Radiative-capture reactions P. Descouvemont Physique Nucléaire Théorique et Physique Mathématique, CP229, Université Libre de Bruxelles, B1050 Bruxelles - Belgium 1. Introduction, definitions 2. Electromagnetic transitions 3. Radiative-capture cross sections 4. Radiative capture in nuclear astrophysics 5. Application to the potential model 6. Conclusions 1 1. Introduction - definitions Capture reaction = Electromagnetic transition from a scattering state to a bound state Ei > 0 πΈπΎ A Ei Initial scattering state A+B Ei>0 B A+B g C, Ef Final bound state: Ef<0 In general: several states Ef < 0 C Energy conservation: πΈπΎ = πΈπ β πΈπ (recoil energy of nucleus C is negligible) Examples : (p,g) reactions: 7Be(p,g)8B, 12C(p,g)13N, 16O(p,g)17F (a,g) reactions: 3He(a,g)7Be, 12C(a,g)16O Typical values: up to a few MeV Photon wavelength for πΈπΎ = 1 MeV: ππΎ = 2π ππΎ = 2πβπ πΈπΎ βΌ 1200 fm ππΎ β« typical dimension π ππΎ π βͺ 1: long wavelength approximation 2 1. Introduction - definitions Importance in astrophysics: 1. Hydrogen burning: CNO cycle, pp chain CNO cycle(s) Capture reactions Transfer reactions Beta decays 2. Helium burning: 8Be(a,g)12C, 12C(a,g)16O, 16O(a,g)20Ne,β¦ 3. Neutron capture reactions: 7Li(n,g)8Li, many othersβ¦ 3 1. Introduction - definitions Difference fusion / radiative capture Radiative capture: g channel only (electromagnetic) Fusion: β’ all channels with mass higher than the projectile and target β’ In general, many channels ο statistical approach Example: 12C+12C fusion experimental cross section Satkowiak et al. PRC 26 (1982) 2027 E many states 12C+12C 4 1. Introduction - definitions Other example: 12C(12C,g)24Mg radiative capture β’ Existence of molecular states in 24Mg? β’ Transitions to 3 states of 24Mg β’ Cross section much smaller than fusion Rad. cap: ~100 nb *4p ~1 mb (electromagnetic) Fusion: ~200 mb (nuclear) 12C+12C 24Mg 5 2. Electromagnetic transitions 6 2. Electromagnetic transitions Transition probability Initial state: energy Ei Final state: energy Ef g system of charged particles: π» = π»0 system of charged particles + photon: π» = π»0 + π»πΎ (π»πΎ small) Wave function Ξ¨π Wave function Ξ¨π β’ Energy conservation: πΈπ = πΈπ + πΈπΎ β’ Perturbation theory (π»πΎ small) β’ Fermi golden rule ο Transition probability from an initial state to a final state ο π€πβπ βΌ < Ξ¨π π»πΎ |Ξ¨π > |2 : very general definition 7 2. Electromagnetic transitions Three types of electromagnetic transitions Nucleus C=A+B A B C πΈπ > 0 πΈπ > 0 πΈ=0 πΈπ > 0 A+B A+B A+B πΈπ < 0 πΈπ < 0 C Bound ο bound πΈπ < 0, πΈπ < 0 πΈπ < 0 C scattering ο bound πΈπ > 0, πΈπ < 0 =radiative capture C scattering ο scattering πΈπ > 0, πΈπ > 0 =bremsstrahlung β’ In all cases π€πβπ βΌ < Ξ¨π π»πΎ |Ξ¨π > |2 β’ But: different types of wave functions β’ Bremsstralhung: transition from continuum to continuum ο strong convergence problems 8 2. Electromagnetic transitions Boundο bound: β’ Initial and final states characterized by spins π½π ππ and π½π ππ β’ Transition probability: π€πβπ βΌ < Ξ¨ π½π ππ π»πΎ |Ξ¨ π½π ππ > |2 β’ π€πβπ provides the g width ΞπΎ = βπ€, lifetime π = β/ΞπΎ Scattering to bound state: radiative capture β’ Final state: characterized by spin π½π ππ β’ Initial state : Ξ¨(πΈ) = scattering state (expansion in partial waves, all π½π ππ ) β’ Transition probability: π€πβπ (πΈ) βΌ < Ξ¨ π½π ππ π»πΎ |Ξ¨(πΈ) > |2 β’ π€πβπ provides the capture cross section General property : π»πΎ small ο electromagnetic processes have a low probability β’ Gamma widths small compared to particle widths β’ Capture cross sections small compared to elastic or transfer cross sections (nuclear origin) g decay: Gg=0.5 eV, T=10-14 s proton decay: Gp=32 keV, T=2x10-20 s ο Gg/Gp<<1 9 2. Electromagnetic transitions Comparaison transfer β capture reactions: 6Li(p,a)3He and 6Li(p,g)7Be S-factor (MeV-b) 10 S- Factor π πΈ = π πΈ πΈexp 2ππ 1 6 Li(p,a)3He β’ factor 104 typical of nucl/elec. β’ g channel negligible compared to a channel 0.1 0.01 0.001 6 Li(p,g)7Be 0.0001 0.00001 0.01 0.1 1 10 E (MeV) S factor proportional to s Same energy dependence (identical entrance channel) st (transfer)>> sC (capture) : general property 10 2. Electromagnetic transitions Electromagnetic operator π»πΎ β’ Depends on β’ nuclear coordinates (nuclei or nucleons, according to the model) β’ photon properties (energy πΈπΎ , emission angle Ξ©πΎ ) β’ Deduced from the Maxwell equations (+quantification) π (Ξ© ) ππΎπ β³πππ (π1 , β¦ ππ΄ )π·ππ πΎ π»πΎ βΌ πππ nucleons photon β’ π = πΈ or π (electric or magnetic) β’ π=order of the multipole (from 1 to ο₯, in practice essentially π = 1,2) β’ m is between βl and +l π β’ π·ππ (Ξ©πΎ )=Wigner fonction , Ξ©πΎ =photon-emission angle β’ β³πππ = multipole operators (depend on nucleon coordinates ri) 11 2. Electromagnetic transitions β’ Electric operators 1 π β³ππΈπ = e π(2 β π‘ππ§ )πππ ππ Ξ©ππ for a many-nucleon system (sensitive to protons only) with π‘ππ§ =isospin= +1/2 (neutron) -1/2 (proton) ππ = ππ , Ξ©π = nucleon space coordinate β’ Magnetic operators π 2π π β³πππ = βπ π[π(π π ππ Ξ©π ]π=ππ β (π+1ππ π³π +ππ π πΊπ ) with πΊπ =spin of nucleon i π³π =orbital momentum of nucleon i β’ Transition probability (integral over Ξ©πΎ ) π€πβπ (πΈ) βΌ < Ξ¨ β’ π»πΎ is expanded in multipoles π½π ππ π»πΎ |Ξ¨π½π ππ > 2 ππΎ2π+1 < Ξ¨ π½π ππ β₯ β³ ππ β₯ Ξ¨ π½π ππ > ππ½π ππβπ½π ππ βΌ 2 ππ photon nucleus 12 2. Electromagnetic transitions β’ Reduced transition probability π΅ ππ, π½π ππ β π½π ππ = 2π½π + 1 < Ξ¨ π½π ππ β₯ β³ ππ β₯ Ξ¨ π½π ππ > 2π½π + 1 2 β’ Units: electric (s=E): π 2 fm2Ξ» 2 magnetic (s=M): ππ fm2Ξ»β2 β’ Gamma width: ΞπΎ (π½π ππ β π½π ππ ) = βππ½π ππβπ½π ππ β’ Total gamma width : sum over final states example: 15O β’ from a given state: several transitions are possible β’ in practice: β’ selection rules β’ factor ππΎ2π+1 favors large πΈπΎ 13 2. Electromagnetic transitions Important properties: β’ Hierarchy between the multipoles: π€ π,π+1 π€ π,π ~ ππΎ π 2 βͺ 1 (long wavelength approximation) πΈ1 β« πΈ2 β π1 β« πΈ3 β π2, β¦ ο¨ only a few multipoles contribute (one) β’ Selection rules: < Ξ¨ π½π ππ β₯ β³ ππ β₯ Ξ¨ π½π ππ > angular momentum π½π β π½π β€ π β€ π½π + π½π parity: ππ ππ = β1 π for π = πΈ ππ ππ = β1 π+1 for π = π β’ E1 forbidden in N=Z nuclei (T=0) 1 ππΈ1 βΌ (2 β π‘ππ§ )(ππ β πΉππ) β’ No transition with π = 0 3β 0+ 2 E2 β’ Examples: β’ transition 2+ β’ transition 1β β’ transition 2+ β’ transition 3β 0+ : πΈ2 β β 0+ : πΈ1 