第 27 卷 第 3 期 2006 年 3 月 半 导 体 学 报 C HIN ES E J O U RN AL O F S EM I CON D U C TO RS Vol. 27 No . 3 Mar. ,2006 Influence of Interconnection Conf iguration on Thermal Dissipation of ULSI Interconnect Systems 3 Xiao Xia1 ,g , Yao Suying1 , and Ruan Gang2 ( 1 Center of A S I C , S chool of Elect ronic an d I n f ormation Engi neeri n g , Ti anj i n Uni versit y , Ti anj i n 300072 , Chi na) ( 2 S chool of I n f ormation S cience an d En gi neeri n g , Fu dan Uni versit y , S han g hai 200433 , Chi na) Abstract : The eff ects of adjace nt met al laye rs a nd sp ace betwee n met al li nes on t he te mp e rat ure rise of multilevel UL SI i nte rconnect li nes a re i nvestigate d by modeli ng a t h ree2laye r i nte rcon nect . The heat dissip ation of va rious met allization tec h nologies concer ni ng t he met al a nd low2 k dielect ric e mp loyme nt is si mulate d i n det ail . The J oule heat ge ne rated i n t he i nte rcon nect is t ra nsf e r red mai nly t h r ough t he met al li nes i n each met al layer a nd t h r ough t he p at h wit h t he s mallest t he r mal resist a nce i n each Ield laye r . The te mp e rat ure rises of Al met allization a re ap 2 p r oxi mately ρAl /ρCu ti mes higher t ha n t h ose of Cu met allization unde r t he sa me conditions . I n a ddition , a t her mal p r oble m i n 01 13μm globe i nte rcon nects is st udie d f or t he w orst case ,i n w hic h t he re are no met al li nes i n t he lowe r i nte rcon nect layers . Several t yp es of dummy met al heat si n ks are i nvestigate d a nd comp a re d wit h regar d t o t her mal eff icie ncy ,i nf lue nce on p arasitic cap acit a nce , a nd op ti mal application by combi ne d t he r mal a nd elect rical si mula2 tion . Key words : UL SI i nte rcon nect ; heat dissip ation ; ge omet rical conf iguration EEACC : 2570 ; 2800 CLC number : TN 4051 97 Document code : A Article ID : 025324177 ( 2006) 0320516208 1 Introduction In advanced UL SI interco nnectio n systems , low dielect ric co nstant material s are adopted to mitigate parasitic effect s such as capacitance , time delay ,and cro ss talk noise. A s a majo r by2effect , t he p ro blem of heat dissipatio n beco mes more criti2 cal since t he t hermal co nductivit y of low dielect ric co nstant material is normally very low [ 1 ] . For in2 stance , nanopo ro us silica ( aerogel or xerogel , de2 pending o n t he fabricating p rocess) is a good candi2 date for insulator s since it s effective dielect ric co n2 stant can achieve an expected value below 2 [ 2 ] . However ,low t hermal co nductivit y causes serio us heat t ransfer p ro blems in UL SI circuit s. The heat generated by current p ropagatio n alo ng metal lines (J o ule heat ) must be dissipated acro ss t he dielec2 t ric films into t he subst rate to avoid t he deteriora2 tio n of t he device perfo rmance and p remat ure de2 vice failure. Thus ,t hermal behavior in modern UL 2 SI interco nnect systems must be taken into ac2 co unt . Therefore ,analysis of t he heat dissipatio n in t he metallizatio n system is very significant . Shieh et al . [ 3 ] simulated t he temperat ure dis2 t ributio n of a five metal layer interco nnect st ruc2 t ure wit h different dielect ric co nfiguratio ns ( SiO2 , low dielect ric co nstant material , and air gap s ) . Chiang et al . investigated t he effect of via separa2 tio n and low2k dielect ric material s o n t he t hermal characteristics of multilevel VL SI Cu interco n2 nect s [ 4 ,5 ] . Chen et al . simulated t he temperat ure rise of a power line to t he subst rate of t he