Po:..u-s I , ; - j u L i - r Ralph M. Parsons L a b o r a t o r y For Water Resources and Hydrodynamics Department o f C i v i l E n g i n e e r i n g Massachusetts I n s t i t u t e o f Technology WAVE TRANSMISSION BY OVERTOPPING by Ralph H. Cross Charles K. S o l l i t t T e c h n i c a l Note No. 15 December 1970 Prepared Under C o n t r a c t No. DACW-72-68-C-0032 C o a s t a l E n g i n e e r i n g Research Center U.S. Army Corps o f Engineers Washington, D.C. DSR P r o j e c t 71135 ABSTRACT This report presents a theory for ocean wave transmission past breakwaters by overtopping, based on an evaluation of the energy content of the overtopping water. While several co- efficients are subject to further investigation, the data shows that the general form of the equations developed is correct. Comparison with large-scale model tests reinforces this belief, and comparison of an intermediate theoretical result predicting the volume of overtopping water with published data again shows reasonable agreement. An envelope curve for the transmission coefficient, based on all available data, gives a simple tool for preliminary design estimates of the transmission coefficient. ACKNOWLEDGEMENTS This study o f wave t r a n s m i s s i o n past breakwaters was sponsored by t h e C o a s t a l E n g i n e e r i n g Research Center o f t h e U. S. Army Corps o f Engineers under C o n t r a c t No. DACW-72-68-C-0032. Contract a d m i n i s t r a t i o n was p r o v i d e d by t h e M.I.T. D i v i s i o n o f Sponsored Research under DSR 71135. The work was c a r r i e d o u t i n t h e Ralph M. Parsons L a b o r a t o r y f o r Water Resources and Hydrodynamics o f t h e Department o f C i v i l Engineering a t M.I.T. Mr. Ken W i l s o n , a Research A s s i s t a n t i n the L a b o r a t o r y , a s s i s t e d w i t h t h e data r e d u c t i o n and numerous o t h e r essentials. INTRODUCTION The d e s i g n f o r a h a r b o r i n an exposed l o c a t i o n g e n e r a l l y i n c l u d e s a breakwater t o p r o v i d e an area s h e l t e r e d from t h e waves. As breakwaters a r e u s u a l l y designed t o p e r m i t some over- topping b y . t h e waves d u r i n g severe storms, i t becomes necessary to p r e d i c t t h e c h a r a c t e r i s t i c s o f t h e waves so t r a n s m i t t e d into the h a r b o r , t o assure t h a t t h e wave a c t i o n i n t h e s h e l t e r e d i s w i t h i n acceptable l i m i t s . area This r e p o r t presents a theory f o r wave t r a n s m i s s i o n by o v e r t o p p i n g , based on an e v a l u a t i o n o f t h e energy c o n t e n t o f t h e o v e r t o p p i n g w a t e r . While t h e c o e f f i c i e n t s f o r r e f l e c t i o n and r e g e n e r a t i o n a r e open t o q u e s t i o n , t h e l a b o r a t o r y d a t a shows t h a t t h e g e n e r a l form o f t h e e q u a t i o n s developed i s c o r r e c t . Comparison w i t h l a r g e - s c a l e model t e s t s r e i n f o r c e s t h i s b e l i e f , and comparison o f a t h e o r e t i c a l p r e d i c t i o n o f t h e volume o f o v e r t o p p i n g w a t e r w i t h a p o r t i o n o f t h e p u b l i s h e d data a g a i n shows reasonable agreement. An envelope curve f o r t h e t r a n s m i s s i o n c o e f f i c i e n t , based on data f r o m s e v e r a l sources, gives a simple t o o l f o r p r e l i m i n a r y e s t i m a t e s o f t h e t r a n s m i s s i o n coefficient. THEORY When a wave o v e r t o p s a b r e a k w a t e r , some o f t h e i n c i d e n t wave energy i s r e f l e c t e d , some i s d i s s i p a t e d , and some i s t r a n s m i t t e d past t h e breakwater i n t o t h e s h e l t e r e d area. Overtopping occurs when t h e wave runup on t h e seaward f a c e o f t h e breakwater exceeds the l e v e l o f t h e breakwater c r e s t . A s l u g o f w a t e r from each i n c i d e n t wave o v e r t o p p i n g t h e s t r u c t u r e f l o w s across t h e t o p and down t h e l e e f a c e o f t h e b r e a k w a t e r ; are t h e t r a n s m i t t e d waves generated i m p u l s i v e l y by t h i s w a t e r mass, and thus t h e energy c o n t e n t o f these t r a n s m i t t e d waves must be d e r i v e d f r o m t h e overtopping water. T h i s energy c o n t e n t can be c o n v e n i e n t l y e v a l u a t e d i n s t e p s : first, t h e energy c o n t e n t o f t h e water as i t crosses t h e b r e a k w a t e r c r e s t must be e s t i m a t e d ; must be d e t e r m i n e d ; next, the f r i c t i o n and f i n a l l y , (and p e r c o l a t i o n ) l o s s e s t h e r e g e n e r a t i o n process must be studied. The energy c o n t e n t o f t h e o v e r t o p p i n g w a t e r mass can be e s t i m a t e d by assuming t h a t t h e t o t a l energy c o n t e n t o f t h e o v e r t o p p i n g w a t e r i s the same as t h e energy o f t h a t p o r t i o n o f t h e wave runup t h a t would l i e above t h e b r e a k w a t e r c r e s t were t h e b r e a k w a t e r f a c e extended t o - a h i g h e r e l e v a t i o n as shown i n F i g . 1. At maximum runup, f l o w v e l o c i t i e s a r e e s s e n t i a l l y z e r o , and a l l t h e energy o f t h i s w a t e r i s i n t h e f o r m o f p o t e n t i a l energy. By knowing t h e shape and p o s i t i o n o f t h i s h y p o t h e t - i c a l runup wedge, t h i s p o t e n t i a l energy can be c a l c u l a t e d . W i t h t h e above assumptions s t a t e d , t h e s o l u t i o n t o t h e problem can be o u t l i n e d as f o l l o w s : I. The shape o f t h e runup wedge i s s p e c i f i e d as an n - t h degree p a r a b o l a f r o m t h e f i r s t seaward wave t r o u g h t o t h e p o i n t o f maximum runup on t h e extended b r e a k w a t e r f a c e . - 2 - II, Mass c o n s e r v a t i o n r e q u i r e s t h a t t h e volume o f runup above t h e s t i l l water l e v e l (SWL) equals in t h e t r o u g h , below t h e s t i l l water t h a t "removed" l e v e l , over t h e r e g i o n from t h e f i r s t seaward wave t r o u g h ( a t maximum runup) t o t h e breakwater. III. The energy c o n t a i n e d i n t h e runup wedge i s e v a l u a t e d from t h e n e t energy f l u x i n t o a c o n t r o l volume e n c l o s i n g t h e runup wedge and t h e p a r t i a l s t a n d i n g wave system j u s t seaward o f t h e breakwater. IV. The o v e r t o p p i n g energy i s e v a l u a t e d as t h e p o t e n t i a l energy o f t h a t p o r t i o n o f t h e runup wedge e x t e n d i n g above the a c t u a l breakwater c r e s t e l e v a t i o n a t maximum runup on t h e extended f a c e . V, The o v e r t o p p i n g water volume i s s i m i l a r l y e v a l u a t e d as t h a t p o r t i o n o f t h e runup wedge l y i n g above t h e breakwater c r e s t a t maximum runup. VI. The t r a n s m i t t e d wave energy i s e v a l u a t e d by a c c o u n t i n g for t h e n e t energy f l u x i n t o a c o n t r o l volume which en- closes t h e o v e r t o p p i n g f l o w and t h e t r a n s m i t t e d wave t r a i n . The above g r o u p i n g p r o v i d e s a c o n v e n i e n t means o f summarizing the a n a l y t i c a l d e t a i l s o f t h e t h e o r y w h i c h f o l l o w s . While t h e a n a l y s i s i s f o r a two-dimensional section of the s t r u c t u r e , w i t h waves a r r i v i n g a t normal i n c i d e n c e t o t h e s t r u c t u r e , i t should apply a l s o t o waves a r r i v i n g n e a r l y p e r p e n d i c u l a r t o t h e breakwater. - 3 - I. P a r a b o l i c Runup Wedge At maximum runup, t h e shape o f t h e runup wedge i s assumed t o be a p a r a b o l a w i t h i t s v e r t e x a t t h e b o t t o m o f t h e f i r s t wave t r o u g h . The c o r r e s p o n d i n g e q u a t i o n i s Y = MX'^ - A where Y i s t h e water s u r f a c e e l e v a t i o n above t h e SWL, X i s d i s t a n c e from t h e t r o u g h shoreward, (Fig. and A i s t h e a m p l i t u d e a t t h e t r o u g h 1 ) . This equation s a t i s f i e s the c o n d i t i o n s of surface c o n t i n u i t y and s l o p e a t i t s v e r t e x and approximates observed i n the laboratory. t h e shape o f runup wedges I t w i l l be assumed t h a t maximum runup occurs i n phase w i t h t h e extremum i n t h e p a r t i a l s t a n d i n g wave p r o f i l e . Using l i n e a r wave t h e o r y t o d e s c r i b e t h e wave m o t i o n seaward o f t h e f i r s t t r o u g h , A becomes A = A. + A 1 r = A^ ( 1 + k^) where = i n c i d e n t wave a m p l i t u d e A^ = r e f l e c t e d wave a m p l i t u d e and k r = reflection coefficient* The runup e q u a t i o n may be w r i t t e n i n d i m e n s i o n l e s s form by d i v i d i n g t h r o u g h by A, i . e . . where L i s t h e v a l u e o f X where Y = R, t h e runup h e i g h t ; thus, * The symbol c o n v e n t i o n used t h r o u g h o u t t h i s paper i s lower case l e t t e r s r e p r e s e n t d i m e n s i o n l e s s q u a n t i t i e s and c a p i t a l l e t t e r s r e p r e s e n t dimensional equivalents, - 4 - ML„ R = R + A and Y ^ R + A /iL \ _ The f o l l o w i n g d i m e n s i o n l e s s q u a n t i t i e s a r e d e f i n e d t o s i m p l i f y subsequent a l g e b r a : (H^^, H, X^, X^, and S a r e d e f i n e d i n F i g . 2 ) . Y R y , r , uh ^ , hu , l1 = -, = 2L 1 X,X ,X , S , l ^ , ^ ^R —^ , H ^1 ^2 , ^R A - AS , ^R ^ , ^R^ ^R As a r e s u l t , t h e d i m e n s i o n l e s s runup s u r f a c e becomes y = (r + l)x - 1 II. (1) Conservation o f Mass R e f e r r i n g t o F i g . 2, mass c o n s e r v a t i o n r e q u i r e s t h a t t h e volume of water c o n t a i n e d i n t h e runup wedge between x = x^ and x = 1 equal volume m i s s i n g from t h e v o i d between x = 0 and x = x.^. That 1 is. 2 ydx - ^ = 0 0 Evaluating the i n t e g r a l y i e l d s , r + 1 or - 1 sr + 1 2_ 2 r - n n + 1 (2) The p h y s i c a l l i m i t s on n a r e n - 1,0 f o r t h e runup s u r f a c e t o be concave upward and n < r f o r p o s i t i v e b r e a k w a t e r s l o p e s . Equation (2) a p p l i e s s t r i c t l y t o impermeable s l o p e s , and w i l l y i e l d c o n s e r v a t i v e l y h i g h e s t i m a t e s f o r o v e r t o p p i n g volumes on permeable III. breakwaters. Energy A n a l y s i s - Seaward Face As t h e t r a n s m i t t e d wave energy comes from t h e o v e r t o p p i n g w a t e r , t h i s o v e r t o p p i n g energy, E^ i s u n a v a i l a b l e t o form r e f l e c t e d wave. the For t h e c o n t r o l volume of F i g . 