β 1+ : πΈ2, π1, π3 β 2+ : πΈ1, πΈ3, πΈ5, π2, π4 2+ E3 E2 0+ 14 2. Electromagnetic transitions Capture cross section (for a given final state π½π ): ππΎ2π+1 < Ξ¨ π½π ππ β₯ β³ ππ β₯ Ξ¨(πΈ) > π(π½π , πΈ) βΌ 2 ππ Ξ¨(πΈ) =initial state, expanded in partial waves Ξ¨ πΈ = E1 (or E2) dominant ο picks up a few partial waves with π½π Ξ¨ π½π ππ (πΈ) examples: 12C(p,g)13N, 12C(a,g)16O 12C(p,g)13N A single final state: π½π = 1/2β (ground state) Main multipolarity: E1 ο Initial states: π½π = 1/2+ , 3/2+ Resonance for π½π = 1/2+ ο enhances the cross section 15 2. Electromagnetic transitions E 12C+a 12C(a,g)16O β’ β’ β’ β’ Several final states: (π½π = 0+ dominant) E1 multipolarity: π½π = 1β E2 multipolarity: π½π = 2+ Cascade transitions small (factor ππΎ2π+1 ) β’ N=Z=6 ο E1 forbidden (T=0, long wavelength approx.) β’ Exp: πΈ1 β πΈ2 (T=0 not strict) 16 3. Cross sections for radiative capture 17 3. Radiative-capture cross sections We assume a spin zero for the colliding nuclei ππΎ2π+1 < Ξ¨ π½π ππ β₯ β³ ππ β₯ Ξ¨(πΈ) > π(π½π , πΈ) βΌ 2 ππ β’ General definition, valid for any model. β’ Potential model (structure neglected) β’ Microscopic models β’ R-matrix, etc. β’ Spins zero for the colliding nuclei: Ξ¨ πΈ = π½ Ξ¨π½ (πΈ) β’ Essentially astrophysics applications ο low energies ο low π½ values β’ At low scattering energies π½π = 0+ is dominant (centrifugal barrier) ο π½π = 1β πΈ1 , π½π = 2+ πΈ2 are expected to be dominant π½>0 π½=0 πΈ small ο penetrability decreases with π½ 18 3. Radiative-capture cross sections Example 1: 8Be(a,g)12C β’ Initial partial wave π½π = 0+ (includes the Hoyle state. β’ E2 dominant (E1 forbidden in N=Z) β’ ο essentially the π½π = 2+ state is populated. 19 3. Radiative-capture cross sections Example 2: 14N(p,g)15O 14N+p E (all π½π values) β’ Spin of 14N: πΌ1=1+, proton πΌ2=1/2+ β’ Channel spin πΌ: πΌ1 β πΌ2 β€ πΌ β€ πΌ1 + πΌ2 ο πΌ = 1/2, 3/2 β’ Orbital momentum β πΌ β β β€ π½π β€ πΌ + β β’ At low energies, β = 0 is dominant ο π½π = 1/2+ , 3/2+ β’ multipolarity E1 ο transitions to π½π = 1/2β , 3/2β , 5/2β β’ Resonance 1/2+ determines the cross section 20 Radiative capture in astrophysics 21 4. Radiative capture in astrophysics β’ Elastic scattering is always possible, but does not affect the nucleosynthesis β’ Essentially two types of reactions β’ Transfer β’ Capture β’ capture is important only if transfer channels are closed 15N+p threshold 15N(p,g)16O and 15N(p,a)12C are open ο 15N(p,g)16O negligible 12C+a threshold only possibility: 12C(a,g)16O ο 12C(a,g)16O (very) important 22 4. Radiative capture in astrophysics Low energies ο β’ cross sections dominated by coulomb effects β’ Coulomb functions at low energies (h=Sommerfeld parameter=Z1Z2e2/οv) F(h,x)ο exp(-ph)F(x), G(h,x)ο exp(ph)G(x) ο¨ 2 coulomb effects: strong E dependence : factor exp(-2ph) strong l dependence E (MeV) V(r) exp(-2*pi*eta) 0.1 0 r E astro 0.5 1 1.5 2 2.5 0.001 1E-05 1E-07 a + He 3 1E-09 1E-11 Astrophysical S factor: S(E)=s(E)*E*exp(2ph) (Units: E*L2: MeV-barn) β’ removes the coulomb dependence ο only nuclear effects β’ weakly depends on energy ο s(E)ο»S0exp(-2ph)/E 23 4. Radiative capture in astrophysics Penetration factor πβ for d+d (2 different radii, a=5 fm and