interco n2 nectio n in t he t hree cases of a single power line ,a power line wit h a parallel signal line in t he same metal layer , and a power line wit h an o rt hogo nal line array in t he lower metal layer [ 6 ] . We p ropo sed heat sinks to imp rove heat t ransport in modern in2 terco nnectio n systems [ 7 ] . We al so simulated t he t hermal performance of a five2multilayer UL SI in2 terco nnect [ 8 ] and deduced a set of co mpact quasi2 analytic equatio ns for estimating t he temperat ure dist ributio n of vario us UL SI interco nnectio n st ruc2 3 Pr oject supp ort ed by t he Scie ntific Researc h Foundation f or Ret ur ned Overseas Chi nese Sc hola rs of t he Education Mi nist ry of Chi na g Cor resp ondi ng aut hor . Email :xiaxia o @tju. edu. c n ; xiax58 @ya hoo. com Received 13 J une 2005 , revised ma nuscrip t received 6 N ove mber 2005 ν 2006 Chi nese I nstit ute of Elect r onics 第3期 Xiao Xia et al . : Influence of Interconnection Co nfiguration o n Thermal Dissipation of UL SI … t ures [ 9 ] . There are many factor s t hat affect t hermal dis2 t ributio n and heat t ransfer in metallizatio n inter2 co nnectio n systems ,such as t he t hermal co nductivi2 t y of t he dielect ric material s ,resistivit y of t he met 2 al lines ,current densit y of t he metal lines ,and geo 2 met ric parameters of t he metallizatio n system. Many researcher s have st udied t he t hermal behav2 ior of interco nnect s wit h st ruct ures who se geo met 2 ric parameters are fixed. However , t he co nfigura2 tio n of a multilevel interco nnectio n may greatly af 2 fect t he heat dissipatio n of t he system. Therefo re ,it is important to plan caref ully t he interco nnect co n2 figuratio n. Generally ,t he heat dissipatio n of a mul2 tilevel interco nnectio n can be st udied in a simplified st ruct ure. In t his paper ,a t hree2layer metallizatio n interco nnect is mo deled to investigate t he influence o n t hermal dissipatio n of adjacent metal layers , space bet ween metal lines , t hermal co nductivit y of t he inter2layer dielect ric ( Ield) and int ra2layer die2 lect ric ( Iald) ,and power supply. Al and Cu metalli2 zatio ns wit h vario us interco nnect cases are st udied in detail . The t raditio nal dielect ric SiO2 and t he low dielect ric co nstant material aero gel are applied in simulatio n of bot h Cu and Al metallizatio n. In addi2 tio n ,a t hermal p ro blem in 01 13μm glo be interco n2 nect s is st udied for t he wor st case ,in which t here are no metal lines in t he lower interco nnect layers. Several t ypes of dummy metal heat sinks are inves2 tigated and co mpared wit h regard to t hermal effi2 ciency ,influence o n parasitic capacitance ,and opti2 mal applicatio n by co mbined t hermal and elect rical simulatio n. 517 5 T) 5 T) 5 ( 5 ( kx + ky + 5x 5y 5y 5x ・ 5 ( 5 T) 5T ( 1) kz + q = ρCp 5z 5z 5t ・ where T is t he temperat ure , q is t he heat genera2 tio n rate ,ρis t he densit y , Cp is t he heat capacit y , t is t he time ,and k x , k y , k z are t he t hermal co nductiv2 ities in t he x , y ,and z directio ns , respectively. For static heat t ransfer , T is independent of t . In an interco nnect ,t he J o ule heat generated by current in t he metal lines sho uld dissipate easily in2 to t he subst rate to avoid limitatio ns of device per2 formance and p remat ure device failure. The heat ・ generatio n rate q of t he metal lines can be calculat 2 ed by 2 ・ l 1 I Rt 2 2 = ( J A ) ρmetal × = J ρmetal ( 2) q = tV A lA where V is t he volume , I is t he current , R is t he re2 sistance