3, t h e energy f l u x over a wave p e r i o d T can be w r i t t e n , Power i n - Power out Power l o s s The power i n i s t h a t o f t h e i n c i d e n t wave. The power out i n c l u d e s t h a t o f t h e r e f l e c t e d wave and t h e o v e r t o p p i n g w a t e r . The losses i n c l u d e f r i c t i o n losses on t h e s l o p e and l o s s e s i n t h e r e g e n e r a t i o n of the r e f l e c t e d wave. I f PE i s d e f i n e d as t h e p o t e n t i a l energy o f t h e e n t i r e runup wedge above SWL a t maximum runup, then PE - E^ i s t h a t p o r t i o n o f t h e runup energy w h i c h r e t u r n s seaward v i a rundown. P a r t o f t h i s r e t u r n i n g energy i s l o s t t o s u r f a c e f r i c t i o n entrance losses i n t h e rundown process. and Independent s t u d i e s a t M.I.T. have enumerated t h e l o s s e s f o r a s l u g of f l u i d r e l e a s e d down a smooth s l o p e , (Sy, 1969, K i n g , 1970). These s t u d i e s i n d i c a t e d t h a t r e c o n v e r s i o n o f rundown energy t o r e f l e c t e d ( o r t r a n s m i t t e d ) wave energy i s v e r y i n e f f i c i e n t : at i f E i s t h e p o t e n t i a l energy o f t h e s l u g t h e onset of rundown, then t h e r e c o n v e r s i o n t o wave energy r e s u l t s i n energy l o s s e s equal t o k. E where k 0.65 for < k < i s a loss c o e f f i c i e n t and 0.85 a smooth s l o p e of 1:1.0. R e c a l l i n g t h e energy f l u x r e l a t i o n s h i p s from l i n e a r wave t h e o r y . - 6 - Equation ( 3 ) becomes E^ h% "^r^g " where C (PE - E^)k^ = - (4) = energy p r o p a g a t i o n r a t e E. = i n c i d e n t wave energy \ 1 2 (group velocity) density A 2 ^i Y = s p e c i f i c weight o f f l u i d E^ = r e f l e c t e d wave energy 2 L e t T = ^ = Hgve C Have ^i density "^r length celerity PE pe = E e o where pe and e^ a r e d i m e n s i o n l e s s p o t e n t i a l e n e r g i e s , and A = A ^ ( l + k^) as p r e v i o u s l y d e f i n e d . Substitution o f t h e above i n t o Equation ( 4 ) y i e l d s I- G T ^ \ ( 1 - k ^) 1 (1+ k )^ r where k^ i s r e f l e c t i o n c o e f f i c i e n t o f t h e overtopped s t r u c t u r e . This w i l l be taken as a l i n e a r i n t e r p o l a t i o n between Miches r e f l e c t i o n coe f f i c i e n t , k^, f o r a s t r u c t u r e whose h e i g h t exceeds maximum runup, and zero r e f l e c t i o n f o r no s t r u c t u r e . That i s , (h + h, ) k = k — (h + r ) - 7 - (6) E q u a t i o n ( 6 ) may be I n t e r p r e t e d as a r e d u c t i o n i n t h e r e f l e c t i o n coe f f i c i e n t by a f a c t o r which i s p r o p o r t i o n a l t o t h e f i c t i t i o u s b r e a k water e x t e n s i o n . P r e s e n t l y a v a i l a b l e i n f o r m a t i o n about p a r t i a l r e f l e c t i o n from o v e r t o p p e d s t r u c t u r e s does n o t j u s t i f y a more elaborate r e l a t i o n s h i p . The p o t e n t i a l energy o f t h e runup wedge must be e v a l u a t e d relative to i t s ability t o r e t u r n work t o t h e r e f l e c t e d wave system. The r e c o n v e r s i o n o f runup p o t e n t i a l energy t o wave energy occurs i n two s t e p s : (1) The p o t e n t i a l energy o f t h e s l u g i s c o n v e r t e d t o k i n e t i c energy as t h e s l u g f a l l s t o t h e w a t e r s u r f a c e , and ( 2 ) t h i s k i n e t i c energy i s c o n v e r t e d t o f l u i d m o t i o n i n t h e r e - e n t r a n c e vicinity. Much o f t h e induced f l u i d m o t i o n i s t u r b u l e n t and i s e v e n t u a l l y l o s t t o v i s c o u s d i s s i p a t i o n (as accounted f o r by t h e l o s s coefficient, k^). of the The r e m a i n i n g m o t i o n c o n t r i b u t e s t o a component t h e r e f l e c t e d wave. I t i s i m p o r t a n t t o note,however, t h a t once c e n t e r o f g r a v i t y o f t h e s l u g f l o w has e n t e r e d t h e w a t e r , t h e s l u g i s n e u t r a l l y bouyant and t h e r e f o r e has no f u r t h e r p o t e n t i a l t o accelerate. The r e c o n v e r s i o n energy i s l i m i t e d t o t h e k i n e t i c energy gained by t h e s l u g i n f a l l i n g t o the water surface. Consequently, a t maximum runup t h e p o t e n t i a l energy s h o u l d be measured r e l a t i v e t o t h e water surface. Due t o t h e u n c e r t a i n t y o f p o s i t i o n o f t h e w a t e r s u r - f a c e d u r i n g r e - e n t r a n c e , t h e p o t e n t i a l energy w i l l be e v a l u a t e d w i t h r e s p e c t t o t h e SWL. I t f o l l o w s d i r e c t l y t h a t t h e d i m e n s i o n l e s s p o t e n t i a l energy o f t h e runup wedge a t maximum runup i s s i m p l y (see F i g . 2 ) , - 8 - 2 Z_ 2 pe dx - s r At X = x^, y = 0 1/n = (^TT) thus and c o m p l e t i n g t h e above i n t e g r a t i o n y i e l d s 1 ( r + 1)2n + 1 pe = 1 (r 2 ( r + 1) n + 1. + 1) 2 + 1/n 1 ( r + 1) 1 + 1/n sr 1 - (7) (r + D^^M IV. Overtopping Energy As d e s c r i b e d e a r l i e r , t h e o v e r t o p p i n g energy i s e q u a l t o the p o t e n t i a l energy o f t h a t p o r t i o n o f t h e runup wedge e x t e n d i n g above t h e breakwater respect t o t h e SWL, crest. The p o t e n t i a l energy i s e v a l u a t e d w i t h thus 1 e o = At X = X Completing 2 • (y - h^) y = h (h^ + dx h, + 1 b thus x = 2 [r + 1 t h e above i n t e g r a t i o n y i e l d s - 9 - 1/n ^ h^ + 1 2 'o j 2 + 1/n iJV^) ( r + 1)2 2n + 1 ^ r + 1 / + 1 \ 2 ( r + 1) n + 1 1/n + r + 1 ^ 1/n h, + 1 1 - b ! , r + 1 /' ^ 1 ( 1 - h^^) I 1 + (8) ( r - h ^ ) ^ ( r + 2h^) ) S u b s t i t u t i o n o f Equations (7) and ( 8 ) i n t o E q u a t i o n ( 5 ) completes the energy c o n s e r v a t i o n a n a l y s i s on t h e seaward s i d e o f t h e b r e a k water. V. O v e r t o p p i n g Volume The o v e r t o p p i n g volume i s e v a l u a t e d f r o m F i g . 