Radiative-capture reactions

Radiative-capture reactions
P. Descouvemont
Physique Nucléaire Théorique et Physique Mathématique, CP229,
Université Libre de Bruxelles, B1050 Bruxelles - Belgium
1. Introduction, definitions
2. Electromagnetic transitions
3. Radiative-capture cross sections
4. Radiative capture in nuclear astrophysics
5. Application to the potential model
6. Conclusions
1
1. Introduction - definitions
Capture reaction = Electromagnetic transition from a scattering state to a bound state
Ei > 0
𝐸𝛾
A
Ei
Initial scattering state A+B
Ei>0
B
A+B
g
C, Ef
Final bound state: Ef<0
In general: several states
Ef < 0
C
Energy conservation: 𝐸𝛾 = 𝐸𝑖 βˆ’ 𝐸𝑓 (recoil energy of nucleus C is negligible)
Examples :
(p,g) reactions: 7Be(p,g)8B, 12C(p,g)13N, 16O(p,g)17F
(a,g) reactions: 3He(a,g)7Be, 12C(a,g)16O
Typical values: up to a few MeV
Photon wavelength for 𝐸𝛾 = 1 MeV: πœ†π›Ύ =
2πœ‹
π‘˜π›Ύ
=
2πœ‹β„π‘
𝐸𝛾
∼ 1200 fm
πœ†π›Ύ ≫ typical dimension 𝑅
π‘˜π›Ύ 𝑅 β‰ͺ 1: long wavelength approximation
2
1. Introduction - definitions
Importance in astrophysics:
1. Hydrogen burning: CNO cycle, pp chain
CNO cycle(s)
Capture reactions
Transfer reactions
Beta decays
2. Helium burning: 8Be(a,g)12C, 12C(a,g)16O, 16O(a,g)20Ne,…
3. Neutron capture reactions: 7Li(n,g)8Li, many others…
3
1. Introduction - definitions
Difference fusion / radiative capture
Radiative capture: g channel only (electromagnetic)
Fusion:
β€’ all channels with mass higher than the projectile and target
β€’ In general, many channels οƒ  statistical approach
Example:
12C+12C
fusion
experimental cross section
Satkowiak et al. PRC 26 (1982) 2027
E
many
states
12C+12C
4
1. Introduction - definitions
Other example: 12C(12C,g)24Mg radiative capture
β€’ Existence of molecular states in 24Mg?
β€’ Transitions to 3 states of 24Mg
β€’ Cross section much smaller than fusion
Rad. cap: ~100 nb *4p ~1 mb (electromagnetic)
Fusion: ~200 mb (nuclear)
12C+12C
24Mg
5
2. Electromagnetic transitions
6
2. Electromagnetic transitions
Transition probability
Initial state: energy Ei
Final state: energy Ef
g
system of charged particles:
𝐻 = 𝐻0