of t he metal line , J is t he current densit y , ρmetal is t he met al resistivit y , a n d l a n d A a re t he le ngt h a n d a rea of t he met al li ne , resp ectively. Figure 1 s h ows a c r oss secti o n of t he si m ula 2 t e d i nt e rco n necti o n ,i n w hic h M a n d S a re t he dis2 t a nces bet wee n t he t w o met al li nes i n t he f i rst met al la ye r a n d t he seco n d met al la ye r , resp ec2 tively. The t e mp e rat ure dist ri buti o n of t he i nt e r2 c o n nects dep e n ds o n ge o met ric p a ra met e rs , resis2 tivit y of t he met al , t he r mal co n ductivit y of t he di2 2 Simulation of thermal dissipation In heat t ransfer ,t he t hermal energy of mat ter in o ne regio n is t ransferred to mat ter in anot her re2 gio n. The t hermal analysis of a system is based o n t he energy balance law. In t his mechanism ,molecu2 lar collisio ns cause t hermal energy to be t rans2 ferred f ro m o ne molecule to anot her . Very energet 2 ic molecules lo se energy in t he t ransfer p rocess ,and lower energy molecules receive energy. The o nly motio n is at t he molecular level [ 10 ] . Heat can be co nducted t hro ugh a statio nary solid. The tempera2 t ure at any locatio n in t he system can be fo und by solving t he heat co nductio n equatio n : Fig. 1 Sc he matic cr oss section of t he si mulate d i nte r2 con nection st ruct ure elect rics , a n d p owe r s up p ly. The mai n objective of t his st udy is t o i nvestiga t e t he i nf lue nces of a dja 2 ce nt met al la ye rs a n d t he dist a nce bet wee n t he met al li nes o n t he hea t dissip a ti o n . It is ass ume d t hat heat f l ows o nly dow nw a r d t o t he silic o n sub2 st ra t e , w hic h is usually a t t ac he d t o a heat si n k . 518 半 导 体 学 报 The f i nit e ele me nt s of t w a re A NS YS is ap p lie d t o si mulat e t he t he r mal dissip ati o n . Figure 2 s h ows t he t e mp e ra t ure dist ri buti o n o n a t h ree2met al2la y2 e r Cu met allizati o n s yst e m . He re , t he cur re nt p r op a ga tes o nly t h r ough t he t op met al li ne . The dielect ric i nse rti o n case is SiO 2 / ae r ogel ( Iel d/ Ial d ) . I n t his st udy , t he s ubst rat e t e mp e ra t ure is 第 27 卷 p ie d by ae r ogel . The cur ves i n dicat e t hat t he mai n t he r mal resist a nce c o mes f r o m t he ae r ogel la ye r . O ne ae r ogel la ye r lea ds t o a t e mp e ra t ure i nc rease of a bout 10 ℃ i n t his st r uct ure . The t he r mal resist 2 a nce of SiO 2 f il m is a bout t w o o r de rs of ma gnit ude s malle r t ha n t hat of ae r ogel f il m of t he sa me t hic k ness . The ref ore , s uit a bly designe d met al i n2 se rti o ns i n t he dielect ric la ye rs , esp ecially i n t he ae r ogel la ye rs , a re desi re d f or t he heat dissip a 2 ti o n . Fig. 2 Te mp e rat ure dist ri bution ( i n ℃) of a t h ree2 met al2laye r Cu i nte rcon nect st ruct ure ( t he Ield is SiO 2 a nd t he Iald is aer ogel ) set at 85 ℃. The t he r mal co n ductivities of SiO 2 , t he ae r ogel ap p lie d f or t he Iel d , a n d t he ae r ogel [ 11 ] ap p lie d f or t he Ial d a re 11 0 , 01 010 , a nd [ 12 ] 01 065 W/ m K , resp ectively. Figure 3 s h ows t he co r resp o n di ng heat f lux vect or dist ri buti o n i n t his st r uct ure . It is o bvious t hat t he hea t t ra nsf e rs mai nly t h r ough t he met al li nes i n eac h met al la y2 e r , a n d t h r ough t he p a t h wit h t he s mallest L / k ( t he or de r of t he t he r mal resist a nce ) i n eac h Iel d la ye r , w he re L is t he dist a nce bet wee n t he