Algebra II Module 2, Topic B, Lesson 17: Teacher Version

Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
M2
ALGEBRA II
Lesson 17: Trigonometric Identity Proofs
Student Outcomes
๏‚ง
Students see derivations and proofs of the addition and subtraction formulas for sine and cosine.
๏‚ง
Students prove some simple trigonometric identities.
Lesson Notes
The lesson starts with students looking for patterns in a table to make
conjectures about the formulas for sin(๐›ผ + ๐›ฝ) and cos(๐›ผ + ๐›ฝ). From these
formulas, students can quickly deduce the formulas for sin(๐›ผ โˆ’ ๐›ฝ) and
cos(๐›ผ โˆ’ ๐›ฝ). The teacher gives proofs of important formulas, and then students
prove some simple trigonometric identities. The lesson highlights MP.3 and
MP.8, as students look for patterns in repeated calculations and construct
arguments about the patterns they find.
Scaffolding:
๏‚ง Students should have access to
calculators.
๏‚ง The teacher may want to model a
few calculations at the beginning.
๏‚ง Pairs of students who fill in the
table quickly should be encouraged
to help those who might be
struggling.
Classwork
Opening Exercise (10 minutes)
๏‚ง Once a few students have filled in
the table, one or two might be
encouraged to share their entries
with the class because when all
students have the entries, they are
in a better position to discover the
rule.
Students should work in pairs to fill out the table and look for patterns. They
MP.8 should be looking for columns whose entries might be combined to yield the
entries in the column for sin(๐›ผ + ๐›ฝ).
Opening Exercise
We have seen that ๐ฌ๐ข๐ง(๐œถ + ๐œท) โ‰  ๐ฌ๐ข๐ง(๐œถ) + ๐ฌ๐ข๐ง(๐œท). So, what is ๐ฌ๐ข๐ง(๐œถ + ๐œท)? Begin by
completing the following table:
๐œถ
๐œท
๐ฌ๐ข๐ง(๐œถ)
๐ฌ๐ข๐ง(๐œท)
๐ฌ๐ข๐ง(๐œถ + ๐œท)
๐ฌ๐ข๐ง(๐œถ) ๐œ๐จ๐ฌ(๐œท)
๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(๐œท)
๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท)
๐œ๐จ๐ฌ(๐œถ) ๐ฌ๐ข๐ง(๐œท)
๐…
๐Ÿ”
๐…
๐Ÿ”
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
โˆš๐Ÿ‘
๐Ÿ
โˆš๐Ÿ‘
๐Ÿ’
๐Ÿ
๐Ÿ
๐Ÿ‘
๐Ÿ’
โˆš๐Ÿ‘
๐Ÿ’
๐…
๐Ÿ”
๐…
๐Ÿ‘
๐Ÿ
๐Ÿ
โˆš๐Ÿ‘
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ’
โˆš๐Ÿ‘
๐Ÿ’
โˆš๐Ÿ‘
๐Ÿ’
๐Ÿ‘
๐Ÿ’
๐…
๐Ÿ’
๐…
๐Ÿ”
โˆš๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
โˆš๐Ÿ + โˆš๐Ÿ”
๐Ÿ’
โˆš๐Ÿ”
๐Ÿ’
โˆš๐Ÿ
๐Ÿ’
โˆš๐Ÿ”
๐Ÿ’
โˆš๐Ÿ
๐Ÿ’
๐…
๐Ÿ’
๐…
๐Ÿ’
โˆš๐Ÿ
๐Ÿ
โˆš๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐…
๐Ÿ‘
๐…
๐Ÿ‘
โˆš๐Ÿ‘
๐Ÿ
โˆš๐Ÿ‘
๐Ÿ
โˆš๐Ÿ‘
๐Ÿ
โˆš๐Ÿ‘
๐Ÿ’
๐Ÿ‘
๐Ÿ’
๐Ÿ
๐Ÿ’
โˆš๐Ÿ‘
๐Ÿ’
๐…
๐Ÿ‘
๐…
๐Ÿ’
โˆš๐Ÿ‘
๐Ÿ
โˆš๐Ÿ
๐Ÿ
โˆš๐Ÿ + โˆš๐Ÿ”
๐Ÿ’
โˆš๐Ÿ”
๐Ÿ’
โˆš๐Ÿ”
๐Ÿ’
โˆš๐Ÿ
๐Ÿ’
โˆš๐Ÿ
๐Ÿ’
Lesson 17:
Trigonometric Identity Proofs
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M2-TE-1.3.0-08.2015
293
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
M2
ALGEBRA II
MP.8
Ask students to write an equation that describes how the entries in other columns might
be combined to yield the entries in the shaded column.
Scaffolding:
๏‚ง
If no student offers the
identity, the teacher might
suggest that students look
for two columns whose
entries sum to yield
sin(๐›ผ + ๐›ฝ).
๏‚ง
It might even be necessary
for the teacher to point at
the two columns.
The identity they are looking for in the table is the following:
sin(๐›ผ + ๐›ฝ) = cos(๐›ผ) sin(๐›ฝ) + sin(๐›ผ) cos(๐›ฝ).
Emphasize in the discussion that the proposed identity has not been proven; it has only
been tested for some specific values of ๐›ผ and ๐›ฝ. Its status now is as a conjecture.
The conjecture is strengthened by the following observation: Because ๐›ผ and ๐›ฝ play the
same role in (๐›ผ + ๐›ฝ), they should not play different roles in any formula for the sine of
that sum. In the conjecture, if ๐›ผ and ๐›ฝ are interchanged, the formula remains essentially
the same. That symmetry helps make the conjecture more plausible.