system of charged particles + photon:
𝐻 = 𝐻0 + 𝐻𝛾 (𝐻𝛾 small)
Wave function Ψ𝑖
Wave function Ψ𝑓
β€’ Energy conservation: 𝐸𝑖 = 𝐸𝑓 + 𝐸𝛾
β€’ Perturbation theory (𝐻𝛾 small)
β€’ Fermi golden rule
οƒ  Transition probability from an initial state to a final state
οƒ  𝑀𝑖→𝑓 ∼ < Ψ𝑓 𝐻𝛾 |Ψ𝑖 > |2 : very general definition
7
2. Electromagnetic transitions
Three types of electromagnetic transitions
Nucleus C=A+B
A
B
C
𝐸𝑖 > 0
𝐸𝑖 > 0
𝐸=0
𝐸𝑓 > 0
A+B
A+B
A+B
𝐸𝑖 < 0
𝐸𝑓 < 0
C
Bound οƒ  bound
𝐸𝑖 < 0, 𝐸𝑓 < 0
𝐸𝑓 < 0
C
scattering οƒ  bound
𝐸𝑖 > 0, 𝐸𝑓 < 0
=radiative capture
C
scattering οƒ  scattering
𝐸𝑖 > 0, 𝐸𝑓 > 0
=bremsstrahlung
β€’ In all cases 𝑀𝑖→𝑓 ∼ < Ψ𝑓 𝐻𝛾 |Ψ𝑖 > |2
β€’ But: different types of wave functions
β€’ Bremsstralhung: transition from continuum to continuum οƒ  strong convergence problems
8
2. Electromagnetic transitions
Bound bound:
β€’ Initial and final states characterized by spins 𝐽𝑖 πœ‹π‘– and 𝐽𝑓 πœ‹π‘“
β€’ Transition probability: 𝑀𝑖→𝑓 ∼ < Ξ¨ 𝐽𝑓 πœ‹π‘“ 𝐻𝛾 |Ξ¨ 𝐽𝑖 πœ‹π‘– > |2
β€’ 𝑀𝑖→𝑓 provides the g width Γ𝛾 = ℏ𝑀, lifetime 𝜏 = ℏ/Γ𝛾
Scattering to bound state: radiative capture
β€’ Final state: characterized by spin 𝐽𝑓 πœ‹π‘“
β€’ Initial state : Ξ¨(𝐸) = scattering state (expansion in partial waves, all 𝐽𝑖 πœ‹π‘– )
β€’ Transition probability: 𝑀𝑖→𝑓 (𝐸) ∼ < Ξ¨ 𝐽𝑓 πœ‹π‘“ 𝐻𝛾 |Ξ¨(𝐸) > |2
β€’ 𝑀𝑖→𝑓 provides the capture cross section
General property : 𝐻𝛾 small οƒ  electromagnetic processes have a low probability
β€’ Gamma widths small compared to particle widths
β€’ Capture cross sections small compared to elastic or transfer cross sections (nuclear origin)
g decay: Gg=0.5 eV, T=10-14 s
proton decay: Gp=32 keV, T=2x10-20 s
οƒ Gg/Gp<<1
9
2. Electromagnetic transitions
Comparaison transfer – capture reactions: 6Li(p,a)3He and 6Li(p,g)7Be
S-factor (MeV-b)
10
S- Factor
𝑆 𝐸 = 𝜎 𝐸 𝐸exp 2πœ‹πœ‚
1
6
Li(p,a)3He
β€’ factor 104 typical of
nucl/elec.
β€’ g channel negligible
compared to a channel
0.1
0.01
0.001
6
Li(p,g)7Be
0.0001
0.00001
0.01
0.1
1
10
E (MeV)
S factor proportional to s
Same energy dependence (identical entrance channel)
st (transfer)>> sC (capture) : general property
10
2. Electromagnetic transitions