up p e r a n d l owe r met al li nes . Fig. 3 Heat f lux vect or dist ributi on i n t he i nte rcon2 nection case of Fig. 2 Figure 4 s h ows t he t e mp e ra t ure dist ri buti o n at dif f e re nt l oca ti o ns o n t he p at h of x = 0 of t he i nt e rc o n necti o n syst e m s h ow n i n Fig. 1 . T1 , T2 , T3 , a n d T4 a re t he i nt e rco n nect syst e m t e mp e ra 2 t ures f or t he mat e rial i nse rti o n cases : ( 1 ) as de2 p ict e d i n Fig. 1 ; ( 2) t he seco n d met al la ye r is c o m2 p let ely occup ie d by ae r ogel , i . e . , t he re a re no met al li nes i n t his la ye r ; ( 3 ) t he f i rst a n d sec o n d met al la ye rs a re co mp let ely occup ie d by ae r ogel ; a n d ( 4 ) t he f i rst met al la ye r is c o mp let ely occu2 Fig. 4 Te mp e rat ure dist ribution of t he t h ree2met al2 layer Cu i nt ercon nect st ruct ure at x = 0 ( ref e r t o Fig. 1) f or va rious tec h nologies Figures 5~7 s h ow t he t e mp e rat ure rises f r o m t he subst ra t e t o t he t op met al li ne f or t he i nt e r2 c o n nect st r uct ure of Fig. 1 . V a ri ous ki n ds of met 2 alliza tio n t ec h nol ogies a re si m ula te d t o i nvestigat e t he ef f ects of dif f e re nt f act ors ( s uc h as ge o met ric co nf igura ti o ns , cur re nt de nsit y , met al a n d dielec2 t ric e mp l oy me nt , a n d p owe r ap p lica tio ns ) o n t he heat dissip a tio n of i nt e rc o n nectio n s yst e ms . These st udies i n dica t e t ha t t e mp e ra t ure rise va ries f or dif f e re nt i nte rco n nect t ec h nologies . The t e mp e ra t ure rises i n Fig. 5 a re f r o m t he s ubst rat e t o t he t op met al li ne f or t he dielect ric e mp l oy2 me nt of SiO 2 / ae r ogel ( Iel d/ Ial d ) f or Al a n d Cu met allizati o n . The t e mp e rat ure rises of Al met alli2 zati o n a re ap p r oxi mat ely ρAl /ρCu ti mes highe r t ha n t h ose of Cu met alliza ti o n un de r t he sa me c o n di2 ti o ns . It is f oun d t hat t he seco n d met al la ye r is m o re c ritical t ha n t he f i rst f or hea t dissip a ti o n . For t he ( c ) a n d ( d ) cases , t he t e mp e ra t ure rise i n2 c reases f i rst wit h t he dec rease of 1 / S but suf f e rs a dec rease w he n 1 / S = 0 , c or resp o n di ng t o t he case i n w hic h t he re is n o met al li ne i n t he la ye r . This is beca use t he re is no hea t s ource i n t his la ye r , a n d 第3期 Xiao Xia et al . : Influence of Interconnection Co nfiguration o n Thermal Dissipation of UL SI … t he heat ge ne rat e d i n t he f i rst met al la ye r is easily co n duct e d t o t he subst ra t e t h r ough t he SiO 2 f il m un de r neat h . Te mp e rat ure rise i nc reases c o nti nu2 ously wit h t he dec rease of 1 / M . Eve n t h ough 519 t he re is n o heat s ource i n t his la ye r i n t he case of 1/ M = 0 , it is m o re dif f icult f or t he J oule hea t ge ne ra t e d a bove t o dissip a t e i nt o t he s ubst rat e . Fig. 5 Te mp e rat ure rises f r om t he subst rat e t o t he t op met al li ne f or dielect ric conf iguration of SiO 2 / ae r o2 gel ( Ield/ Iald ) f or Al a nd Cu met allization wit h J = 01 5 MA/ cm 2 ( a ) Al ,cur re nt t h r ough t he t op met al li ne ; ( b) Cu ,cur re nt t h r ough t he t op met al li ne ; ( c ) Al , cur re nt t h r ough all met al li nes ; ( d ) Cu ,curre nt t hr ough all met al li nes Figure 6 p rese nts t e mp e rat ure rises f r o m t he s ubst rat e t o t he t op met al li ne of Cu met alliza ti o n f o r va ri ous dielect rics e mp l oye d f or Iel d/ Ial d . Fo r t he sa me sit uati o n , t e mp e rat