Use the following table to formulate a conjecture for ๐œ๐จ๐ฌ(๐œถ + ๐œท):
MP.8
๐œถ
๐œท
๐œ๐จ๐ฌ(๐œถ)
๐œ๐จ๐ฌ(๐œท)
๐œ๐จ๐ฌ(๐œถ + ๐œท)
๐ฌ๐ข๐ง(๐œถ) ๐œ๐จ๐ฌ(๐œท)
๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(๐œท)
๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท)
๐œ๐จ๐ฌ(๐œถ) ๐ฌ๐ข๐ง(๐œท)
๐…
๐Ÿ”
๐…
๐Ÿ”
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
โˆš๐Ÿ‘
๐Ÿ’
๐Ÿ
๐Ÿ
๐Ÿ‘
๐Ÿ’
โˆš๐Ÿ‘
๐Ÿ’
๐…
๐Ÿ”
๐…
๐Ÿ‘
โˆš๐Ÿ‘
๐Ÿ
๐Ÿ
๐Ÿ
๐ŸŽ
๐Ÿ
๐Ÿ’
โˆš๐Ÿ‘
๐Ÿ’
โˆš๐Ÿ‘
๐Ÿ’
๐Ÿ‘
๐Ÿ’
๐…
๐Ÿ’
๐…
๐Ÿ”
โˆš๐Ÿ
๐Ÿ
โˆš๐Ÿ‘
๐Ÿ
โˆš๐Ÿ” โˆ’ โˆš๐Ÿ
๐Ÿ’
โˆš๐Ÿ”
๐Ÿ’
โˆš๐Ÿ
๐Ÿ’
โˆš๐Ÿ”
๐Ÿ’
โˆš๐Ÿ
๐Ÿ’
๐…
๐Ÿ’
๐…
๐Ÿ’
โˆš๐Ÿ
๐Ÿ
โˆš๐Ÿ
๐Ÿ
๐ŸŽ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐…
๐Ÿ‘
๐…
๐Ÿ‘
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
โˆš๐Ÿ‘
๐Ÿ’
๐Ÿ‘
๐Ÿ’
๐Ÿ
๐Ÿ’
โˆš๐Ÿ‘
๐Ÿ’
๐…
๐Ÿ‘
๐…
๐Ÿ’
๐Ÿ
๐Ÿ
โˆš๐Ÿ
๐Ÿ
โˆš๐Ÿ”
๐Ÿ’
โˆš๐Ÿ”
๐Ÿ’
โˆš๐Ÿ
๐Ÿ’
โˆš๐Ÿ
๐Ÿ’
โˆ’
๐Ÿ
๐Ÿ
โˆš๐Ÿ โˆ’ โˆš๐Ÿ”
๐Ÿ’
Again, ask students to write an equation that describes how the entries in other columns might be combined to yield the
entries in the shaded column.
The identity they are looking for in the table is the following:
cos(๐›ผ + ๐›ฝ) = cos(๐›ผ) cos(๐›ฝ) โˆ’ sin(๐›ผ) sin(๐›ฝ).
Again, in a class discussion of the exercise after students have looked for a pattern, if no student comes up with that
identity, the teacher may want to point at the two columns whose entries differ to yield cos(๐›ผ + ๐›ฝ). It should be
repeated that the proposed identity has not been proven; it has only been tested for some specific values of ๐›ผ and ๐›ฝ. It
is a conjecture.
This conjecture, too, is strengthened by the observation that because ๐›ผ and ๐›ฝ play the same role in (๐›ผ + ๐›ฝ), they should
not play different roles in any formula for the cosine of that sum. And again, if ๐›ผ and ๐›ฝ are interchanged in the
conjectured formula, it remains essentially the same. That symmetry helps make the conjecture more plausible.
Lesson 17:
Trigonometric Identity Proofs
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M2-TE-1.3.0-08.2015
294
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
M2
ALGEBRA II
Examples 1โ€“2 (15 minutes): Formulas for sin(๐›ผ + ๐›ฝ) and cos(๐›ผ + ๐›ฝ)
Scaffolding:
Examples 1โ€“2: Formulas for ๐ฌ๐ข๐ง(๐œถ + ๐œท) and ๐œ๐จ๐ฌ(๐œถ + ๐œท)
1.
One conjecture is that the formula for the sine of the sum of two numbers is
๐ฌ๐ข๐ง(๐œถ + ๐œท) = ๐ฌ๐ข๐ง(๐œถ) ๐œ๐จ๐ฌ(๐œท) + ๐œ๐จ๐ฌ(๐œถ) ๐ฌ๐ข๐ง(๐œท). The proof can be a little long, but it is fairly
straightforward. We will prove only the case when the two numbers are positive, and their
๐…
sum is less than .
๐Ÿ
a.
Let ๐œถ and ๐œท be positive real numbers such that ๐ŸŽ < ๐œถ + ๐œท <
b.
Construct rectangle ๐‘ด๐‘ต๐‘ถ๐‘ท such that ๐‘ท๐‘น = ๐Ÿ,
๐’Žโˆ ๐‘ท๐‘ธ๐‘น = ๐Ÿ—๐ŸŽ°, ๐’Žโˆ ๐‘น๐‘ท๐‘ธ = ๐œท, and
๐’Žโˆ ๐‘ธ๐‘ท๐‘ด = ๐œถ. See the figure on the right.
c.
Fill in the blanks in terms of ๐œถ and ๐œท:
i.
๐’Žโˆ ๐‘น๐‘ท๐‘ถ =
.
๐…
.
๐Ÿ
Because the proofs of the
addition and subtraction
formulas for sine and cosine
can be complicated, only the
proof of the sine addition
formula is presented in detail
here. Advanced students
might be asked to prove, in
much the same fashion, any of
the other three formulas, as
well as by deriving them from
the sine addition formula.
Problem 1 in the Problem Set
concerns one of those proofs.
๐…
โˆ’๐œถโˆ’๐œท
๐Ÿ
ii.
๐’Žโˆ ๐‘ท๐‘น๐‘ถ =
.
๐œถ+๐œท
iii.
Therefore, ๐ฌ๐ข๐ง(๐œถ + ๐œท) = ๐‘ท๐‘ถ.
iv.