2 as volimie i n t h e runup wedge which extends above t h e b r e a k w a t e r that crest. That i s , ^ V = s ( r - h, )2 (y - h^) dx Evaluating the i n t e g r a l y i e l d s V = r + 1 + 1 h, + 1 b 1 . r + 1 + 1 ( 1 + h^) 1 - 1 + 1/n •) 1/n-l r + 1- s ( r - h^)(9) - 10 - VI. T r a n s m i t t e d Wave Energy Energy c o n s e r v a t i o n requires t h a t d u r i n g each wave p e r i o d the n e t energy accumulated i n t h e c o n t r o l volume sketched i n F i g . 4 sums t o z e r o , i . e . , power i n - power o u t = power l o s s (10) The energy f l u x i n t o t h e c o n t r o l volume i s s i m p l y t h e o v e r t o p p i n g energy d i v i d e d by t h e wave p e r i o d . The power l o s s equals t h e o v e r t o p p i n g energy f l u x m u l t i p l i e d times t h e rundown l o s s c o e f f i c i e n t , k^. The energy f l u x p a s s i n g o u t o f t h e c o n t r o l volume i s t h a t a s s o c i a t e d w i t h the t r a n s m i t t e d wave. Although the regeneration process i s q u i t e com- p l e x , i t r e p e a t s p e r i o d i c a l l y a t t h e frequency o f t h e i n c i d e n t wave, and thus t h e fundamental mode o f t h e t r a n s m i t t e d wave has t h e same f r e - quency as t h e i n c i d e n t wave. mode c o n t a i n s Experiments a t M.I.T. i n d i c a t e t h a t t h i s most o f t h e t r a n s m i t t e d wave energy. As a f i r s t m a t i o n , t h e n , h i g h e r harmonics may be n e g l e c t e d and t h e power approxileaving the c o n t r o l volume d u r i n g one wave p e r i o d i s s i m p l y E^C^ where YA. ^t = ^ 2 \ ' % A. = -7- = t r a n s m i s s i o n t A, 1 Equation (10) y i e l d s and k E T But E = A. 0 1 coefficient. S u b s t i t u t i n g t h e above i n t o YA.2 , E 1 k C = — k - 2 • t • ^g T 2 (1 + k ) r 2 ^t L„. e and T = — , where R o C length. - 11 - t = t r a n s m i t t e d wave I f t h e w a t e r depth on t h e l e e s i d e o f t h e b r e a k w a t e r i s t h e same on the seaward s i d e , then = L and \' = '%hr + (1-V (11) The problem as d e f i n e d i n c l u d e s f i v e d i m e n s i o n l e s s unknowns: n, r , k^, k^ and s ( o r L ^ ) . However, o n l y f o u r e q u a t i o n s have been p r e s e n t e d t o f a c i l i t a t e t h e s o l u t i o n t o t h e above. The p e r t i n e n t e q u a t i o n s a r e ( 2 ) , ( 5 ) , ( 6 ) , and ( 1 1 ) . A l l o t h e r q u a n t i t i e s o f i n t e r est a r e f u n c t i o n s o f t h e f i v e fundamental dependent v a r i a b l e s l i s t e d . A f i f t h r e l a t i o n s h i p i s needed t o c o m p l e t e l y s p e c i f y t h e problem. a l t e r n a t i v e r e q u i r e m e n t s have been e x p l o r e d t o s a t i s f y Two t h e need f o r a f i f t h equation. The f i r s t the a t t e m p t r e q u i r e d t h a t t h e runup wedge be t a n g e n t t o extended breakwater s l o p e a t t h e h e i g h t o f maximum runup. a c o n d i t i o n which has been observed f o r g e n t l e s l o p e s . This This i s restraint, however, y i e l d s runup h e i g h t s exceeding those observed by a f a c t o r o f 1.5 and g r e a t e r . The second a t t e m p t s p e c i f i e d t h a t t h e d i s t a n c e f r o m t h e b r e a k water t o the f i r s t t r o u g h be e q u a l t o h a l f a m o d i f i e d wave l e n g t h . The m o d i f i e d wave l e n g t h i s computed f r o m l i n e a r wave t h e o r y as a f u n c t i o n of w a t e r depth on t h e b r e a k w a t e r s l o p e , and i s d e f i n e d as t h e i n t e g r a t e d average wave l e n g t h i n t h e i n t e r v a l between t h e f i r s t i n t e r s e c t i o n o f t h e SWL w i t h t h e b r e a k w a t e r s l o p e . t r o u g h and t h e This requirement reduces t o known r e s u l t s f o r t h e two extreme c o n d i t i o n s o f v e r t i c a l w a l l s and h o r i z o n t a l s l o p e s . Imposing t h i s r e s t r a i n t , however, y i e l d s runup h e i g h t s which f a l l s h o r t o f those observed e x p e r i m e n t a l l y by a f a c t o r - 12 - of 0.7 and l e s s . similarly Corresponding transmission c o e f f i c i e n t s are low. To s a t i s f y t h e immediate need f o r a f i f t h e q u a t i o n , t h e authors have r e l i e d on S a v i l l e ' s e x p e r i m e n t a l r e s u l t s (B.E.B. T.M. as an i n p u t f o r runup h e i g h t s . #64) As a s p e c i f i c example, f o r a smooth impermeable s l o p e o f 1:1.5, wave h e i g h t t o water depth r a t i o s i n excess of 3.0, and wave cambers near 0.05, h e i g h t i s t w i c e t h e i n c i d e n t wave h e i g h t . r a t i o s f o r h i g h breakwater t h e a p p r o p r i a t e runup Use c r e s t s (^^/^ ^ 0.5) of S a v i l l e ' s runup y i e l d s good c o r r e l a - t i o n between e x p e r i m e n t a l and t h e o r e t i c a l t r a n s m i s s i o n c o e f f i c i e n t s . However, f o r r e l a t i v e l y low breakwater c r e s t s (h, / r < 0.05) b Saville's data u n d e r e s t i m a t e s t h e e q u i v a l e n t runup h e i g h t , and p r e d i c t e d t r a n s m i s s i o n c o e f f i c i e n t s are somewhat low. I t s h o u l d be p o i n t e d out t h a t t h i s l a t t e r category i s of l i t t l e i n t e r e s t f o r p r a c t i c a l breakwater design. Summarizing, t h e f i v e d i m e n s i o n l e s s and s may