ure rise is p r op orti o n2 2 al t o J . It is f oun d t hat t e mp e rat ure rises f or t he dielect ric Iel d/ Ial d cases of SiO 2 / ae r ogel a n d ae r2 ogel/ ae r ogel a re ve ry dif f e re nt . Te mp e rat ure rises a re l owe r w he n met al li nes a re l oca te d cl ose t o eac h ot he r i n t he case of SiO 2 / ae r ogel but highe r i n t he case of ae r ogel/ ae r ogel . W he n ae r ogel is e mp l oye d as Iel d , it is dif f icult f or t he J oule hea t t o be c o n duct e d t o t he s ubst rat e due t o t he ult ra l ow t he r mal co n ductivit y of t he ae r ogel . The re is muc h m ore J oule heat ge ne ra t e d p e r volume w he n t he met al li nes a re nea r t ha n w he n t he y a re f a r . The ref o re , t he t e mp e ra t ure rise dec reases wit h t he i nc rease of S a n d M . Howe ve r , t he be ha vi or of t e mp e ra t ure rises is re ve rse d w he n SiO 2 is e m2 p l oye d as Iel d beca use t he ge ne ra t e d J oule heat is easily c o n duct e d t o t he subst rat e t h r ough t he SiO 2 f il m . Figure 7 gives t e mp e rat ure rises f r o m t he sub2 st ra t e t o t he t op met al li ne of Cu met allizati o n f o r va rious dielect rics e mp l oye d f o r Iel d/ Ial d . Te m2 520 半 导 体 学 报 p e ra t ure rises f or t he Iel d/ Ial d dielect ric c o nf igu2 rati o n ae r ogel/ ae r ogel a re ap p r oxi ma t ely 第 27 卷 kSiO 2 / k aerogel ti mes highe r t ha n t h ose i n t he SiO 2 / ae r ogel or SiO 2 / SiO 2 co nf igura tio ns . Fig. 6 Te mp e rat ure rise f r om t he subst rate t o t he t op met al li ne of Cu met allization f or va rious ki nds of dielect ric e mploy2 me nt of Ield/ Iald Here t he cur re nt p rop agates t hr ough all met al li nes wit h J = 01 5 ( a , b) a nd 2 MA/ cm 2 ( c , d ) , resp ectively. Fig. 7 Te mp erat ure rises f r om t he subst rate t o t he t op met al li ne of Cu met allization f or va rious ki nds of dielect ric e mployme nt f or Ield/ Iald Here t he cur re nt p rop agates only t hr ough t he t op met al li ne wit h J = 2 MA/ cm 2 . 第3期 Xiao Xia et al . : Influence of Interconnection Co nfiguration o n Thermal Dissipation of UL SI … The a bove si m ula ti o n i n dica tes t hat hea t dis2 sip ati o n is a c rucial asp ect of U L SI i nt e rco n nects . This t he r mal p r oble m is m ore c ritical f or highe r t ec h nology no de I Cs si nce t hey ha ve m uc h m ore i nt e rc o n nect la ye rs a n d a re i nevit a bly e mp l oye d wit h low2 k ma te rials . The si m ulat e d res ults s h ow t hat t he vit al t he r mal p r o ble m occurs i n t he cases i n w hic h t he re a re n o met als u n de r t he signal li ne , co r resp o n di ng t o 1 / M = 0 , 1/ S = 0 , a n d s o o n . Suc h a sit ua ti o n might be t he glo be signal li ne bet wee n [7] f uncti o n bl oc ks . To un de rst a n d t he heat dissip a 2 ti o n i n high t ec h n ol ogy no de I Cs , t he gl obe li ne i n t he case wit h no met al li nes un de r nea t h is i nvesti2 ga t e d f or a 01 13μm UL SI interco nnectio n. The a2 dopted geo met ric parameter s of t he interco nnectio n are t he result s of an elect rical multi2o bjective opti2 mizatio n [ 13 ] . In t he st ruct ure ,t he glo be line is loca2 ted in t he 6t h metal layer . Figure 8 shows t he tem2 perat ure rises in t he glo be line fo r different dielec2 t rics : ( A ) ho mo geneo usly inserted aerogel ; (B ) embedded aerogel ; ( C) ho mogeneo usly insert2 Fig. 8 Temperat ure rises on t he globe line (in t he 6t h metal layer fo r 01 13μm ge ne rati on) i n t he case wit hout met al li nes i n t he l owe