๐‘น๐‘ธ = ๐ฌ๐ข๐ง(______).
๐œท
v.
๐‘ท๐‘ธ = ๐œ๐จ๐ฌ(______).
๐œท
d.
Letโ€™s label the angle and length measurements as shown.
e.
Use this new figure to fill in the blanks in terms of ๐œถ and ๐œท:
i.
Why does ๐ฌ๐ข๐ง(๐œถ) =
๐‘ด๐‘ธ
?
๐œ๐จ๐ฌ(๐œท)
The length of the hypotenuse of โ–ณ ๐‘ท๐‘ธ๐‘ด is ๐œ๐จ๐ฌ(๐œท),
and ๐‘ด๐‘ธ is the length of the side opposite ๐œถ.
ii.
Therefore, ๐‘ด๐‘ธ =
.
๐ฌ๐ข๐ง(๐œถ)๐œ๐จ๐ฌ(๐œท)
iii.
๐’Žโˆ ๐‘น๐‘ธ๐‘ต =
.
๐œถ
Lesson 17:
Trigonometric Identity Proofs
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M2-TE-1.3.0-08.2015
295
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
M2
ALGEBRA II
f.
Now, consider โ–ณ ๐‘น๐‘ธ๐‘ต. Since ๐œ๐จ๐ฌ(๐œถ) =
๐‘ธ๐‘ต =
i.
๐‘ธ๐‘ต
,
๐ฌ๐ข๐ง(๐œท)
.
๐œ๐จ๐ฌ(๐œถ)๐ฌ๐ข๐ง(๐œท)
2.
a.
Label these lengths and angle measurements in the
figure.
b.
Since ๐‘ด๐‘ต๐‘ถ๐‘ท is a rectangle, ๐‘ถ๐‘ท = ๐‘ด๐‘ธ + ๐‘ธ๐‘ต.
c.
Thus, ๐ฌ๐ข๐ง(๐œถ + ๐œท) = ๐ฌ๐ข๐ง(๐œถ) ๐œ๐จ๐ฌ(๐œท) + ๐œ๐จ๐ฌ(๐œถ) ๐ฌ๐ข๐ง(๐œท).
Note that we have only proven the formula for the sine of the sum of two real numbers ๐œถ and ๐œท in the case where
๐…
๐Ÿ
๐ŸŽ < ๐œถ + ๐œท < . A proof for all real numbers ๐œถ and ๐œท breaks down into cases that are proven similarly to the case we
have just seen. Although we are omitting the full proof, this formula holds for all real numbers ๐œถ and ๐œท.
Scaffolding:
For any real numbers ๐œถ and ๐œท,
๐ฌ๐ข๐ง(๐œถ + ๐œท) = ๐ฌ๐ข๐ง(๐œถ)๐œ๐จ๐ฌ(๐œท) + ๐œ๐จ๐ฌ(๐œถ)๐ฌ๐ข๐ง(๐œท).
3.
Now, letโ€™s prove our other conjecture, which is that the formula for the cosine of the sum of
two numbers is
A wall poster with all four sum
and difference formulas will
help students keep these
formulas straight.
๐œ๐จ๐ฌ(๐œถ + ๐œท) = ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท) โˆ’ ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(๐œท).
๐…
Again, we will prove only the case when the two numbers are positive, and their sum is less than . This time, we
๐Ÿ
will use the sine addition formula and identities from previous lessons instead of working through a geometric
proof.
Fill in the blanks in terms of ๐œถ and ๐œท:
Let ๐œถ and ๐œท be any real numbers. Then,
๐…
๐œ๐จ๐ฌ(๐œถ + ๐œท) = ๐ฌ๐ข๐ง ( โˆ’ (__________))
๐Ÿ
= ๐ฌ๐ข๐ง((__________) โˆ’ ๐œท)
= ๐ฌ๐ข๐ง((__________) + (โˆ’๐œท))
= ๐ฌ๐ข๐ง(__________) ๐œ๐จ๐ฌ(โˆ’๐œท) + ๐œ๐จ๐ฌ(__________) ๐ฌ๐ข๐ง(โˆ’๐œท)
= ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(โˆ’๐œท) + ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(โˆ’๐œท)
= ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท) โˆ’ ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(๐œท).
The completed proof should look like the following:
๐…
๐œ๐จ๐ฌ(๐œถ + ๐œท) = ๐ฌ๐ข๐ง ( โˆ’ (๐œถ + ๐œท))
๐Ÿ
๐…
= ๐ฌ๐ข๐ง (( โˆ’ ๐œถ) โˆ’ ๐œท)
๐Ÿ
๐…
= ๐ฌ๐ข๐ง (( โˆ’ ๐œถ) + (โˆ’๐œท))
๐Ÿ
๐…
๐…
= ๐ฌ๐ข๐ง ( โˆ’ ๐œถ) ๐œ๐จ๐ฌ(โˆ’๐œท) + ๐œ๐จ๐ฌ ( โˆ’ ๐œถ) ๐ฌ๐ข๐ง(โˆ’๐œท)
๐Ÿ
๐Ÿ
= ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(โˆ’๐œท) + ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(โˆ’๐œท)
= ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท) โˆ’ ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(๐œท).
Lesson 17:
Trigonometric Identity Proofs
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M2-TE-1.3.0-08.2015
296
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
M2
ALGEBRA II
For all real numbers ๐œถ and ๐œท,
๐œ๐จ๐ฌ(๐œถ + ๐œท) = ๐œ๐จ๐ฌ(๐œถ)๐œ๐จ๐ฌ(๐œท) โˆ’ ๐ฌ๐ข๐ง(๐œถ)๐ฌ๐ข๐ง(๐œท).
Exercises 1โ€“2 (6 minutes): Formulas for ๐ฌ๐ข๐ง(๐œถ โˆ’ ๐œท) and ๐œ๐จ๐ฌ(๐œถ โˆ’ ๐œท)
In these exercises, formulas for the sine and cosine of the difference of two
angles are developed from the formulas for the sine and cosine of the sum of
two angles.
