 0, then test wave is
synchronised with original signal
Dirac delta properties:
0
-1
-2
-10
β
-5
0
Frequency (Hz)
5
10
π΄π
π
0
=
ββ
2
β
Correlation coefficient,
2
π/2
β« π(π‘)πΏ(π‘ β π)ππ‘ = π(π)
π€πππ‘β =
2π
ββ
π
ππ
(π) = β« π₯(π‘) cos(2πππ‘) ππ‘
π0 =
Dirac delta function when T=β
βπ/2
π
π/2
To find parameters of a wave, s(t):
Area of spike = 1 (unity)
R0 = s(t)y(t)
ππΌ (π) = β« π₯(π‘) sin(2πππ‘) ππ‘
To get original signal back:
All waves have:
βπ/2
test cosine
β
Amplitude spectrum
π₯(π‘) = β« π(π2ππ)ππ2πππ‘ β‘ππ
π΄(π)
= βππ
2 + ππΌ 2
Phase spectrum
ββ
Continuous Fourier
β1 β
s(t) = A cos(2Οft + Ο)
2
transform:
π₯(π‘) =
β« π(ππ)ππππ‘ β‘ππ
π΄πππππ‘π’ππ = π΄(ππππ₯ )
2π ββ
π
A(f)=|X(j2Οf)|
ππΌ (πmax )
Ο(f) = β X(j2Οf)
πβππ π = π‘ππβ1 (β
)
XR(f)
ππ
(ππππ₯ )
β« πΏ(π₯)ππ₯ = 1
πππ₯
β
ο±( f )
π(ππ) = β« π₯(π‘)π βπππ‘ β‘ππ‘
XI(f)
X(f)
i.e. π (π‘) = 3cosβ‘(2π(1.5)π‘ + 1.6)
Ideal ampliture spectra Ideal phase spectra
ββ
2
4
β
0
Fourier transform: F(s = jΟ)
{replace s with jΟ}
3
A m plitude
πΉ(π ) = β« π(π‘)π βπ π‘ ππ‘
Phase (radians)
3.5
2.5
2
1.5
1.5
1
0.5
1
0.5
0
0
0
0.5
1
Frequency (Hz)
1.5
2
0
0.5
1
Frequency (Hz)
1.5
2
Parsevals theorem:
To solve:
Energy associated with the frequency band Ο1 β€ |Ο| β€ Ο2
1. Laplace table
1 π2
2. Fourier (s=jΟ) or (s=j2Οt in terms of
πΈ(π1 , π2 ) = β« |πΉ(ππ)|2 ππ€
π
cyclical frequency)
π1
complex
|πΉ(ππ)|2 = πΉ(ππ). πΉ β (ππ)
3. Amplitude spectrum, A(f) = |F(j2Οft)|
conjugate
β
π₯(π‘) = ππ + β(ππ cos(ππ0 π‘) + ππ sinβ‘(ππ0 π‘))β‘
|π»(πππ )| =
π»πππ₯
β2
π=1
Contribution to total power
from N harmonics:
sine (odd period
function)
π
Case 1:
H(s) = s
H(jΟ) = jΟ
|H(jΟ)| = Ο
π΄ππ΅ (π) = 20logβ‘(π)
ππ = π0
2
ππ 2 + ππ 2
+β
2
π=1
π/2
1
= β« [π(π‘)]2 β‘ππ‘
π βπ/2
a0 = an = 0
4 π/2
ππ = β« π₯(π‘) sin(ππ0 π‘) ππ‘
π 0
Fourier (correlation) coefficents:
1 π/2
1 π
π0 = β« π₯(π‘)ππ‘ = β« π₯(π‘)ππ‘
π = ππ0 β‘
π βπ/2
π 0
2 π
ππ = β« π₯(π‘) cos(ππ0 π‘) ππ‘
a0 : DC term
π 0
n = 1 : fundamental
π
n β₯ 2 : nth harmonic π = 2 β« π₯(π‘) sin(ππ π‘) ππ‘
π
0
π 0
ππππ
Nyquist freq.
Orthogonality doesnβt allow
transmission
all even n = 0
Gain margin, GM = -LGdB
correlation coefficients to
of sampled
Bode
plots
Case 2:
Analogue LPF
Reconstructed
nth harmonic: π΄π cosβ‘(ππ0 π‘ + ππ )
Loop gain, LGdB = 20log|G(jΟ-180)|
pick up contributions from
signal
H(s) = 1/s
analogue signal
ππ
π (ππ)
harmonics other than the nth
cosine (even periodic
Transfer function, π»(ππ) = π
ππ = π‘ππβ1 (β )
π΄ππ΅ (π) = β20logβ‘(π)
Case 3:
ππ (ππ)
harmonic
function) x(t)=x(-t)
ππ
GM and PM > 0
Phase margin, PM = β πΊ(ππ1 ) + 180
H(s) = s + Ξ±
for stability
= β π΄ππ΅ (π0 ) + 180
β
2
When Vi(t) = Ξ΄(t) Fourier transform of
π΄π = βππ 2 + ππ
|π»(ππ)| β‘ = β‘ βπ 2 + πΌ 2
π₯(π‘)
=
π
+
β
ππ cosβ‘(ππ0 π‘)
V
(t)
=
h(t)
is
V
(jΟ)
=
H(jΟ)
0
o
o
20logβ‘(πΌ),
0β€πβ€πΌ
ο½c ο½
π΄ππ΅ (π) = {
Overall phase response is sum of phase responses.
π=1
a
=
0
if
+ve
=
-ve
area
Ξ΄-function of
0
20 log(π) ,
π>πΌ
For amplitude
Plot H(jΟ) using linear scale.
height An/2 at
bn = 0
spectrum,
For cut-off frequency:
Case 4:
st
π
π
Butterworth 1 order:
for symmetrical waves, half the
frequency nΟ0
1
Οn = 0
π β for LPF
2
2
Overall bode plot is
π
π»(π ) β‘ = β‘
πΊ
π
graph and multiply by 2
π0 = β« π₯(π‘)ππ‘
π
π β‘ + β‘π½
π»(π ) =
β¦β¦.
sum of bode plots:
π 0
π β π for HPF
β¦β¦.
1+π
π
N
2
2
βπ + πΌ
π/2
|π»(ππ)|
β‘
=
β‘
2 +π 2
π
4
0
AdB (ο· ) ο½ ο₯ AdBi (ο· )
π β
for BPF
20logβ‘(π½),
0β€πβ€π½
ππ = β« π₯(π‘) cos(ππ0 π‘) ππ‘
i ο½1
π΅π
ο·
π΄ππ΅ (π) = {
π 0
-2ο·
-ο·
0
ο·
2ο·
β20 log(π) ,
π>π½
where Ο02 = π
Μ.Μ
π and B = π
Μβπ
Μ
n= ο2
n= ο1
n=0
n=1
n=2
n
0
0
0
0
© Copyright 2025 Paperzz