r met al laye rs f or diff e re nt die2 lect ric conf iguration ( A ) Homoge ne ously i nse rte d ae r ogel ; (B ) Embe dde d ae r ogel ; ( C) Homoge neously i nserte d p olyme r low2 k material ; ( D ) De nse SiO 2 ed polymer low2k material ; and ( D ) dense SiO2 . The gray bands cover t he range of subst rate tem2 perat ure , which is assumed to be f ro m 80 ( lower bo und) to 150 ℃( upper bo und) . Fo ur sit uatio ns ,a , b ,c ,and d ,stand fo r aero gel/ aerogel ,SiO2 / aerogel , polymer/ polymer , and SiO2 / SiO2 employed as t he Ield/ Iald , respectively. The t hermal co nductivit y for polymer low2 k is aro und 01 25W/ m K. In t he fig2 ure , t he x2axis parameter of t hermal co nductance per unit line lengt h bet ween t he heated metal line and t he subst rate is p roportio nal to t he t hermal co nductivit y of t he medium o n t he heat t ransfer 521 pat h and t he cro ss sectio n t hro ugh which t he heat flow s ,and inver sely p roportio nal to t he lengt h of t he heat t ransfer pat h [ 14 ] . Co mpared to t he wor st case discussed above for a lo ng glo bal line wit h no locally occupied lower metal layers , t he act ual temperat ure of t he glo bal interco nnect s can be locally reduced by high metal densities in t he lower level s o r by dummy metal lines which can reduce t he t hermal resistance be2 t ween t he glo bal lines and t he subst rate. The tem2 perat ure increase above t he densely metal2packed area is fo und to be several degrees. Thus ,t he glo be line temperat ure above t he unoccupied area de2 pends o n t he span distance between t he densely packed f unctio nal blocks , as shown in Fig. 9. The result s indicate t hat a lo ng span and poo r t hermal co nductivit y of t he material s cause t his vital t her2 mal p ro blem in such glo be interco nnect s. Fig. 9 Temperature dist ribution along t he global lines above unoccupied lower metal layers between f unction blocks of 01 5 ,1 ,2 , and 4mm distance fo r 01 5MA/ cm2 To imp rove heat t ranspo rt f ro m glo bal inter2 co nnect s downward t hro ugh t he less occupied low2 er metal layers , additio nal dummy metal lines ( metal plugs co nsisting of W in level M1 and of Cu in t he higher level s , depending o n t he technology ) acting as heat sinks can be placed. However , dum2 my metal s simultaneo usly increase t he R C co nstant since t hey increase t he capacitance. The optimal co nfiguratio n and dist ributio n of dummy lines sho uld be determined by a co mbined t hermal and e2 lect rical calculatio n. Three kinds of heat sinks de2 picted in Fig. 10 have been investigated wit h regard to t heir t hermal efficiency and to t heir influence o n t he parasitic line to gro und capacitance. Figure 11 © 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 半 导 体 学 报 522 demo nst rates t he resulting impact of dummy heat sink insertio n o n t he t hermal co nductance and ca2 pacitance between glo bal interco nnect s and sub2 st rate for different p roperties of t he dielect rics. Special values of co nductivit y and dielect ric co n2 Fig. 10 Different types of dummy heat sinks for cool2 ing glo bal interco nnect s Fig. 11 Dependence of normalized t hermal co nductance ( solid line) and capacitance ( dashed line ) o n t he ratio of t hermal conductivity and dielect ric constant s fo r dif 2 ferent types of dummy heat sinks , respectively The quantities are no rmalized to t he correspo nding values of a 100μm long uncoole d i nt ercon nect of level M 6 ( 01 13μm ) . Horizont al li nes ref er t o uncoole d i nte r2 con nects