a=6 fm) β’ Typical Coulomb effect β’ depends on the radius β’ strongly depends on energy πΈ, and on angular momentum β β’ πβ (πΈ) βΌ exp β2ππ for β = 0 1.E+01 β=0 β=2 πβ 1.E+00 β=4 1.E-01 d+d 1.E-02 1.E-03 0 2 4 6 πΈ (πππ) 8 10 12 24 4. Radiative capture in astrophysics Non resonant: S(E)=s(E)*E*exp(2ph) approximately constant 10-5 s (barn) 10-6 3He(a,g)7Be 10-7 10-8 Parker et al. 6Li+p 10-9 1010 5/25/27/2- 0 1 2 3 4 a+3He 0.8 1/23/2- S (keV-b) 0.6 7Be 0.4 0.2 Parker et al. 0 0 1 2 E (MeV) 3 4 No resonance with low J 4. Radiative capture in astrophysics Resonances: the Breit-Wigner approximation General properties of a resonance: β’ spin π½π β’ Energy πΈπ β’ Entrance width (here: particle width) β’ Output width (here: gamma width) π½π = 1/2+ πΈπ = 0.42 MeV Ξπ = 32 keV ΞπΎ = 0.5 eV Breit-Wigner approximation near a resonance: πΈ β πΈπ : ΞπΎ πΈ Ξπ πΈ π π πΈ β 2 2π½π + 1 π πΈ β πΈπ 2 + Ξ πΈ 2 /4 Valid for the resonant partial wave π½π ο possible contribution of other partial waves Two typical examples: β’ 12C(p,g)13N: β’ 7Be(p,g)8B: a resonance is present in the dominant partial wave β = 0 resonance in the β = 1 partial wave ο superposition of resonant and non-resonant contributions 26 4. Radiative capture in astrophysics Example 1: 12C(p,g)13N β’ Jf=1/2- β’ E1 ο Ji=1/2+, li=0ο dominant Ji=3/2+, li=2 β’ Resonance for Ji=1/2+ ο enhancement β’ο Two effects make Ji=1/2+ dominant 5/2+ 3/2- S-factor (keV-b) 1000 12 100 C(p,g)13N 1/2+ 12C+p 10 1/2- 1 0 0.2 0.4 0.6 13N 27 4. Radiative capture in astrophysics Example 2: 7Be(p,g)8B β’ Jf=2+ β’ E1 ο ο 1-,2- dominant Ji=1-, li=0,2 Ji=2-, li=0,2,4 Ji=3-, li=2,4 β’ Resonance for Ji=1+ β’ only E2 or M1 are possible β’li=1,3 ο limited effect of the 1+ resonance Both contributions must be treated separately S-factor (eV-b) 200 7 150 3+ Be(p,g)8B 100 1+ 50 7Be+p 0 0 1 2 3 2+ 8B 28 5. Radiative capture in the potential model 29 5. Radiative capture in the potential model Potential model: two structureless particles (=optical model, without imaginary part) o Calculations are simple o Physics of the problem is identical in other methods o Spins are neglected β’ πΉππ =center of mass, π =relative coordinate π΄2 π π΄ π΄1 ππ = πΉππ + π π΄ ππ = πΉππ β r1 r2 β’ Initial wave function: Final wave function: 1 π Ξ¨βπ ππ π = π π’βπ π πβπ π Ξ© , energy πΈ βπ =scattering energy πΈ 1 ππ Ξ¨ βπ ππ π = π π’βπ π πβ π Ξ© , energy πΈ βπ The radial wave functions are given by: β2 π 2 β β + 1 β β 2π ππ 2 π2 π’β + π π π’β = πΈ β π’β 30 5. Radiative capture in the potential model β’ Schrödinger equation: β2 π 2 β 2π ππ 2 β β β+1 π2 π’β + π π π’β = πΈ β π’β β’ Typical potentials: β’ coulomb =point-sphere β’ nuclear: Woods-Saxon, Gaussian with parameters adjusted on important properties (bound-state energy, phase shifts, etc.) β’ Potentials can be different in the initial and final states β’ Numerical method: Numerov (finite differences, based on a step β and π points) β’ π’β 0 = 0 β’ π’β β = 1 β’ π’β 2β is determined from π’β 0 and π’β β β’ β¦ ο π’β πβ β’ π’β π is adjusted on π’β π = πΉπ½ ππ cos πΏπ½ + πΊπ½ ππ sin πΏπ½ at large distances ο phase shift ο the wave function is available in a numericall format ο any matrix element can be computed 