Electromagnetic operator 𝐻𝛾
β€’ Depends on
β€’ nuclear coordinates (nuclei or nucleons, according to the model)
β€’ photon properties (energy 𝐸𝛾 , emission angle Ω𝛾 )
β€’ Deduced from the Maxwell equations (+quantification)
πœ† (Ξ© )
π‘˜π›Ύπœ† β„³πœ‡πœŽπœ† (π‘Ÿ1 , … π‘Ÿπ΄ )π·πœ‡π‘ž
𝛾
𝐻𝛾 ∼
πœ†πœ‡πœŽ
nucleons
photon
β€’ 𝜎 = 𝐸 or 𝑀 (electric or magnetic)
β€’ πœ†=order of the multipole (from 1 to ο‚₯, in practice essentially πœ† = 1,2)
β€’ m is between –l and +l
πœ†
β€’ π·πœ‡π‘ž
(Ω𝛾 )=Wigner fonction , Ω𝛾 =photon-emission angle
β€’ β„³πœ‡πœŽπœ† = multipole operators (depend on nucleon coordinates ri)
11
2. Electromagnetic transitions
β€’ Electric operators
1
πœ‡
β„³πœ‡πΈπœ† = e 𝑖(2 βˆ’ 𝑑𝑖𝑧 )π‘Ÿπ‘–πœ† π‘Œπœ† Ξ©π‘Ÿπ‘– for a many-nucleon system (sensitive to protons only)
with 𝑑𝑖𝑧 =isospin= +1/2 (neutron)
-1/2 (proton)
π’“π’Š = π‘Ÿπ‘– , Ω𝑖 = nucleon space coordinate
β€’ Magnetic operators
πœ‡
2𝑔
πœ‡
β„³πœ‡π‘€πœ† = ℏ𝑁 𝑖[𝛁(π‘Ÿ πœ† π‘Œπœ† Ξ©π‘Ÿ ]π‘Ÿ=π‘Ÿπ‘– β‹… (πœ†+1𝑙𝑖 𝑳𝑖 +𝑔𝑠𝑖 𝑺𝑖 )
with
𝑺𝑖 =spin of nucleon i
𝑳𝑖 =orbital momentum of nucleon i
β€’ Transition probability (integral over Ω𝛾 )
𝑀𝑖→𝑓 (𝐸) ∼ < Ξ¨
β€’ 𝐻𝛾 is expanded in multipoles
𝐽𝑓 πœ‹π‘“
𝐻𝛾
|Ψ𝐽𝑖 πœ‹π‘–
>
2
π‘˜π›Ύ2πœ†+1 < Ξ¨ 𝐽𝑓 πœ‹π‘“ βˆ₯ β„³ πœŽπœ† βˆ₯ Ξ¨ 𝐽𝑖 πœ‹π‘– >
π‘Šπ½π‘– πœ‹π‘–β†’π½π‘“ πœ‹π‘“ ∼
2
πœ†πœŽ
photon
nucleus
12
2. Electromagnetic transitions
β€’ Reduced transition probability
𝐡 πœŽπœ†, 𝐽𝑖 πœ‹π‘– β†’ 𝐽𝑓 πœ‹π‘“ =
2𝐽𝑓 + 1
< Ξ¨ 𝐽𝑓 πœ‹π‘“ βˆ₯ β„³ πœŽπœ† βˆ₯ Ξ¨ 𝐽𝑖 πœ‹π‘– >
2𝐽𝑖 + 1
2
β€’ Units: electric (s=E): 𝑒 2 fm2Ξ»
2
magnetic (s=M): πœ‡π‘
fm2Ξ»βˆ’2
β€’ Gamma width: Γ𝛾 (𝐽𝑖 πœ‹π‘– β†’ 𝐽𝑓 πœ‹π‘“ ) = β„π‘Šπ½π‘– πœ‹π‘–β†’π½π‘“ πœ‹π‘“
β€’ Total gamma width : sum over final states
example: 15O
β€’ from a given state:
several transitions are possible
β€’ in practice:
β€’ selection rules
β€’ factor π‘˜π›Ύ2πœ†+1 favors large 𝐸𝛾
13
2. Electromagnetic transitions
Important properties:
β€’ Hierarchy between the multipoles:
𝑀 𝜎,πœ†+1
𝑀 𝜎,πœ†
~ π‘˜π›Ύ 𝑅
2
β‰ͺ 1 (long wavelength approximation)
𝐸1 ≫ 𝐸2 β‰ˆ 𝑀1 ≫ 𝐸3 β‰ˆ 𝑀2, …
 only a few multipoles contribute (one)
β€’ Selection rules: < Ξ¨ 𝐽𝑓 πœ‹π‘“ βˆ₯ β„³ πœŽπœ† βˆ₯ Ξ¨ 𝐽𝑖 πœ‹π‘– >