of diff e re nt le ngt hs . s ta nts are mar ked on t he t op edge of t he f ra me , re2 spectively. A dielect ric co nstant of 11 3 correspo nds to a 01 01W/ m K dielect ric and 11 8 to 01 065 W/ m K[ 7 ] . To calculate t he t hermal co nductance and capacitance of a cooled interco nnect ,t he respective values of t he uncooled line and t he additio nal co n2 t ributio ns of t he heat sinks in Fig. 11 have to be added. In t he case of t he ho mogeneo us insertio n scheme ,co nductance and capacitance are increased 第 27 卷 by t he same factor . For t he embedded insertio n of an aerogel , however , ( e. g. λIald /λIeld = 01 01 / 1 ,εIald / εIeld = 11 3/ 41 1 ) t he t he r mal co n duct a nce of a 100μm lo ng segment of a glo bal interco nnect , cooled by o ne heat sink of t ype HS1 ,is increased 41 6 times ,whereas it s capacitance is increased o nly by a factor of 11 24. The st udy finds more effective cooling of t he same line segment by heat sink HS2 ( t hermal co nductance is increased 101 2 times ) wo uld increase parasitic capacitance by 11 7 ,which is unacceptable. Ot herwise , HS2 is efficient for t he cooling of lo ng interco nnect s. Furt hermore ,t he re2 sistivit y of metal increases wit h t he temperat ure rise and can be app ro ximated by ρT =ρref ( 1 +αT ( T - Tref ) ) . He re ρT a n d ρref a re t he met al resistivities at t e mp e ra t ure T a n d ref e re nce t e mp e ra t ure Tref , resp ectively. The c oef f icie nt αT is t he t e mp e rat ure coef f icie nt of resistivit y. For Cu , αT is a r oun d 01 004/ ℃, w hic h mea ns t he resist a nce of Cu will be i nc rease d by a r oun d 11 4 if t he te mp e rat ure i n2 c reases by 100 ℃. The ref ore , keep i ng t he t e mp e ra 2 t ure of t he met al li ne l ow is als o i mp ort a nt t o p re2 ve nt t he i nc rease of t he RC ti me dela y. A p r op e r heat si n k designe d a t t he key l ocati o n of t he i nt e r2 c o n necti o n s yst e m is necessa ry t o a voi d un desi re d t he r mal ef f ects s uc h as elect r o n migrati o n i n t he met al li ne a n d degra da ti o n of t he c hip . Acc or di ng t o t he a bove st udy , t he ef f ective c ooli ng of gl o bal i nt e rc o n nects dep e n ds o n li ne le ngt h a n d s h oul d be a djust e d by a c o m bi ne d t he r mal a n d elect rical design . 3 Conclusion Interco nnectio n co nfiguratio ns and metal line geo met ry have a st ro ng influence o n t he heat t rans2 fer capabilit y of interco nnectio n systems. There2 fore ,very caref ul planning of t he interco nnect co n2 figuratio n is necessary. The result s o btained here can be applied to qualitatively estimate t he t hermal dissipatio n of t he similar st ruct ures. The elect rical resistivities and t hermal co nduc2 tivities of Cu and Al , as well as t he t hermal co n2 ductivities of SiO2 and aerogel ,are crucial facto rs in t he heat dissipatio n in a UL SI interco nnectio n at a certain power level . When aerogel is employed as Ield , t he t hermal p ro blems of interco nnectio n sys2 tems are critical due to t he ult ra low t hermal co n2 ductivit y of aero gel . It is fo und t hat temperat ure ri2 © 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 第3期 Xiao Xia et al . : Influence of Interconnection Co nfiguration o n Thermal Dissipation of UL SI … ses for t he dielect ric Ield/ Iald co nfiguratio n of aer2 ogel/ aerogel are app ro ximately kSiO2 / kaerogel times higher t han t ho se in t he case of SiO2 / aerogel o r SiO2 / SiO2 . Lo nger vertical distances f ro m t he upper line to t he subst rate and