Exercises 1โ€“2: Formulas for ๐ฌ๐ข๐ง(๐œถ โˆ’ ๐œท) and ๐œ๐จ๐ฌ(๐œถ โˆ’ ๐œท)
1.
Rewrite the expression ๐ฌ๐ข๐ง(๐œถ โˆ’ ๐œท) as ๐ฌ๐ข๐ง(๐œถ + (โˆ’๐œท)). Use the rewritten
form to find a formula for the sine of the difference of two angles, recalling
that the sine is an odd function.
Scaffolding:
๏‚ง To help students understand the
difference formulas, consider giving
them some examples to calculate.
๏‚ง sin (
๐œ‹
๐œ‹
๐œ‹
๐œ‹
= sin ( ) cos ( ) โˆ’ cos ( ) sin ( )
4
6
4
6
Let ๐œถ and ๐œท be any real numbers. Then,
๐ฌ๐ข๐ง(๐œถ + (โˆ’๐œท)) = ๐ฌ๐ข๐ง(๐œถ) ๐œ๐จ๐ฌ(โˆ’๐œท) + ๐œ๐จ๐ฌ(๐œถ) ๐ฌ๐ข๐ง(โˆ’๐œท)
= ๐ฌ๐ข๐ง(๐œถ) ๐œ๐จ๐ฌ(๐œท) โˆ’ ๐œ๐จ๐ฌ(๐œถ) ๐ฌ๐ข๐ง(๐œท).
Therefore, ๐ฌ๐ข๐ง(๐œถ โˆ’ ๐œท) = ๐ฌ๐ข๐ง(๐œถ) ๐œ๐จ๐ฌ(๐œท) โˆ’ ๐œ๐จ๐ฌ(๐œถ) ๐ฌ๐ข๐ง(๐œท) for all real
numbers ๐œถ and ๐œท.
2.
Now, use the same idea to find a formula for the cosine of the difference of
two angles. Recall that the cosine is an even function.
Let ๐œถ and ๐œท be any real numbers. Then,
๐œ‹
๐œ‹ ๐œ‹
) = sin ( โˆ’ )
12
4 6
=
1
1 1
โˆš3
โˆ’
โˆ™
2
โˆš2
โˆš2 2
โˆ™
โˆš2โˆš3 โˆš2
โˆ’
4
4
โˆš2(โˆš3 โˆ’ 1)
=
4
=
๏‚ง cos (
๐œ‹
๐œ‹ ๐œ‹
) = cos ( โˆ’ )
12
4 6
๐œ‹
๐œ‹
๐œ‹
๐œ‹
= cos ( ) cos ( ) + sin ( ) sin ( )
4
6
4
6
๐œ๐จ๐ฌ(๐œถ โˆ’ ๐œท) = ๐œ๐จ๐ฌ(๐œถ + (โˆ’๐œท))
= ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(โˆ’๐œท) โˆ’ ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(โˆ’๐œท)
= ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท) + ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(๐œท).
Therefore, ๐œ๐จ๐ฌ(๐œถ โˆ’ ๐œท) = ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท) + ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(๐œท) for all real
numbers ๐œถ and ๐œท.
For all real numbers ๐œถ and ๐œท,
=
1
1 1
โˆš3
+
โˆ™
โˆš2 2
โˆš2 2
โˆ™
โˆš2โˆš3 โˆš2
+
4
4
โˆš2(โˆš3 + 1)
=
4
=
๐ฌ๐ข๐ง(๐œถ โˆ’ ๐œท) = ๐ฌ๐ข๐ง(๐œถ)๐œ๐จ๐ฌ(๐œท) โˆ’ ๐œ๐จ๐ฌ(๐œถ)๐ฌ๐ข๐ง(๐œท), and
๐œ๐จ๐ฌ(๐œถ โˆ’ ๐œท) = ๐œ๐จ๐ฌ(๐œถ)๐œ๐จ๐ฌ(๐œท) + ๐ฌ๐ข๐ง(๐œถ)๐ฌ๐ข๐ง(๐œท).
Lesson 17:
Trigonometric Identity Proofs
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M2-TE-1.3.0-08.2015
297
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
NYS COMMON CORE MATHEMATICS CURRICULUM
Lesson 17
M2
ALGEBRA II
Exercises 3โ€“5 (10 minutes)
These exercises make use of the formulas proved in the examples. Students should work on these exercises in pairs.
Use the sum and difference formulas to do the following:
Exercises 3โ€“5
3.
Derive a formula for ๐ญ๐š๐ง(๐œถ + ๐œท) in terms of ๐ญ๐š๐ง(๐œถ) and ๐ญ๐š๐ง(๐œท), where all of the expressions are defined.
Hint: Use the addition formulas for sine and cosine.
Let ๐œถ and ๐œท be any real numbers so that ๐œ๐จ๐ฌ(๐œถ) โ‰  ๐ŸŽ, ๐œ๐จ๐ฌ(๐œท) โ‰  ๐ŸŽ, and ๐œ๐จ๐ฌ(๐œถ + ๐œท) โ‰  ๐ŸŽ. By the definition of
tangent, ๐ญ๐š๐ง(๐œถ + ๐œท) =
๐ฌ๐ข๐ง(๐œถ+๐œท)
.
๐œ๐จ๐ฌ(๐œถ+๐œท)
Using sum formulas for sine and cosine, we have
๐ฌ๐ข๐ง(๐œถ + ๐œท) ๐ฌ๐ข๐ง(๐œถ) ๐œ๐จ๐ฌ(๐œท) + ๐œ๐จ๐ฌ(๐œถ) ๐ฌ๐ข๐ง(๐œท)
=
.