angular momentum 𝐽𝑖 βˆ’ 𝐽𝑓 ≀ πœ† ≀ 𝐽𝑖 + 𝐽𝑓
parity:
πœ‹π‘– πœ‹π‘“ = βˆ’1 πœ† for 𝜎 = 𝐸
πœ‹π‘– πœ‹π‘“ = βˆ’1 πœ†+1 for 𝜎 = 𝑀
β€’ E1 forbidden in N=Z nuclei (T=0)
1
𝑀𝐸1 ∼ (2 βˆ’ 𝑑𝑖𝑧 )(π’“π’Š βˆ’ π‘Ήπ‘π‘š)
β€’ No transition with πœ† = 0
3βˆ’
0+
2
E2
β€’ Examples:
β€’ transition 2+
β€’ transition 1βˆ’
β€’ transition 2+
β€’ transition 3βˆ’
0+ : 𝐸2
β†’
β†’ 0+ : 𝐸1
β†’ 1+ : 𝐸2, 𝑀1, 𝑀3
β†’ 2+ : 𝐸1, 𝐸3, 𝐸5, 𝑀2, 𝑀4
2+
E3
E2
0+
14
2. Electromagnetic transitions
Capture cross section (for a given final state 𝐽𝑓 ):
π‘˜π›Ύ2πœ†+1 < Ξ¨ 𝐽𝑓 πœ‹π‘“ βˆ₯ β„³ πœŽπœ† βˆ₯ Ξ¨(𝐸) >
𝜎(𝐽𝑓 , 𝐸) ∼
2
πœ†πœŽ
Ψ(𝐸) =initial state, expanded in partial waves Ψ 𝐸 =
E1 (or E2) dominant
οƒ  picks up a few partial waves
with
𝐽𝑖 Ξ¨
𝐽𝑖 πœ‹π‘– (𝐸)
examples: 12C(p,g)13N, 12C(a,g)16O
12C(p,g)13N
A single final state: 𝐽𝑓 = 1/2βˆ’ (ground state)
Main multipolarity: E1
οƒ  Initial states: 𝐽𝑖 = 1/2+ , 3/2+
Resonance for 𝐽𝑖 = 1/2+ οƒ  enhances the cross section
15
2. Electromagnetic transitions
E
12C+a
12C(a,g)16O
β€’
β€’
β€’
β€’
Several final states: (𝐽𝑓 = 0+ dominant)
E1 multipolarity: 𝐽𝑖 = 1βˆ’
E2 multipolarity: 𝐽𝑖 = 2+
Cascade transitions small (factor π‘˜π›Ύ2πœ†+1 )
β€’ N=Z=6
οƒ  E1 forbidden (T=0, long wavelength approx.)
β€’ Exp: 𝐸1 β‰ˆ 𝐸2 (T=0 not strict)
16
3. Cross sections for
radiative capture
17
3. Radiative-capture cross sections
We assume a spin zero for the colliding nuclei
π‘˜π›Ύ2πœ†+1 < Ξ¨ 𝐽𝑓 πœ‹π‘“ βˆ₯ β„³ πœŽπœ† βˆ₯ Ξ¨(𝐸) >
𝜎(𝐽𝑓 , 𝐸) ∼
2
πœ†πœŽ
β€’ General definition, valid for any model.
β€’ Potential model (structure neglected)
β€’ Microscopic models
β€’ R-matrix, etc.
β€’ Spins zero for the colliding nuclei: Ξ¨ 𝐸 = 𝐽 Ψ𝐽 (𝐸)
β€’ Essentially astrophysics applications οƒ  low energies οƒ  low 𝐽 values
β€’ At low scattering energies 𝐽𝑖 = 0+ is dominant (centrifugal barrier)
οƒ  𝐽𝑓 = 1βˆ’ 𝐸1 , 𝐽𝑓 = 2+ 𝐸2 are expected to be dominant
𝐽>0
𝐽=0
𝐸 small οƒ  penetrability decreases with 𝐽
18
3. Radiative-capture cross sections
Example 1: 8Be(a,g)12C
β€’ Initial partial wave 𝐽𝑖 = 0+ (includes
the Hoyle state.
β€’ E2 dominant (E1 forbidden in N=Z)
β€’ οƒ  essentially the 𝐽𝑓 = 2+ state is
populated.