poor t hermal co nductivit y of t he dielect rics inhibit t he dissipatio n of heat to t he subst rate. This sit uatio n will be much mo re serio us for a glo bal line above locally unoccupied metal layer s ,as in t he case of glo bal lines bet ween f unc2 tio n blocks. The insertio n of dummy heat sinks is an app rop riate means to rest rain interco nnect tem2 perat ures. Vario us t ypes of t he heat sinks differ wit h regard to t heir t hermal efficiency and to t heir co nt ributio n to parasitic capacitance. The optimal choice and placement of t he different t ypes depend o n t he p roperties of t he dielect rics and o n t he indi2 vidual interco nnect lengt h. The co mbined elect rical and t hermal optimizatio n of t he interco nnect cool2 ing is beco ming more important for f ut ure UL SI interco nnectio n design. References [ 1 ] Korczynski E. Low2k dielect ric integration co st modeling. Sol2 id State Technol ,1997 ,40 (10) :123 [ 2 ] International technology roadmap for semiconductors 2004 update ,SIA Roadmap ,2004 [ 3 ] Shieh B ,Saraswat K ,Deal M ,et al . Air gap s lower k of inter2 523 connect dielect rics. Solid State Technol ,1999 ,42 (2) :51 [ 4 ] Chiang T Y ,Banerjee K , Saraswat K C. Effect of via separa2 tion and low2k dielect ric materials on t he t hermal characteris2 tics of Cu interconnect s. IEDM ,2000 [ 5 ] Chiang T Y , Banerjee K , Saraswat K C. Analytical t hermal model for multilevel VL SI interconnect s incorporating via effect . IEEE Elect ron Device Lett ,2002 ,23 (1) :31 [ 6 ] Chen D , Li E , Rosenbaum E , et al . Interconnect t hermal modeling for accurate simulation of circuit timing and reliabili2 t y. IEEE Trans CAD ,2000 ,19 (2) :197 [ 7 ] St reiter R , Wolf H , Weiss U ,et al . Optimization of UL SI in2 terconnection systems including aerogels by t hermal and elec2 t rical simulation. Mater Res Soc ,2000 :335 [ 8 ] Ruan G , Xiao X. Simulation of t hermal performance of UL SI interconnect system. Chinese Journal of Semiconductors , 2001 ,22 (8) :1081 [ 9 ] Xiao X , You X ,Ruan G. Co mpact quasi2analytic equations for estimating t he temperat ure dist ribution of UL SI interconnec2 tions. Microelect ron Eng ,2002 ,60 :415 [ 10 ] Middleman S. An int roduction to mass and heat t ransfer . New York :Jo hn Willey & Sons Inc ,1998 [ 11 ] Scheuerpflug P , Hauck M , Fricke J . Thermal properties of sil2 ica aerogels bet ween 11 4 and 330 K. J Non2Cryst Solids ,1992 , 145 :196 [ 12 ] Morgan M ,Zhao J H , Hu C ,et al . Characterization of porous low k t hin films. Proceedings of SEMA TECH Ult ra Low k Workshop ,Austin ,1999 :237 [ 13 ] Anand M B , Shibata H , Kakumu M. Multiobjective optimiza2 tion of VL SI interconnect parameters. IEEE Trans Co mp uter2 Aided Design ,1998 ,17 (12) :1252 [ 14 ] Xiao X. Elect rical and t hermal simulation of interconnection systems of deep sub2micrometer integrated circuit s. Aachen : Shaker Verlag ,2002 :113 超大规模集成电路互连系统的布线构造对散热的影响 3 肖 夏1 ,g 姚素英1 阮 刚2 (1 天津大学电子信息工程学院 专用集成电路设计中心 , 天津 300072) (2 复旦大学信息科学与工程学院 , 上海 200433) 摘要 : 应用一个三层互连布线结构研究了诸多因素尤其是布线的几何构造对互连系统散热问题的影响 ,并对多种 不同金属与介质相结合的互连布线的散热情况进行了详细模拟 . 研究表明互连线上焦耳热的主要散热途径为金属 层内的金属线和介质层中热阻相对小的路径 . 因此互连系统的几何布线对系统散热具有重要影响 . 在相同条件下 , 铝布线系统的温升约为铜布线的ρAl /ρCu 倍 . 此外 , 模拟了 01 13μm 工艺互连结构中连接功能块区域的信号线上的温 升情况 , 探讨了几种用于改善热问题的散热金属条对互连布线的导热和附加电容的影响 . 关键词 : UL SI 互连布线 ; 散热 ; 几何构造 EEACC : 2570 ; 2800 中图分类号 : TN4051 97 文献标识码 : A 文章编号 : 025324177 ( 2006) 0320516208 3 教育部留学归国基金资助项目 g 通信作者 . Email :xiaxiao @tju. edu. cn ; xiax58 @yahoo . co m 2005206213 收到 ,2005211206 定稿 ν 2006 中国电子学会
© Copyright 2026 Paperzz