31 5. Radiative capture in the potential model β’ Electric operator for two particles: β³ππΈπ = π π1 ππ β πΉππ π π ππ Ξ©π1 βπ ππ + π2 ππ β πΉππ which provides β³ππΈπ = π π1 π΄2 β π΄ π + π2 π΄1 π΄ π π π ππ Ξ©π2 βπ ππ π π π π ππ Ξ©π = πππππ π π ππ Ξ©π β’ Matrix elements needed for electromagnetic transitions <Ξ¨ π½π ππ β³ππΈπ Ξ¨π½π ππ > = πππππ < π ππ½ π π π ππ π ππ½π π β > 0 π’π½π π π’π½π π π π ππ β’ Reduced matrix elements: < Ξ¨ π½π β³ πΈπ Ξ¨ π½π > = πππππ < π½π 0π0| π½π 0 > × 2π½π +1 2π+1 4π 2π½π +1 1/2 β π’π½π 0 π π’π½π π π π ππ ο simple one-dimensional integrals 32 5. Radiative capture in the potential model Assumptions: β’ spins zero: βπ = π½π , βπ = π½π β’ given values of π½π , π½π , π initial state πΈ: all π½π are possible wave functions π’π½π (π, πΈ) photon with multipolarity π Integrated cross section 8π π 2 2 2π+1 ππ πΈ = 2 π π πΉ π, π½π , π½π π βπ πππ πΎ with β’ ππππ = π΄2 π π1 β π΄ + π΄1 π π2 π΄ β’ πΉ π, π½π , π½π =< π½π π0 0|π½π 0 > 2π½π + 1 β’ ππΎ = πΈβπΈπ Final state πΈπ , π½π wave function: π’π½π π β 0 2 π’π½π (π, πΈ) π’π½π π π π ππ π+1 2π+1 π 2π+1 βΌ2 βπ Normalization β’ final state (bound): normalized to unity π’π½ π β πΆexp(βππ΅ π) β’ initial state (continuum): π’π½ π β πΉπ½ ππ cos πΏπ½ + πΊπ½ ππ sin πΏπ½ Test: π = 0 provides ππ πΈ = 0 (orthogonality of the wave functions) 33 5. Radiative capture in the potential model Integrated vs differential cross sections β’ Total (integrated) cross section: π πΈ = ππ πΈ π ο no interference between the multipolarities β’ Differential cross section: ππ = ππ 2 ππ πΈ ππ(π) π ππ(π)=Legendre polynomial ο interference effects ο angular distributions are necessary to separate the multipolarities (in general one multipolarity is dominant) 34 5. Radiative capture in the potential model Example: 12C(p,g)13N β’ First reaction of the CNO cycle β’ Well known experimentally β’ Presents a low energy resonance (l=0 ο J=1/2+) S (MeV-b) 1.00E+00 1.00E-01 1.00E-02 1.00E-03 0 0.1 0.2 0.3 0.4 0.5 0.6 E (MeV) Potential : V= -55.3*exp(-(r/2.70)2) (final state) -70.5*exp(-(r/2.70)2) (initial state) 35 5. Radiative capture in the potential model 1.60E-02 Jf=1/2- Final state: Initial state: li=0 ο Ji=1/2+ ο¨ E1 transition 1/2+ ο 1/2- 1.40E-02 Initial wave function: Ei=100 keV 1.20E-02 1.00E-02 8.00E-03 6.00E-03 4.00E-03 2.00E-03 0.00E+00 -2.00E-03 0 5 10 15 20 25 30 -4.00E-03 5.00E-03 Integrant Ei=100 keV 4.00E-03 3.00E-03 E 12C+p 2.00E-03 1.00E-03 0.00E+00 0 5 10 15 20 25 30 -1.00E-03 13N,J=1/2- -2.00E-03 1.40E+00 7.00E-01 1.20E+00 6.00E-01 1.00E+00 Final state Ef=1.94 MeV 5.00E-01 8.00E-01 4.00E-01 Integral Ei=100 keV 6.00E-01 3.00E-01 4.00E-01 2.00E-01 2.00E-01 1.00E-01 0.00E+00 0 5 10 15 20 25 30 -2.00E-01 0.00E+00 0 5 10 15 20 25 30 36 5. Radiative capture in the potential model The calculation is repeated at all energies 1.00E+00 S (MeV-b) 1.00E-01 S 1 1.00E-02 S 0.45 1.00E-03 1.00E-04 0 0.2 0.4 0.6 0.8 1 E (MeV) Necessity of a spectroscopic factor S Assumption of the potential model: 13N=12C+p In reality 13N=12C+p ο 12C*+p ο 9Be+a ο β¦. ο¨ to simulate the missing channels: π’π (π) is replaced by π 1/2 π’π (π π=spectroscopic factor Other applications: 7Be(p,g)8B, 3He(a,g)7Be, etcβ¦ 37
© Copyright 2026 Paperzz