19
3. Radiative-capture cross sections
Example 2: 14N(p,g)15O
14N+p
E (all 𝐽𝑖 values)
β€’ Spin of 14N: 𝐼1=1+, proton 𝐼2=1/2+
β€’ Channel spin 𝐼:
𝐼1 βˆ’ 𝐼2 ≀ 𝐼 ≀ 𝐼1 + 𝐼2
οƒ  𝐼 = 1/2, 3/2
β€’ Orbital momentum β„“
𝐼 βˆ’ β„“ ≀ 𝐽𝑖 ≀ 𝐼 + β„“
β€’ At low energies, β„“ = 0 is dominant οƒ 
𝐽𝑖 = 1/2+ , 3/2+
β€’ multipolarity E1 οƒ  transitions to 𝐽𝑓 =
1/2βˆ’ , 3/2βˆ’ , 5/2βˆ’
β€’ Resonance 1/2+ determines the cross section
20
Radiative capture in
astrophysics
21
4. Radiative capture in astrophysics
β€’ Elastic scattering is always possible, but does not affect the nucleosynthesis
β€’ Essentially two types of reactions
β€’ Transfer
β€’ Capture
β€’ capture is important only if transfer channels are closed
15N+p
threshold
15N(p,g)16O and 15N(p,a)12C are open
οƒ  15N(p,g)16O negligible
12C+a
threshold
only possibility: 12C(a,g)16O
οƒ  12C(a,g)16O (very) important
22
4. Radiative capture in astrophysics
Low energies οƒ 
β€’ cross sections dominated by coulomb effects
β€’ Coulomb functions at low energies (h=Sommerfeld parameter=Z1Z2e2/v)
F(h,x)οƒ exp(-ph)F(x), G(h,x)οƒ exp(ph)G(x)
 2 coulomb effects:
strong E dependence : factor exp(-2ph)
strong l dependence
E (MeV)
V(r)
exp(-2*pi*eta)
0.1 0
r
E astro
0.5
1
1.5
2
2.5
0.001
1E-05
1E-07
a + He
3
1E-09
1E-11
Astrophysical S factor: S(E)=s(E)*E*exp(2ph) (Units: E*L2: MeV-barn)
β€’ removes the coulomb dependence οƒ  only nuclear effects
β€’ weakly depends on energy οƒ  s(E)ο‚»S0exp(-2ph)/E
23
4. Radiative capture in astrophysics
Penetration factor 𝑃ℓ for d+d (2 different radii, a=5 fm and a=6 fm)
β€’ Typical Coulomb effect
β€’ depends on the radius
β€’ strongly depends on energy 𝐸, and on angular momentum β„“
β€’ 𝑃ℓ (𝐸) ∼ exp βˆ’2πœ‹πœ‚ for β„“ = 0
1.E+01
β„“=0
β„“=2
𝑃ℓ
1.E+00
β„“=4
1.E-01
d+d
1.E-02
1.E-03
0
2
4
6
𝐸 (𝑀𝑒𝑉)
8
10
12
24
4. Radiative capture in astrophysics
Non resonant: S(E)=s(E)*E*exp(2ph) approximately constant
10-5
s (barn)
10-6
3He(a,g)7Be
10-7
10-8
Parker et al.
6Li+p
10-9
1010
5/25/27/2-
0
1
2
3
4
a+3He
0.8
1/23/2-
S (keV-b)
0.6
7Be
0.4
0.2
Parker et al.