unknowns, n, r , k^, k^, be s o l v e d u s i n g S a v i l l e ' s e x p e r i m e n t a l runup h e i g h t s and Equations ( 2 ) , ( 5 ) , ( 6 ) , and ( 1 1 ) . Equations (7) and (8) must be u t i l i z e d t o f i n d pe and e i n terms o f t h e f i v e unknowns. An i t e r a ^ o t i v e procedure i s employed i n seeking a s o l u t i o n which s a t i s f i e s a l l f i v e conditions simultaneously. most q u i c k l y accomplished u n i t y u n t i l Equations The a u t h o r s have found t h a t t h i s i s by i n c r e m e n t i n g n up from a minimum v a l u e of ( 2 ) , (5) and (6) are s a t i s f i e d and t h e n s o l v i n g d i r e c t l y f o r t h e t r a n s m i s s i o n c o e f f i c i e n t and t h e o v e r t o p p i n g volume. A s i m p l e d i g i t a l computer program has been w r i t t e n i n FORTRAN IV G t o expedite t h i s solution. - 13 - EXPERIMENTAL EQUIPMENT The experiments were performed a t M.I.T, by Lamarre ( 1 9 6 7 ) , u s i n g a g l a s s - w a l l e d wave flume 2,5 f e e t w i d e and 105 f e e t l o n g , u s i n g a c o n s t a n t w a t e r depth o f 1.5 f e e t . A t t h e f a r end o f t h e flume was an i m p e r v i o u s beach a t a 5% s l o p e . The wave g e n e r a t o r was o f t h e f l a p t y p e , 2.5 f e e t h i g h , and hinged a t t h e b o t t o m ; t h e t o p was moved back and f o r t h by a r o d a t t a c h e d t o a crank arm h a v i n g v a r i a b l e speed and e c c e n t r i c i t y . The smooth, impermeable breakwater was l o c a t e d 51.5 f e e t from t h e wave g e n e r a t o r and was 1.3 f e e t h i g h . I t c o u l d be r a i s e d by s m a l l increments t o a maximum h e i g h t o f 1.77 f e e t by adding b l o c k i n g underneath. These b l o c k i n g s were made o f wood, shaped and i n s t a l l e d i n such a way as t o m a i n t a i n c o n s t a n t f r o n t and r e a r s l o p e s o f 1 v e r t i c a l t o 1.5 h o r i z o n t a l . wide. The h o r i z o n t a l c r e s t o f t h e breakwater was 0.33 f e e t Roughness was o b t a i n e d when d e s i r e d by adding f l a t t e n e d expanded m e t a l l a t h sheets on t o p o f t h e smooth s u r f a c e s . The i n s t r u m e n t s used i n t h e experiment were p a r a l l e l - w i r e r e s i s t a n c e t y p e wave gages connected by a w h e a t s t o n e b r i d g e t o a twochannel Sanborn r e c o r d e r . The wave gages c o n s i s t e d o f two v e r t i c a l stain- l e s s s t e e l w i r e s 1/8" i n diameter and 1 f o o t l o n g , mounted f r o m above 3/4" a p a r t , and p a r t i a l l y immersed i n t h e w a t e r . EXPERIMENTAL PROCEDURE S i x d i f f e r e n t wave p e r i o d s were i n v e s t i g a t e d . Once t h e f r e q u e n c y o f t h e wave g e n e r a t o r was a d j u s t e d t o t h e p r o p e r v a l u e , and b e f o r e i n s e r t i n g t h e breakwater i n t o t h e f l u m e , t h e e c c e n t r i c i t y o f t h e d r i v e r crank was s e t a t f o u r d i f f e r e n t p o s i t i o n s and t h e c o r r e s p o n d i n g - 14 - " i n c i d e n t " waves generated a t each s e t t i n g were recorded. A f t e r t h e r e c o r d i n g o f these i n c i d e n t waves was completed, the breakwater was i n s t a l l e d , and two wave gages were mounted a t d i s t a n c e s o f one and two wavelengths l i n e o f the s t r u c t u r e . r e s p e c t i v e l y beyond t h e c e n t e r - The f o u r d i f f e r e n t i n c i d e n t waves a l r e a d y measured were then reproduced and t h e t r a n s m i t t e d waves r e c o r d e d . A l l t h e experiments were r e p e a t e d a f t e r adding t h e expanded m e t a l sheet f o r roughness. The complete s e r i e s o f t e s t s was made f o r each i n c r e a s e i n the h e i g h t o f t h e breakwater. A f t e r t h e breakwater was a t i t s maximum h e i g h t , i . e . , when t h e r e was no more o v e r t o p p i n g , t h e s t r u c t u r e was p u l l e d o u t o f t h e w a t e r , t h e f r e q u e n c y o f t h e wave-maker changed, and t h e process r e p e a t e d f o r f i v e more p e r i o d s . EXPERIMENTAL RESULTS AND DISCUSSION The t r a n s m i t t e d wave h e i g h t s measured by gages 1 and 2 were averaged t o o b t a i n an e s t i m a t e o f " t h e " t r a n s m i t t e d wave h e i g h t . to t h e presence o f t h e h i g h e r harmonics Due i n t h e t r a n s m i t t e d wave system, t h e r e was g e n e r a l l y some v a r i a t i o n between t h e wave h e i g h t s measured at t h e two l o c a t i o n s ; cent. t h i s v a r i a t i o n t y p i c a l l y amounted t o 5 t o 15 p e r - The i n c i d e n t wave h e i g h t i s s i m i l a r l y taken as t h e average o f the two wave gages, b u t t h e d i f f e r e n c e o n l y amounts t o a p e r c e n t o r two. S i m i l a r e f f e c t s were n o t e d by t h e U. S. Army Corps o f Engineers (1965) i n t h e Dana P o i n t model t e s t s . The d a t a a r e shown i n F i g s . 