Chapter 5 Graphing and Optimization Section 4 Curve Sketching Techniques Objectives for Section 5.4 Curve Sketching Techniques ■ The student will add information about holes and asymptotes to the curve sketching strategy. Barnett/Ziegler/Byleen Business Calculus 12e 2 Modifying the Graphing Strategy Up to this point, we haven’t considered the graphs of rational functions. We will recall the method for finding holes and asymptotes and add that to our “toolbox” for sketching graphs of functions. Barnett/Ziegler/Byleen Business Calculus 12e 3 Graphing Strategy Step 1. Analyze f (x) • Determine the domain of f. • Determine the intercepts. • Determine the holes & asymptotes Step 2. Analyze f (x) • Find the partition points of f (x). • Construct a sign chart for f (x). • Determine the intervals where f is increasing and decreasing • Find local maxima and minima (at critical points) Barnett/Ziegler/Byleen Business Calculus 12e 4 Graphing Strategy Step 3. Analyze f (x). • Find the partition points of f (x). • Construct a sign chart for f (x). • Determine the intervals where the graph of f is concave upward and concave downward. • Find inflection points. Step 4. Sketch the graph of f. • Draw asymptotes and locate intercepts, local max and min, and inflection points. • Plot additional points as needed and complete the sketch Barnett/Ziegler/Byleen Business Calculus 12e 5 Review Find the holes, vertical and horizontal asymptotes of f(x). 𝑓 𝑥 = 𝑓 𝑥 = 𝑓 𝑥 = 𝑓 𝑥 2𝑥−4 𝑥+2 1 𝑥−5 = 2(𝑥−2) 𝑥+2 6𝑥 2 1+2𝑥 2 No holes VA: x = -2 HA: y = 2 No holes VA: x = 5 No holes VA: none HA: y = 0 HA: y = 3 𝑥 2 +𝑥−6 = 2 𝑥 −𝑥−12 (𝑥+3)(𝑥−2) = (𝑥−4)(𝑥+3) = 𝑥−2 𝑥−4 Hole: −3, 57 VA: x = 4 Barnett/Ziegler/Byleen Business Calculus 12e HA: y = 1 6 Asymptotes and Limits Horizontal asymptotes determine the end behavior of a function. Recall that end behavior can be described using limits. Vertical asymptotes can also be described using limits. Horizontal asymptote: lim 𝑓 𝑥 = 1 lim 𝑓 𝑥 = 1 𝑥→∞ 𝑥→−∞ Vertical asymptote: lim− 𝑓 𝑥 = −∞ 𝑥→2 Barnett/Ziegler/Byleen Business Calculus 12e lim+ 𝑓 𝑥 = ∞ 𝑥→2 7 Example 1 Use the information to sketch the graph of f(x). HA: y = 3 Incr: (-, -1), (1, ) Decr: (-1, 1) Vertical tangent at x=0 Max when x=-1 Min when x=1 CC up: (-, -2), (0, 2) CC down: (-2, 0), (2, ) Inflect. Pt. when x= -2, 0, 2 Barnett/Ziegler/Byleen Business Calculus 12e 8 Example 1 (cont.) y HA: y = 3 Incr: (-, -1), (1, ) x Decr: (-1, 1) Max when x=-1 Min when x=1 CC up: (-, -2), (0, 2) CC down: (-2, 0), (2, ) Inflect. Pt. when x = -2, 0, 2 Barnett/Ziegler/Byleen Business Calculus 12e 9 Example 2 Use the information to sketch a graph of f(x). Barnett/Ziegler/Byleen Business Calculus 12e 10 Example 2 (cont.) y (D) (-2,1) (2,1) Barnett/Ziegler/Byleen Business Calculus 12e x 11 Example 2 (cont.) y x Barnett/Ziegler/Byleen Business Calculus 12e 12 Example 3 Use the graphing strategy to sketch the graph of 𝑥 2 − 3𝑥 𝑓 𝑥 = 2 𝑥 − 5𝑥 + 6 Analyze 𝑓 𝑥 : 𝑥(𝑥 − 3) 𝑥 𝑓 𝑥 = = 𝑥 − 2 (𝑥 − 3) 𝑥 − 2 Domain: −∞, 2 ∪ 2,3 ∪ 3, ∞ Y-intercept: y = 0 X-intercept: 𝑥 = 0 Hole: (3, 3) Vertical asymptote: x=2 Horizontal asymptote: y=1 Barnett/Ziegler/Byleen Business Calculus 12e 13 Example 3 (cont.) Analyze 𝑓′ 𝑥 : 𝑓 𝑥 = 𝑥(𝑥−3) 𝑥−2 (𝑥−3) = 𝑥 𝑥−2 𝑓′ 𝑥 = 𝑓′ 𝑥 = 𝑥−2 1 −𝑥(1) 𝑥−2 2 −2 𝑥−2 2 Partition points: x=2 𝑓′(𝑥) − − − 𝑁𝐷 − − − 2 Decreasing: −∞, 2 ∪ 2, ∞ No local extrema Barnett/Ziegler/Byleen Business Calculus 12e 14 Example 3 (cont.) Analyze 𝑓′′ 𝑥 : 𝑓′ 𝑓 ′′ −2 𝑥 = 𝑥−2 𝑥−2 2 2 0 − (−2)(2 𝑥 − 2 ) 𝑥 = 𝑥−2 4 4 4(𝑥 − 2) = = 4 𝑥−2 3 𝑥−2 Partition points: x=2 − − − 𝑁𝐷 + + + 2 Barnett/Ziegler/Byleen Business Calculus 12e CC down: −∞, 2 CC up: 2, ∞ No inflection points 15 Example 3 (cont.) Y-intercept: y = 0 X-intercept: 𝑥 = 0 Hole: (3, 3) Vertical asymptote: x=2 Horizontal asymptote: y=1 y x Decreasing: −∞, 2 ∪ 2, ∞ No local extrema CC down: −∞, 2 CC up: 2, ∞ No inflection points Barnett/Ziegler/Byleen Business Calculus 12e 16 Homework #5-4: Pg 319 1, 5, 7, 17, 31, 65 Barnett/Ziegler/Byleen Business Calculus 12e 17
© Copyright 2026 Paperzz