๐œ๐จ๐ฌ(๐œถ + ๐œท) ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท) โˆ’ ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(๐œท)
Dividing numerator and denominator by ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท) gives
๐ฌ๐ข๐ง(๐œถ) ๐œ๐จ๐ฌ(๐œท) + ๐œ๐จ๐ฌ(๐œถ) ๐ฌ๐ข๐ง(๐œท)
๐ญ๐š๐ง(๐œถ) + ๐ญ๐š๐ง(๐œท)
=
.
๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท) โˆ’ ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(๐œท) ๐Ÿ โˆ’ ๐ญ๐š๐ง(๐œถ) ๐ญ๐š๐ง(๐œท)
Therefore, ๐ญ๐š๐ง(๐œถ + ๐œท) =
Scaffolding:
Students may need to be
prompted to divide the
numerator and denominator
by cos(๐›ผ)cos(๐›ฝ).
๐ญ๐š๐ง(๐œถ)+๐ญ๐š๐ง(๐œท)
for any real numbers ๐œถ and ๐œท so that ๐œ๐จ๐ฌ(๐œถ) โ‰  ๐ŸŽ, ๐œ๐จ๐ฌ(๐œท) โ‰  ๐ŸŽ, and
๐Ÿโˆ’๐ญ๐š๐ง(๐œถ) ๐ญ๐š๐ง(๐œท)
๐œ๐จ๐ฌ(๐œถ + ๐œท) โ‰  ๐ŸŽ.
4.
Derive a formula for ๐ฌ๐ข๐ง(๐Ÿ๐’–) in terms of ๐ฌ๐ข๐ง(๐’–) and ๐œ๐จ๐ฌ(๐’–) for all real numbers ๐’–.
Let ๐’– be any real number. Then, ๐ฌ๐ข๐ง(๐Ÿ๐’–) = ๐ฌ๐ข๐ง(๐’– + ๐’–) = ๐ฌ๐ข๐ง(๐’–)๐œ๐จ๐ฌ(๐’–) + ๐œ๐จ๐ฌ(๐’–)๐ฌ๐ข๐ง(๐’–), which is equivalent to
๐ฌ๐ข๐ง(๐Ÿ๐’–) = ๐Ÿ ๐ฌ๐ข๐ง(๐’–) ๐œ๐จ๐ฌ(๐’–).
Therefore, ๐ฌ๐ข๐ง(๐Ÿ๐’–) = ๐Ÿ ๐ฌ๐ข๐ง(๐’–) ๐œ๐จ๐ฌ(๐’–) for all real numbers ๐’–.
5.
Derive a formula for ๐œ๐จ๐ฌ(๐Ÿ๐’–) in terms of ๐ฌ๐ข๐ง(๐’–) and ๐œ๐จ๐ฌ(๐’–) for all real numbers ๐’–.
Let ๐’– be a real number. Then, ๐œ๐จ๐ฌ(๐Ÿ๐’–) = ๐œ๐จ๐ฌ(๐’– + ๐’–) = ๐œ๐จ๐ฌ(๐’–) ๐œ๐จ๐ฌ(๐’–) โˆ’ ๐ฌ๐ข๐ง(๐’–) ๐ฌ๐ข๐ง(๐’–), which is equivalent to
๐œ๐จ๐ฌ(๐Ÿ๐’–) = ๐œ๐จ๐ฌ ๐Ÿ (๐’–) โˆ’ ๐ฌ๐ข๐ง๐Ÿ (๐’–).
Therefore, ๐œ๐จ๐ฌ(๐Ÿ๐’–) = ๐œ๐จ๐ฌ ๐Ÿ (๐’–) โˆ’ ๐ฌ๐ข๐ง๐Ÿ(๐’–) for all real numbers ๐’–. Using the Pythagorean identities, you can rewrite
this identity as ๐œ๐จ๐ฌ(๐Ÿ๐’–) = ๐Ÿ ๐œ๐จ๐ฌ ๐Ÿ (๐’–) โˆ’ ๐Ÿ or as ๐œ๐จ๐ฌ(๐Ÿ๐ฎ) = ๐Ÿ โˆ’ ๐Ÿ ๐ฌ๐ข๐ง๐Ÿ (๐’–) for all real numbers ๐’–.
Lesson 17:
Trigonometric Identity Proofs
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M2-TE-1.3.0-08.2015
298
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
M2
ALGEBRA II
Closing (1 minute)
Ask students to respond to this question in writing, to a partner, or as a class.
๏‚ง
Edna claims that in the same way that 2(๐›ผ + ๐›ฝ) = 2(๐›ผ) + 2(๐›ฝ), it follows by the distributive property that
sin(๐›ผ + ๐›ฝ) = sin(๐›ผ) + sin(๐›ฝ) for all real numbers ๐›ผ and ๐›ฝ. Danielle says that canโ€™t be true. Who is correct,
and why?
๏ƒบ
Danielle is correct. Given that sin(๐›ผ + ๐›ฝ) = sin(๐›ผ)cos(๐›ฝ) + cos(๐›ผ)sin(๐›ฝ), it follows that
sin(๐›ผ + ๐›ฝ) = sin(๐›ผ) + sin(๐›ฝ) only for special values of ๐›ผ and ๐›ฝ. That is, when cos(๐›ฝ) = 1 and
cos(๐›ผ) = 1, or when ๐›ผ = ๐›ฝ = ๐œ‹๐‘› for ๐‘› an integer. So, in general,
sin(๐›ผ + ๐›ฝ) โ‰  sin(๐›ผ) + sin(๐›ฝ).
๐œ‹
A simple example is when ๐›ผ = ๐›ฝ = . Then, sin(๐›ผ + ๐›ฝ) = sin(๐œ‹) = 0, but
2
๐œ‹
๐œ‹
sin(๐›ผ) + sin(๐›ฝ) = sin ( ) + sin ( ) = 2. Since 0 โ‰  2, sin(๐›ผ + ๐›ฝ) is generally not equal to
2
2
sin(๐›ผ) + sin(๐›ฝ).