0
0
1
2
E (MeV)
3
4
No resonance
with low J
4. Radiative capture in astrophysics
Resonances: the Breit-Wigner approximation
General properties of a resonance:
β€’ spin 𝐽𝑅
β€’ Energy 𝐸𝑅
β€’ Entrance width (here: particle width)
β€’ Output width (here: gamma width)
𝐽𝑅 = 1/2+
𝐸𝑅 = 0.42 MeV
Γ𝑝 = 32 keV
Γ𝛾 = 0.5 eV
Breit-Wigner approximation near a resonance: 𝐸 β‰ˆ 𝐸𝑅 :
Γ𝛾 𝐸 Γ𝑝 𝐸
πœ‹
𝜎 𝐸 β‰ˆ 2 2𝐽𝑅 + 1
π‘˜
𝐸 βˆ’ 𝐸𝑅 2 + Ξ“ 𝐸 2 /4
Valid for the resonant partial wave 𝐽𝑅 οƒ  possible contribution of other partial waves
Two typical examples:
β€’
12C(p,g)13N:
β€’
7Be(p,g)8B:
a resonance is present in the dominant partial wave β„“ = 0
resonance in the β„“ = 1 partial wave οƒ  superposition of resonant and
non-resonant contributions
26
4. Radiative capture in astrophysics
Example 1: 12C(p,g)13N
β€’ Jf=1/2-
β€’ E1 οƒ 
Ji=1/2+, li=0οƒ  dominant
Ji=3/2+, li=2
β€’ Resonance for Ji=1/2+ οƒ  enhancement
β€’οƒ Two effects make Ji=1/2+ dominant
5/2+
3/2-
S-factor (keV-b)
1000
12
100
C(p,g)13N
1/2+
12C+p
10
1/2-
1
0
0.2
0.4
0.6
13N
27
4. Radiative capture in astrophysics
Example 2: 7Be(p,g)8B
β€’ Jf=2+
β€’ E1 οƒ 
οƒ  1-,2- dominant
Ji=1-, li=0,2
Ji=2-, li=0,2,4
Ji=3-, li=2,4
β€’ Resonance for Ji=1+
β€’ only E2 or M1 are possible
β€’li=1,3
οƒ 
limited effect of the 1+ resonance
Both contributions must be treated separately
S-factor (eV-b)
200
7
150
3+
Be(p,g)8B
100
1+
50
7Be+p
0
0
1
2
3
2+
8B
28
5. Radiative capture in the
potential model
29
5. Radiative capture in the potential model
Potential model: two structureless particles (=optical model, without imaginary part)
o Calculations are simple
o Physics of the problem is identical in other methods
o Spins are neglected
β€’
π‘Ήπ’„π’Ž =center of mass, 𝒓 =relative coordinate
𝐴2
𝒓
𝐴
𝐴1
π’“πŸ = π‘Ήπ’„π’Ž + 𝒓
𝐴
π’“πŸ = π‘Ήπ’„π’Ž βˆ’
r1
r2
β€’ Initial wave function:
Final wave function:
1
π‘š
Ψℓ𝑖 π‘šπ‘– 𝒓 = π‘Ÿ 𝑒ℓ𝑖 π‘Ÿ π‘Œβ„“π‘– 𝑖 Ξ© , energy 𝐸 ℓ𝑖 =scattering energy 𝐸
1
π‘šπ‘“
Ξ¨ ℓ𝑓 π‘šπ‘“ 𝒓 = π‘Ÿ 𝑒ℓ𝑓 π‘Ÿ π‘Œβ„“
𝑓
Ξ© , energy 𝐸 ℓ𝑓
The radial wave functions are given by:
ℏ2 𝑑 2 β„“ β„“ + 1
βˆ’
βˆ’
2πœ‡ π‘‘π‘Ÿ 2
π‘Ÿ2
𝑒ℓ + 𝑉 π‘Ÿ 𝑒ℓ = 𝐸 β„“ 𝑒ℓ
30
5. Radiative capture in the potential model
β€’ Schrödinger equation:
ℏ2 𝑑 2
βˆ’ 2πœ‡ π‘‘π‘Ÿ 2
βˆ’
β„“ β„“+1
π‘Ÿ2
𝑒ℓ + 𝑉 π‘Ÿ 𝑒ℓ = 𝐸 β„“ 𝑒ℓ
β€’ Typical potentials:
β€’ coulomb =point-sphere
β€’ nuclear: Woods-Saxon, Gaussian
with parameters adjusted on important properties (bound-state energy, phase shifts,
etc.)