5 t h r o u g h 10 as k - 15 - vs H, /R f o r a l l e x p e r i m e n t a l runs. The curves p l o t t e d are s o l u t i o n s t o Eq. 11 and d e p i c t t h e o r e t i c a l bounds f o r smooth and rough s u r f a c e s . The smooth s u r f a c e curve corresponds a l o s s c o e f f i c i e n t k„ t o a runup r a t i o R/H. = 1.8, ^ , £ - 0,6, and an ' i n t r i n s i c " c o e f f i c i e n t of r e f l e c - t i o n (as d e s c r i b e d by Miche) p = 0.8. The rough s u r f a c e curve c p r r e s - ponds t o R/H^ = 1.6, 0.7. = 0.8 and p = The runup r a t i o s used are those i n d i c a t e d by our own s t u d i e s . They are somex^hat lower than those suggested by S a v i l l e (R/H. - 2.0) and p r o b a b l y i n c l u d e some s c a l e e f f e c t s as w e l l as p e c u l i a r i t i e s o f the e x p e r i m e n t a l apparatus. The l o s s c o e f f i c i e n t v a l u e s f o l l o w d i r e c t l y f r o m Sy's e x p e r i ments. felt He found f o r a smooth 1:1 s l o p e an average k t h a t t h e r e g e n e r a t i o n process ==0.7. I t is i s more e f f i c i e n t f o r h o r i z o n t a l momentum t r a n s f e r (as i n a wave g e n e r a t o r f l a p ) than f o r v e r t i c a l momentum t r a n s f e r . Since t h e h o r i z o n t a l component o f rundown momentum i n c r e a s e s f o r d e c r e a s i n g slopes one might expect s m a l l e r l o s s coe f f i c i e n t s f o r more g r a d u a l s l o p e s . There i s , o f course, a t r a d e o f f t o s u r f a c e f r i c t i o n on v e r y g r a d u a l slopes b u t f o r smooth 1:1.5 a l o s s c o e f f i c i e n t equal t o 0.6 t o 0.8 seems a p p r o p r i a t e . slopes This i s increased f o r t h e e q u i v a l e n t roughened s l o p e . The i n t r i n s i c c o e f f i c i e n t o f r e f l e c t i o n i s a f u n c t i o n o f s u r - f a c e roughness and p e r m e a b i l i t y . Miche suggests f o r smooth impermeable s l o p e s , and p ^ 0.33 s e q u e n t l y a v a l u e of 0.8 was t h e rough s l o p e . a v a l u e of p = f o r rubble slopes. chosen f o r the smooth s l o p e and 0.7 For deep w a t e r wave cambers H^/L^ < 0.06 - 16 - and 0.8 Confor 1:1.5 s l o p e s , Miche's t h e o r y y i e l d s = p, For low b r e a k w a t e r s H^/R < 0.3± t h e t h e o r y u n d e r e s t i m a t e s the t r a n s m i s s i o n c o e f f i c i e n t ; i t appears r e a s o n a b l e t h a t t h e assumptions u n d e r l y i n g t h e t h e o r y a r e l e a s t v a l i d i n t h i s r e g i o n , and moreover, t h e values o f K and k used may n o t be a p p l i c a b l e . How¬ ever, t h i s range o f H^^/R i s o f l i t t l e p r a c t i c a l i n t e r e s t , as t h e t r a n s m i s s i o n c o e f f i c i e n t s a r e t y p i c a l l y 0.3 t o 0.6. For h i g h e r b r e a k w a t e r s (H^/R >0.5±), t h e t h e o r y g e n e r a l l y overestimates the transmission c o e f f i c i e n t , p a r t i c u l a r l y f o r the s m a l l e r v a l u e s o f r e l a t i v e d e p t h , H/L. For the most o f t h e range o f H/L however, t h e t h e o r y p r o v i d e s an "upper envelope" f o r k^, and thus is u s e f u l f o r p r e l i m i n a r y design estimates. I t i s i n t e r e s t i n g t o n o t e on F i g s . 5 t h r o u g h 10 t h a t t h e i n c i d e n t wave steepness, H^/L has l i t t l e e f f e c t on t h e t r a n s m i s s i o n c o e f f i c i e n t except a t t h e lowest v a l u e s o f E^/L. As one m i g h t e x p e c t , adding roughness t o the slopes reduces t h e t r a n s m i s s i o n c o e f f i c i e n t f o r t h e l a b o r a t o r y d a t a , p r o b a b l y by r e d u c i n g t h e runup and i n c r e a s i n g k . There i s a s i g n i f i c a n t amount o f s c a t t e r i n the d a t a ; can be a t t r i b u t e d t o s e v e r a l 1. this sources. Wave gage i n a c c u r a c i e s ; these gages t y p i c a l l y a r e o n l y good t o 5 t o 10 p e r c e n t . 2. L a t e r a l resonance e f f e c t s can b i a s r e a d i n g s t h e channel c e n t e r l i n e . taken along For s e v e r a l r u n s , i t was n o t i c e d t h a t t h e wave c r e s t s were not u n i f o r m across t h e channel. For t h e 1.5 second waves, the channel w i d t h i s c l o s e t o a - 17 - q u a r t e r - w a v e - l e n g t h and f o r the 1.0 half-wave-length. second waves, a For the o t h e r p e r i o d s , however, e s p e c i a l l y w i t h s t e e p e r waves, the p a r t i a l b r e a k i n g o c c a s i o n a l l y observed on t h e s t r u c t u r e can h i g h e r harmonics 3,- capable o f l a t e r a l generate resonance. B r e a k i n g o f t h e waves on t h e s t r u c t u r e , observed f o r the s t e e p e r waves, causes an a d d i t i o n a l energy l o s s n o t accounted f o r by t h e t h e o r y . Because o f t h e s t r o n g dependence o f b r e a k e r c h a r a c t e r i s t i c s on the backwash from t h e p r e c e d i n g wave, no v e r y u n i f o r m e f f e c t o f breaki n g can be Besides expected. t h e s c a t t e r , another shortcoming o f t h e d a t a i s t h a t t h e ranges o f r e l a t i v e d e p t h , H/L, and wave steepness, EjL, cover those found i n t h e p r o t o t y p e . Breakwaters do n o t are t y p i c a l l y fully built i n 15 t o 40 f e e t o f w a t e r , and t h e i n c i d e n t waves t y p i c a l l y have wave l e n g t h s from 200 t o 400 f t ; thus H/L 0.2 i n the p r o t o t y p e , w h i l e H/L 0.45. ranges from a p p r o x i m a t e l y 0.04 i n t h e experiments ranges from 0.16 to to S i m i l a r l y t h e wave steepness H^/L, i n the p r o t o t y p e under s t o r m c o n d i t i o n s w i l l be a p p r o x i m a t e l y 0.04 t o 0.10, w h i l e t h e maximum s t e e p - ness a v a i l a b l e i n t h e experiments was 0.064. These d i f f i c u l t i e s stem from the d i f f i c u l t y o f g e n e r a t i n g steep waves i n s h a l l o w w a t e r w i t h h i n g e d - f l a p wave g e n e r a t o r . a The Dana P o i n t data ( F i g . 