Exit Ticket (3 minutes)
Lesson 17:
Trigonometric Identity Proofs
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M2-TE-1.3.0-08.2015
299
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
M2
ALGEBRA II
Name
Date
Lesson 17: Trigonometric Identity Proofs
Exit Ticket
Derive a formula for tan(๐›ผ โˆ’ ๐›ฝ) in terms of tan(๐›ผ) and tan(๐›ฝ), where ๐›ผ โ‰ 
Lesson 17:
Trigonometric Identity Proofs
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M2-TE-1.3.0-08.2015
๐œ‹
๐œ‹
+ ๐‘˜๐œ‹ and ๐›ฝ โ‰  + ๐‘˜๐œ‹, for all integers ๐‘˜.
2
2
300
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
M2
ALGEBRA II
Exit Ticket Sample Solutions
Derive a formula for ๐ญ๐š๐ง(๐œถ โˆ’ ๐œท) in terms of ๐ญ๐š๐ง(๐œถ) and ๐ญ๐š๐ง(๐œท), where ๐œถ โ‰ 
Let ๐œถ and ๐œท be real numbers so that ๐œถ โ‰ 
๐ญ๐š๐ง(๐œถ โˆ’ ๐œท) =
๐ฌ๐ข๐ง(๐œถโˆ’๐œท)
.
๐œ๐จ๐ฌ(๐œถโˆ’๐œท)
๐…
๐…
+ ๐’Œ๐… and ๐œท โ‰  + ๐’Œ๐…, for all integers ๐’Œ.
๐Ÿ
๐Ÿ
๐…
๐…
+ ๐’Œ๐… and ๐œท โ‰  + ๐’Œ๐…, for all integers ๐’Œ. Using the definition of tangent,
๐Ÿ
๐Ÿ
Using the difference formulas for sine and cosine,
๐ฌ๐ข๐ง(๐œถ โˆ’ ๐œท) ๐ฌ๐ข๐ง(๐œถ) ๐œ๐จ๐ฌ(๐œท) โˆ’ ๐œ๐จ๐ฌ(๐œถ) ๐ฌ๐ข๐ง(๐œท)
=
.
๐œ๐จ๐ฌ(๐œถ โˆ’ ๐œท) ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท) + ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(๐œท)
Dividing numerator and denominator by ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท) gives
๐ฌ๐ข๐ง(๐œถ) ๐œ๐จ๐ฌ(๐œท) โˆ’ ๐œ๐จ๐ฌ(๐œถ) ๐ฌ๐ข๐ง(๐œท)
๐ญ๐š๐ง(๐œถ) โˆ’ ๐ญ๐š๐ง(๐œท)
=
.
๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท) + ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(๐œท) ๐Ÿ + ๐ญ๐š๐ง(๐œถ) ๐ญ๐š๐ง(๐œท)
Therefore, ๐ญ๐š๐ง(๐œถ โˆ’ ๐œท) =
๐ญ๐š๐ง(๐œถ)โˆ’๐ญ๐š๐ง(๐œท)
๐…
๐…
, where ๐œถ โ‰  + ๐’Œ๐… and ๐œท โ‰  + ๐’Œ๐…, for all integers ๐’Œ.
๐Ÿ+๐ญ๐š๐ง(๐œถ) ๐ญ๐š๐ง(๐œท)
๐Ÿ
๐Ÿ
Problem Set Sample Solutions
These problems continue the derivation and demonstration of simple trigonometric identities.
1.
Prove the formula
๐œ๐จ๐ฌ(๐œถ + ๐œท) = ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท) โˆ’ ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(๐œท) for ๐ŸŽ < ๐œถ + ๐œท <
๐…
๐Ÿ
using the rectangle ๐‘ด๐‘ต๐‘ถ๐‘ท in the figure on the right and calculating
๐‘ท๐‘ด, ๐‘น๐‘ต, and ๐‘น๐‘ถ in terms of ๐œถ and ๐œท.
๐…
๐Ÿ
PROOF: Let ๐œถ and ๐œท be real numbers so that ๐ŸŽ < ๐œถ + ๐œท < .
Then ๐‘ท๐‘ด = ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท), ๐‘น๐‘ต = ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(๐œท), and ๐‘น๐‘ถ = ๐œ๐จ๐ฌ(๐œถ + ๐œท).
Because ๐‘น๐‘ถ = ๐‘ท๐‘ด โˆ’ ๐‘น๐‘ต, it follows that
๐…
๐Ÿ
๐œ๐จ๐ฌ(๐œถ + ๐œท) = ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท) โˆ’ ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(๐œท) for ๐ŸŽ < ๐œถ + ๐œท < .
2.
Derive a formula for ๐ญ๐š๐ง(๐Ÿ๐’–) for ๐’– โ‰ 
๐… ๐’Œ๐…
๐…
+
and ๐’– โ‰  + ๐’Œ๐…, for all integers ๐’Œ.
๐Ÿ’
๐Ÿ
๐Ÿ
๐… ๐’Œ๐…
๐…
+ , and ๐’– โ‰  + ๐’Œ๐…, for all integers ๐’Œ. In the formula
๐Ÿ’
๐Ÿ
๐Ÿ
๐ญ๐š๐ง(๐œถ)+๐ญ๐š๐ง(๐œท)
๐ญ๐š๐ง(๐’–)+๐ญ๐š๐ง(๐’–)
๐ญ๐š๐ง(๐œถ + ๐œท) =
,
replace
๐œถ
and
๐œท
both
by
๐’–.
The
resulting equation is ๐ญ๐š๐ง(๐Ÿ๐’–) =
,
(
)
๐Ÿโˆ’๐ญ๐š๐ง ๐œถ ๐ญ๐š๐ง(๐œท)
๐Ÿโˆ’๐ญ๐š๐ง(๐’–) ๐ญ๐š๐ง(๐’–)
PROOF: Let ๐’– be any real number so that ๐’– โ‰ 
which is equivalent to
๐ญ๐š๐ง(๐Ÿ๐’–) =
3.