β€’ Potentials can be different in the initial and final states
β€’ Numerical method: Numerov (finite differences, based on a step β„Ž and 𝑁 points)
β€’ 𝑒ℓ 0 = 0
β€’ 𝑒ℓ β„Ž = 1
β€’ 𝑒ℓ 2β„Ž is determined from 𝑒ℓ 0 and 𝑒ℓ β„Ž
β€’ … οƒ  𝑒ℓ π‘β„Ž
β€’ 𝑒ℓ π‘Ÿ is adjusted on 𝑒ℓ π‘Ÿ = 𝐹𝐽 π‘˜π‘Ÿ cos 𝛿𝐽 + 𝐺𝐽 π‘˜π‘Ÿ sin 𝛿𝐽 at large distances
οƒ  phase shift
οƒ  the wave function is available in a numericall format
οƒ  any matrix element can be computed
31
5. Radiative capture in the potential model
β€’ Electric operator for two particles:
β„³πœ‡πΈπœ† = 𝑒 𝑍1 π’“πŸ βˆ’ π‘Ήπ’„π’Ž
πœ†
πœ‡
π‘Œπœ† Ξ©π‘Ÿ1 βˆ’π‘…π‘π‘š + 𝑍2 π’“πŸ βˆ’ π‘Ήπ’„π’Ž
which provides
β„³πœ‡πΈπœ† = 𝑒 𝑍1
𝐴2
βˆ’
𝐴
πœ†
+ 𝑍2
𝐴1
𝐴
πœ†
πœ†
πœ‡
π‘Œπœ† Ξ©π‘Ÿ2 βˆ’π‘…π‘π‘š
πœ‡
πœ‡
π‘Ÿ πœ† π‘Œπœ† Ξ©π‘Ÿ = 𝑒𝑍𝑒𝑓𝑓 π‘Ÿ πœ† π‘Œπœ† Ξ©π‘Ÿ
β€’ Matrix elements needed for electromagnetic transitions
<Ξ¨
𝐽𝑓 π‘šπ‘“
β„³πœ‡πΈπœ†
Ψ𝐽𝑖 π‘šπ‘–
> = 𝑒𝑍𝑒𝑓𝑓 <
π‘š
π‘Œπ½ 𝑓
𝑓
πœ‡
π‘Œπœ†
π‘š
π‘Œπ½π‘– 𝑖
∞
>
0
𝑒𝐽𝑖 π‘Ÿ 𝑒𝐽𝑓 π‘Ÿ π‘Ÿ πœ† π‘‘π‘Ÿ
β€’ Reduced matrix elements:
< Ξ¨ 𝐽𝑓 β„³ πΈπœ† Ξ¨ 𝐽𝑖 > = 𝑒𝑍𝑒𝑓𝑓 < 𝐽𝑓 0πœ†0| 𝐽𝑖 0 >
×
2𝐽𝑖 +1 2πœ†+1
4πœ‹ 2𝐽𝑓 +1
1/2
∞
𝑒𝐽𝑖
0
π‘Ÿ 𝑒𝐽𝑓 π‘Ÿ π‘Ÿ πœ† π‘‘π‘Ÿ
οƒ  simple one-dimensional integrals
32
5. Radiative capture in the potential model
Assumptions:
β€’ spins zero: ℓ𝑖 = 𝐽𝑖 , ℓ𝑓 = 𝐽𝑓
β€’ given values of 𝐽𝑖 , 𝐽𝑓 , πœ†
initial state 𝐸: all 𝐽𝑖 are possible
wave functions 𝑒𝐽𝑖 (π‘Ÿ, 𝐸)
photon with multipolarity πœ†
Integrated cross section
8πœ‹ 𝑒 2 2 2πœ†+1
πœŽπœ† 𝐸 = 2
𝑍 π‘˜
𝐹 πœ†, 𝐽𝑖 , 𝐽𝑓
π‘˜ ℏ𝑐 𝑒𝑓𝑓 𝛾
with
β€’ 𝑍𝑒𝑓𝑓 =
𝐴2 πœ†
𝑍1 βˆ’ 𝐴
+
𝐴1 πœ†
𝑍2 𝐴
β€’ 𝐹 πœ†, 𝐽𝑖 , 𝐽𝑓 =< 𝐽𝑖 πœ†0 0|𝐽𝑓 0 > 2𝐽𝑖 + 1
β€’ π‘˜π›Ύ =
πΈβˆ’πΈπ‘“
Final state 𝐸𝑓 , 𝐽𝑓
wave function: 𝑒𝐽𝑓 π‘Ÿ
∞
0
2
𝑒𝐽𝑖 (π‘Ÿ, 𝐸) 𝑒𝐽𝑓 π‘Ÿ π‘Ÿ πœ† π‘‘π‘Ÿ
πœ†+1 2πœ†+1
πœ† 2πœ†+1 β€Ό2
ℏ𝑐
Normalization
β€’ final state (bound): normalized to unity 𝑒𝐽 π‘Ÿ β†’ 𝐢exp(βˆ’π‘˜π΅ π‘Ÿ)
β€’ initial state (continuum): 𝑒𝐽 π‘Ÿ β†’ 𝐹𝐽 π‘˜π‘Ÿ cos 𝛿𝐽 + 𝐺𝐽 π‘˜π‘Ÿ sin 𝛿𝐽
Test: πœ† = 0 provides πœŽπœ† 𝐸 = 0 (orthogonality of the wave functions)