1 1 ) , however, r e p r e s e n t s p r o t o t y p e c o n d i t i o n s , and agrees w e l l w i t h t h e l a b o r a t o r y d a t a , s u g g e s t i n g t h a t depth i s n o t a v e r y i m p o r t a n t f a c t o r , except poss i b l y f o r waves w h i c h break b e f o r e r e a c h i n g t h e s t r u c t u r e . F i g u r e 11 p r o v i d e s a comparison - 18 - between t h e o r y and experiment f o r a more r e a l i s t i c breakwater form. The e x p e r i m e n t a l data are from t h e U. S. Army Corps o f Engineers Report d e s c r i b i n g a s e r i e s o f s c a l e model t e s t s f o r t h e design o f a h a r b o r a t Dana Point, California. As t h e Dana P o i n t breakwater was a permeable s t r u c t u r e , some wave energy was t r a n s m i t t e d even w i t h no overtopping ( k ^ < 0.1), and t h u s , t h e t r a n s m i t t e d wave h e i g h t s g i v e n f o r s m a l l amounts o f o v e r t o p p i n g were n o t i n c l u d e d . The runup r a t i o s used f o r t h e Dana P o i n t data were R/H. = 1.0 and 1.1 f o r p r o t o t y p e wave p e r i o d s o f 12 and 18 seconds r e s p e c t i v e l y . These I r a t i o s were e s t i m a t e d from t h e data f o r non o v e r t o p p i n g waves b u t agree w e l l w i t h S a v i l l e ' s r e s u l t s . The t h e o r e t i c a l p o i n t s to t h e runup r a t i o s s t a t e d above, l o s s c o e f f i c i e n t k correspond = 0.8, and i n t r i n s i c c o e f f i c i e n t o f r e f l e c t i o n p= 0.4. R e f e r r i n g t o F i g , 11 i t i s e v i d e n t t h a t a s c a l e e f f e c t exists. The 1:50 s c a l e model y i e l d s l a r g e r t r a n s m i s s i o n c o e f f i c i e n t s than t h e 1:5 s c a l e model. T h i s i s p r o b a b l y a Reynolds e f f e c t wherein the r e - e n t r a n c e losses f o r t h e l a r g e r , more t u r b u l e n t model (and t h e r e f o r e p r o t o t y p e ) a r e h i g h e r than i n t h e s m a l l e r model. t h e o r e t i c a l s o l u t i o n l i e s between t h e two e x p e r i m e n t a l The results. E x t r a p o l a t i n g these r e s u l t s t o p r o t o t y p e s c a l e , one expects the theory to give a c o n s e r v a t i v e l y high estimate f o r the transmission c o e f f i c i e n t . For e n g i n e e r i n g purposes, however, t h i s i s a d e s i r a b l e c o n d i t i o n . The t h e o r y does n o t account f o r d i r e c t t r a n s m i s s i o n through a permeable breakwater. The c o n t i n u i t y e q u a t i o n , Eq. ( 2 ) , n e g l e c t s f l o w i n t o t h e pores o f t h e breakwater o v e r t o p p i n g volume. and thereby o v e r e s t i m a t e s t h e Consequently, t h e t r a n s m i s s i o n c o e f f i c i e n t due - 19 - to pure o v e r t o p p i n g i s a l s o o v e r e s t i m a t e d . compensating. The two e r r o r s are However, the o v e r t o p p i n g r e g e n e r a t i o n process appears to be more e f f i c i e n t than d i r e c t t r a n s m i s s i o n through of low p e r m e a b i l i t y . breakwaters The net r e s u l t i s t h a t t h e t r a n s m i s s i o n co- e f f i c i e n t i s s l i g h t l y o v e r e s t i m a t e d when t h e o v e r t o p p i n g t h e o r y i s a p p l i e d t o r u b b l e mound breakwaters. condition f o r engineering Again, this i s a desirable estimates. A l l o f the e x p e r i m e n t a l d a t a , i n c l u d i n g Dana P o i n t , are presented i n F i g . 12. I t demonstrates t h e v a l i d i t y o f u s i n g H^/R as the dimensionless data. The parameter f o r p l o t t i n g o v e r t o p p i n g t r a n s m i s s i o n envelope curve i s o f c o n s i d e r a b l e i n t e r e s t as i t appears t o be a f a i r l y c o n s i s t e n t upper bound f o r t h e t r a n s m i s s i o n coefficient, of the form k^ = 0.65 (1.10 - Hj^/R), f o r H^/R < 1.0 (12) S a v i l l e (1955) has p u b l i s h e d data on f l o w r a t e s a s s o c i a t e d w i t h t h e o v e r t o p p i n g o f v a r i o u s c o a s t a l s t r u c t u r e s . By m u l t i p l y i n g the g i v e n discharges ( c f s / f t o f c r e s t w i d t h ) by t h e wave p e r i o d , an o v e r t o p p i n g volume per wave i s o b t a i n e d . w i t h Eq. (9). F i g . 13 shows Eq. These r e s u l t s can be compared (9) p l o t t e d dimensionlessly as 2 V/(R - Hj^) (where V = f o o t o f breakwater A v , the d i m e n s i o n a l c r e s t ) vs S a v i l l e ' s r e s u l t s . f o r a s t r u c t u r e w i t h a smooth f a c e on a 1:1.5 of 4.5 and 9.0 t o 3.57. The d a t a shown a r e s l o p e , f o r t h e depths f e e t a t the t o e , wave p e r i o d s o f 2.96 and f o r runup r a t i o s , based on n o n - o v e r t o p p i n g 2.54 o v e r t o p p i n g volume per t o 6.4 seconds, wave d a t a , r a n g i n g from B r e a k i n g waves and waves w i t h l i t t l e o v e r t o p p i n g have - 20 - been n e g l e c t e d . For t h e l a t t e r t h e h e i g h t s and runups a r e r e p o r t e d o n l y t o t h e n e a r e s t f o o t , and t h e s m a l l v a l u e s o f R - H^^ computed a r e n o t r e l i a b l e . the given runup r a t i o s , The t h e o r e t i c a l p o i n t s solved f o r used = 0,7 and p = 0.8. The c o r r e l a t i o n between t h e o r y and experiment ( p e r f e c t c o r r e l a t i o n i s t h e 45° l i n e ) f u r t h e r supports