๐Ÿ ๐ญ๐š๐ง(๐’–)
๐… ๐’Œ๐…
๐…
for ๐’– โ‰  +
and ๐’– โ‰  + ๐’Œ๐…, for all integers ๐’Œ.
๐Ÿ’
๐Ÿ
๐Ÿ
๐Ÿโˆ’๐ญ๐š๐ง๐Ÿ(๐’–)
Prove that ๐œ๐จ๐ฌ(๐Ÿ๐’–) = ๐Ÿ๐œ๐จ๐ฌ ๐Ÿ (๐’–) โˆ’ ๐Ÿ for any real number ๐’–.
PROOF: Let ๐’– be any real number. From Exercise 3 in class, we know that ๐œ๐จ๐ฌ(๐Ÿ๐’–) = ๐œ๐จ๐ฌ ๐Ÿ (๐’–) โˆ’ ๐ฌ๐ข๐ง๐Ÿ (๐’–) for any real
number ๐’–. Using the Pythagorean identity, we know that ๐ฌ๐ข๐ง๐Ÿ (๐’–) = ๐Ÿ โˆ’ ๐œ๐จ๐ฌ ๐Ÿ (๐’–). By substitution,
๐œ๐จ๐ฌ(๐Ÿ๐’–) = ๐œ๐จ๐ฌ ๐Ÿ (๐’–) โˆ’ ๐Ÿ + ๐œ๐จ๐ฌ ๐Ÿ (๐’–).
Thus, ๐œ๐จ๐ฌ(๐Ÿ๐’–) = ๐Ÿ๐œ๐จ๐ฌ ๐Ÿ (๐’–) โˆ’ ๐Ÿ for any real number ๐’–.
Lesson 17:
Trigonometric Identity Proofs
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M2-TE-1.3.0-08.2015
301
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
M2
ALGEBRA II
4.
Prove that
๐Ÿ
๐…
โˆ’ ๐œ๐จ๐ฌ(๐’™) = ๐ฌ๐ข๐ง(๐’™) โ‹… ๐ญ๐š๐ง(๐’™) for ๐’™ โ‰  + ๐’Œ๐…, for all integers ๐’Œ.
๐œ๐จ๐ฌ(๐’™)
๐Ÿ
We begin with the left side, get a common denominator, and then use the Pythagorean identity.
PROOF: Let ๐’™ be a real number so that ๐’™ โ‰ 
๐…
+ ๐’Œ๐…, for all integers ๐’Œ. Then,
๐Ÿ
๐Ÿ
๐Ÿ โˆ’ ๐œ๐จ๐ฌ ๐Ÿ (๐’™)
โˆ’ ๐œ๐จ๐ฌ(๐’™) =
๐œ๐จ๐ฌ(๐’™)
๐œ๐จ๐ฌ(๐’™)
๐ฌ๐ข๐ง๐Ÿ (๐’™)
=
๐œ๐จ๐ฌ(๐’™)
๐ฌ๐ข๐ง(๐’™)
=
โˆ™ ๐ฌ๐ข๐ง(๐’™)
๐œ๐จ๐ฌ(๐’™)
= ๐ฌ๐ข๐ง(๐’™) โˆ™ ๐ญ๐š๐ง(๐’™).
๐Ÿ
๐…
Therefore,
โˆ’ ๐œ๐จ๐ฌ(๐’™) = ๐ฌ๐ข๐ง(๐’™) โ‹… ๐ญ๐š๐ง(๐’™), where ๐’™ โ‰  + ๐’Œ๐…, for all integers ๐’Œ.
๐œ๐จ๐ฌ(๐’™)
๐Ÿ
5.
๐…
๐Ÿ’
๐…
๐Ÿ’
Write as a single term: ๐œ๐จ๐ฌ ( + ๐œฝ) + ๐œ๐จ๐ฌ ( โˆ’ ๐œฝ).
We use the formulas for the cosine of sums and differences:
๐…
๐…
๐…
๐…
๐…
๐…
๐œ๐จ๐ฌ ( + ๐œฝ) + ๐œ๐จ๐ฌ ( โˆ’ ๐œฝ) = ๐œ๐จ๐ฌ ( ) ๐œ๐จ๐ฌ(๐œฝ) โˆ’ ๐ฌ๐ข๐ง ( ) ๐ฌ๐ข๐ง(๐œฝ) + ๐œ๐จ๐ฌ ( ) ๐œ๐จ๐ฌ(๐œฝ) + ๐ฌ๐ข๐ง ( ) ๐ฌ๐ข๐ง(๐œฝ)
๐Ÿ’
๐Ÿ’
๐Ÿ’
๐Ÿ’
๐Ÿ’
๐Ÿ’
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
=
๐œ๐จ๐ฌ(๐œฝ) โˆ’
๐ฌ๐ข๐ง(๐œฝ) +
๐œ๐จ๐ฌ(๐œฝ) +
๐ฌ๐ข๐ง(๐œฝ)
โˆš๐Ÿ
โˆš๐Ÿ
โˆš๐Ÿ
โˆš๐Ÿ
= โˆš๐Ÿ ๐œ๐จ๐ฌ(๐œฝ).
๐…
๐Ÿ’
๐…
๐Ÿ’
Therefore, ๐œ๐จ๐ฌ ( + ๐œฝ) + ๐œ๐จ๐ฌ ( โˆ’ ๐œฝ) = โˆš๐Ÿ ๐œ๐จ๐ฌ(๐œฝ).
6.
Write as a single term: ๐ฌ๐ข๐ง(๐Ÿ๐Ÿ“°) ๐œ๐จ๐ฌ(๐Ÿ๐ŸŽ°) โˆ’ ๐œ๐จ๐ฌ(๐Ÿ๐Ÿ“°) ๐ฌ๐ข๐ง(๐Ÿ๐ŸŽ°).