33
5. Radiative capture in the potential model
Integrated vs differential cross sections
β€’ Total (integrated) cross section:
𝜎 𝐸 =
πœŽπœ† 𝐸
πœ†
οƒ  no interference between the multipolarities
β€’ Differential cross section:
π‘‘πœŽ
=
π‘‘πœƒ
2
π‘Žπœ† 𝐸 π‘ƒπœ†(πœƒ)
πœ†
π‘ƒπœ†(πœƒ)=Legendre polynomial
οƒ  interference effects
οƒ  angular distributions are necessary to separate the multipolarities (in general one
multipolarity is dominant)
34
5. Radiative capture in the potential model
Example: 12C(p,g)13N
β€’ First reaction of the CNO cycle
β€’ Well known experimentally
β€’ Presents a low energy resonance (l=0 οƒ  J=1/2+)
S (MeV-b)
1.00E+00
1.00E-01
1.00E-02
1.00E-03
0
0.1
0.2
0.3
0.4
0.5
0.6
E (MeV)
Potential : V= -55.3*exp(-(r/2.70)2) (final state)
-70.5*exp(-(r/2.70)2) (initial state)
35
5. Radiative capture in the potential model
1.60E-02
Jf=1/2-
Final state:
Initial state: li=0 οƒ  Ji=1/2+
 E1 transition 1/2+ οƒ  1/2-
1.40E-02
Initial wave function:
Ei=100 keV
1.20E-02
1.00E-02
8.00E-03
6.00E-03
4.00E-03
2.00E-03
0.00E+00
-2.00E-03
0
5
10
15
20
25
30
-4.00E-03
5.00E-03
Integrant Ei=100
keV
4.00E-03
3.00E-03
E
12C+p
2.00E-03
1.00E-03
0.00E+00
0
5
10
15
20
25
30
-1.00E-03
13N,J=1/2-
-2.00E-03
1.40E+00
7.00E-01
1.20E+00
6.00E-01
1.00E+00
Final state Ef=1.94 MeV
5.00E-01
8.00E-01
4.00E-01
Integral Ei=100 keV
6.00E-01
3.00E-01
4.00E-01
2.00E-01
2.00E-01
1.00E-01
0.00E+00
0
5
10
15
20
25
30
-2.00E-01
0.00E+00
0
5
10
15
20
25
30
36
5. Radiative capture in the potential model
The calculation is repeated at all energies
1.00E+00
S (MeV-b)
1.00E-01
S 1
1.00E-02
S 0.45
1.00E-03
1.00E-04
0
0.2
0.4
0.6
0.8
1
E (MeV)
Necessity of a spectroscopic factor S
Assumption of the potential model: 13N=12C+p
In reality 13N=12C+p οƒ… 12C*+p οƒ… 9Be+a ….
 to simulate the missing channels: 𝑒𝑓 (π‘Ÿ) is replaced by 𝑆 1/2 𝑒𝑓 (π‘Ÿ
𝑆=spectroscopic factor
Other applications: 7Be(p,g)8B, 3He(a,g)7Be, etc…
37