servatively t h e a n a l y t i c a l assuinptions. overestimates A g a i n t h e t h e o r y con- t h e volumes, a p r o b a b l y consequence o f the h i g h runup r a t i o s used, CONCLUSIONS The t h e o r y presented describes the essential features of the process o f wave t r a n s m i s s i o n by o v e r t o p p i n g , f o r waves a r r i v i n g at t h e b r e a k w a t e r w i t h o u t b r e a k i n g and a t normal i n c i d e n c e . The r e l a t i o n s h i p d e r i v e d i s dependent on t h e c o e f f i c i e n t s o f r e f l e c t i o n and l o s s , and t h e runup r a t i o . F u r t h e r i n v e s t i g a t i o n o f these quan- t i t i e s would p e r m i t a r e f i n e m e n t o f t h e t h e o r y . The envelope curve may be used f o r p r e l i m i n a r y e s t i m a t e s of t h e t r a n s m i s s i o n c o e f f i c i e n t . For r u b b l e mound breakwaters t h i s e s t i m a t e can be improved by u s i n g t h e t h e o r y a l o n g w i t h a runup r a t i o R/H_j^ = 1.0, a l o s s c o e f f i c i e n t k^ = 0.8, and an i n t r i n s i c r e f l e c t i o n c o e f f i c i e n t p = 0.4. - 21 - REFERENCES U. S. Army Corps of E n g i n e e r s ( 1 9 6 6 ) , "Shore P r o t e c t i o n , P l a n n i n g and D e s i g n " , C o a s t a l E n g i n e e r i n g R e s e a r c h C e n t e r , T e c h n i c a l R e p o r t No. 4, T h i r d E d i t i o n , U. S. Government P r i n t i n g O f f i c e . Miche, R., ( 1 9 5 3 ) , "The R e f l e c t i n g Power of M a r i t i m e Works Exposed to A c t i o n o f t h e Waves", B u l l . Beach E r o s i o n B o a r d , U. S. Army Corps o f E n g i n e e r s , V o l . 7, No. 2, A p r i l 1953, p. l-,7. Sy, T., (1969), Personal Communication K i n g , N. , ( 1 9 7 0 ) , "Wave R e g e n e r a t i o n i n B r e a k w a t e r O v e r t o p p i n g " , S. M. and Ocean E n g i n e e r T h e s i s s u b m i t t e d to t h e Department of N a v a l A r c h i t e c t u r e and M a r i n e E n g i n e e r i n g , M.I.T., Cambridge, Mass., August 1970. U. S, Army Corps o f E n g i n e e r s ( 1 9 6 5 ) , " G e n e r a l D e s i g n f o r Dana P o i n t H a r b o r , Dana P o i n t , C a l i f o r n i a " , September 1965. S a v i l l e , T., J r . , ( 1 9 5 5 ) , " L a b o r a t o r y D a t a on Wave Runup and O v e r t o p p i n g on S h o r e S t r u c t u r e s " , U. S. Army Corps o f E n g i n e e r s , Beach E r o s i o n B o a r d T e c h n i c a l Memorandum No. 64. L a m a r r e , P., ( 1 9 6 7 ) , "Water Wave T r a n s m i s s i o n by O v e r t o p p i n g o f an Impermeable B r e a k w a t e r " , S. M. T h e s i s s u b m i t t e d to t h e D e p a r t ment o f C i v i l E n g i n e e r i n g a t M.I.T., Cambridge, Mass., September 1967. - 2 2 - 24 25 C o n t r o l Volume Figure 4 C o n t r o l Volume, Leeward Face Figure 5 vs K^/R , T = 1.5 Sec 28 O 29 T 1 T—^ 1 1— -T T = 0.8 sec Slopes Rough Smooth r • 1 1 1• i 1 Dana P o i n t Model Data 0.6 O 1:50 Model A 1:5 Model 0.5 Theory 0.4 •^•^^ • • A 0.3 a A. » 0 A • A A i«% 0.2 - • ' 0 A 0.1 0 1 • 0.1 0.2 • • 0.3 0.4 F i g u r e 11 0.5 k 0.6 1 I 1 0.7 0.8 0.9 H^/R vs KL /R - Dana P o i n t Model Data and Theory 1. T 0.6 i ï Lab, Smooth Slope O OO Lab, Rough Slope O* 0.4 • Dana P t . 1:50 Scale A Dana P t . 1:5 Scale 0.65 (1.10 - H^/R) II 0.3 0.4 0.8 0.2 0.1 0.1 0.2 0.3 F i g u r e 12 0.4 0.5 ^076 0 ~ o.8„ ,^ 0.9 H^/R vs H^/R - A l l Lab Data and Dana P o i n t Model Data 1.0 0.4 Experimental gure 13 Comparison o f T h e o r e t i c a l O v e r t o p p i n g Volumes w i t h S a v i l l e ' s Data 35 LIST OF SYMBOLS A p a r t i a l s t a n d i n g wave a m p l i t u d e A. i n c i d e n t wave a m p l i t u d e X A r e f l e c t e d wave a m p l i t u d e r \ t r a n s m i t t e d wave a m p l i t u d e C wave c e l e r i t y c energy p r o p a g a t i o n r a t e (group v e l o c i t y ) g E run down energy E. i n c i d e n t wave energy d e n s i t y X E overtopping energy o e d i m e n s i o n l e s s o v e r t o p p i n g energy o E r e f l e c t e d wave energy d e n s i t y r \ t r a n s m i t t e d wave energy d e n s i t y H s t i l l water h dimensionless s t i l l water \ b r e a k w a t e r c r e s t e l e v a t i o n above SWL \ dimensionless breakwater c r e s t H. i n c i d e n t wave h e i g h t depth depth elevation X h rundown l o s s c o e f f i c i e n t k Miche's r e f l e c t i o n c o e f f i c i e n t m k breakwater r e f l e c t i o n c o e f f i c i e n t r \ transmission c o e f f i c i e n t L i n c i d e n t , r e f l e c t e d wave l e n g t h h o r i z o n t a l d i s t a n c e from f i r s t maximum runup 36 trough t o point of LIST OF SYMBOLS (continued) t r a n s m i t t e d wave l e n g t h constant c o e f f i c i e n t i n parabola equation exponent i n p a r a b o l a equation p o t e n t i a l energy o f runup wedge d i m e n s i o n l e s s p o t e n t i a l energy o f runup wedge runup h e i g h t d i m e n s i o n l e s s runup h e i g h t b r e a k w a t e r s l o p e , seaward face " d i m e n s i o n l e s s " b r e a k w a t e r s l o p e , SA/L„ R wave p e r i o d overtopping volume dimensionless overtopping horizontal volume coordinate h o r i z o n t a l d i s t a n c e t o Y = 0, H^, r e s p e c t i v e l y d i m e n s i o n l e s s , X, X^, X2 vertical coordinate dimensionless v e r t i c a l coordinate s p e c i f i c weight Miche's i n t r i n s i c r e f l e c t i o n c o e f f i c i e n t
© Copyright 2026 Paperzz