Begin with the formula ๐ฌ๐ข๐ง(๐œถ โˆ’ ๐œท) = ๐ฌ๐ข๐ง(๐œถ) ๐œ๐จ๐ฌ(๐œท) โˆ’ ๐œ๐จ๐ฌ(๐œถ) ๐ฌ๐ข๐ง(๐œท), and let ๐œถ = ๐Ÿ๐Ÿ“° and ๐œท = ๐Ÿ๐ŸŽ°.
๐ฌ๐ข๐ง(๐Ÿ๐Ÿ“°) ๐œ๐จ๐ฌ(๐Ÿ๐ŸŽ°) โˆ’ ๐œ๐จ๐ฌ(๐Ÿ๐Ÿ“°) ๐ฌ๐ข๐ง(๐Ÿ๐ŸŽ°) = ๐ฌ๐ข๐ง(๐Ÿ๐Ÿ“° โˆ’ ๐Ÿ๐ŸŽ°)
= ๐ฌ๐ข๐ง(๐Ÿ๐Ÿ“°).
7.
Write as a single term: ๐œ๐จ๐ฌ(๐Ÿ๐’™) ๐œ๐จ๐ฌ(๐’™) + ๐ฌ๐ข๐ง(๐Ÿ๐’™) ๐ฌ๐ข๐ง(๐’™).
Begin with the formula ๐œ๐จ๐ฌ(๐œถ โˆ’ ๐œท) = ๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท) + ๐ฌ๐ข๐ง(๐œถ) ๐ฌ๐ข๐ง(๐œท), and let ๐œถ = ๐Ÿ๐’™ and ๐œท = ๐’™.
๐œ๐จ๐ฌ(๐Ÿ๐’™) ๐œ๐จ๐ฌ(๐’™) + ๐ฌ๐ข๐ง(๐Ÿ๐’™) ๐ฌ๐ข๐ง(๐’™) = ๐œ๐จ๐ฌ(๐Ÿ๐’™ โˆ’ ๐’™)
= ๐œ๐จ๐ฌ(๐’™)
8.
Write as a single term:
๐ฌ๐ข๐ง(๐œถ+๐œท)+๐ฌ๐ข๐ง(๐œถโˆ’๐œท)
๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท)
, where ๐œ๐จ๐ฌ(๐œถ) โ‰  ๐ŸŽ and ๐œ๐จ๐ฌ(๐œท) โ‰  ๐ŸŽ.
Begin with the formulas for the sine of the sum and difference:
๐ฌ๐ข๐ง(๐œถ + ๐œท) + ๐ฌ๐ข๐ง(๐œถ โˆ’ ๐œท) ๐ฌ๐ข๐ง(๐œถ)๐œ๐จ๐ฌ(๐œท) + ๐œ๐จ๐ฌ(๐œถ)๐ฌ๐ข๐ง(๐œท) + ๐ฌ๐ข๐ง(๐œถ) ๐œ๐จ๐ฌ(๐œท) โˆ’ ๐œ๐จ๐ฌ(๐œถ) ๐ฌ๐ข๐ง(๐œท)
=
๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท)
๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท)
๐Ÿ ๐ฌ๐ข๐ง(๐œถ) ๐œ๐จ๐ฌ(๐œท)
=
๐œ๐จ๐ฌ(๐œถ) ๐œ๐จ๐ฌ(๐œท)
๐Ÿ ๐ฌ๐ข๐ง(๐œถ)
=
๐œ๐จ๐ฌ(๐œถ)
= ๐Ÿ ๐ญ๐š๐ง(๐œถ).
Lesson 17:
Trigonometric Identity Proofs
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M2-TE-1.3.0-08.2015
302
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
M2
ALGEBRA II
9.
Prove that ๐œ๐จ๐ฌ (
๐Ÿ‘๐…
+ ๐œฝ) = ๐ฌ๐ข๐ง(๐œฝ) for all values of ๐œฝ.
๐Ÿ
PROOF: Let ๐œฝ be any real number. Then, from the formula for the cosine of a sum,
๐Ÿ‘๐…
๐Ÿ‘๐…
๐Ÿ‘๐…
๐œ๐จ๐ฌ ( + ๐œฝ) = ๐œ๐จ๐ฌ ( ) ๐œ๐จ๐ฌ(๐œฝ) โˆ’ ๐ฌ๐ข๐ง ( ) โˆ™ ๐ฌ๐ข๐ง(๐œฝ)
๐Ÿ
๐Ÿ
๐Ÿ
= ๐ŸŽ โˆ™ ๐œ๐จ๐ฌ(๐œฝ) โˆ’ (โˆ’๐Ÿ) ๐ฌ๐ข๐ง(๐œฝ)
= ๐ฌ๐ข๐ง(๐œฝ).
Therefore, ๐œ๐จ๐ฌ (
๐Ÿ‘๐…
+ ๐œฝ) = ๐ฌ๐ข๐ง(๐œฝ) for all values of ๐œฝ.
๐Ÿ
10. Prove that ๐œ๐จ๐ฌ(๐… โˆ’ ๐œฝ) = โˆ’ ๐œ๐จ๐ฌ(๐œฝ) for all values of ๐œฝ.
PROOF: Let ๐œฝ be any real number. Then, from the formula for the cosine of a difference,
๐œ๐จ๐ฌ(๐… โˆ’ ๐œฝ) = ๐œ๐จ๐ฌ(๐…) ๐œ๐จ๐ฌ(๐œฝ) + ๐ฌ๐ข๐ง(๐…) ๐ฌ๐ข๐ง(๐œฝ)
= โˆ’ ๐œ๐จ๐ฌ(๐œฝ).
Therefore, ๐œ๐จ๐ฌ(๐… โˆ’ ๐œฝ) = โˆ’ ๐œ๐จ๐ฌ(๐œฝ) for all real numbers ๐œฝ.
Lesson 17:
Trigonometric Identity Proofs
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M2-TE-1.3.0-08.2015
303
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.