Dynamic Neural Network Control (DNNC): A Non-Conventional Neural Network Model Masoud Nikravesh EECS Department, CS Division BISC Program University of California Berkeley, California Abstract: In this study, Dynamic Neural Network Control methodology for model identification and control of nonlinear processes is presented. The methodology uses several techniques: Dynamic Neural Network Control (DNNC) network structure, neuro-statistical (neural network & non-parametric statistical technique such as ACE; Alternative Conditional Expectation) techniques, model-based control strategy, and stability analysis techniques such as Liapunov theory. In this study, the DNNC model is used because it is much easier to update and adapt the network on-line. In addition, this technique in conjunction with References: Levenberge-Marquardt algorithm can be used as a more robust technique for network training and optimization purposes. The ACE technique is used for scaling the 1. M. Nikravesh, A. E. Farell, T. G. Stanford, Control of Nonisothermal CSTR with network s input-output data and can be used to find the input structure of the time varying parameters via dynamic neural nework control (DNNC), Chemical network. The result from Liapunov theory is used to find the optimal neural Engineering Journal, vol. 76, 2000, pp. 1-16. network structure. In addition, a special neural network structure is used to insure the stability of the network for long-term prediction. In this model, the 2. M. Nikravesh, Artificial neural networks for nonlinear control of industrial current information from the input layer is presented into a pseudo hidden layer. processes, " Nonlinear Model Based Process Control", Book edited by Ridvan Berber This model minimizes not only the conventional error in the output layer but also and Costas minimizes the filtered value of the output. This technique is a tradeoff between Karavaris, NATO Advanced Science Institute Series, Vol 353, 1998 Kluwer Academic the accuracy of the actual and filtered prediction, which will result in the Publishers, pp. 831-870 stability of the long-term prediction of the network model. Even though, it is clear that DNNC will perform better than PID control, it is useful to compare PID 3. S. Valluri, M. Soroush, and M. Nikravesh, Shortest-prediction-horizon nonlinear with DNNC to illustrate the extreme range of the non linearity of the processes model-predictive control, Chemical Engineering science, Vol 53, No2, pp. 273-292, were used in this study. The integration of the DNNC and the 1998. shortest-prediction-horizon nonlinear model-predictive control is a great candidate for control of highly nonlinear processes including biochemical reactors. Dynamic Neural Network Control (DNNC): A Non-Conventional Neural Network Model Masoud Nikravesh EECS Department, CS Division BISC Program University of California Berkeley, California Dynamic Neural Network Control (DNNC) 1. Introduction 2. Theory 3. Applications and Results 4. Conclusions 5. Future Works ym (k) W1(N+1) u(k) W11 u(k-1) W12 B1 B2 1 1 W2 u(k-M+1) W1M BM 1 BN u(k-N+1) W1N 1 y(k+1) IMC d ysp + w e’ Q u y + P + d P y + Modified IMC, Zheng ysp + d et al. (1994) e’ Q1 w1 + u w P + - - y + w2 d Q2 P y To address integral windup. + Non-linear model state-feedback control structure d ysp + e’ - w’1 Q’1 + w’2 w u y + P + d P Q’2 x=f(x)+g(x) u x h(x(t-) - y + On-Line Adaptation P Controller Pressure Trajectory q Pressure Setpoint Model Filter Controller CA CA Trajectory qc CA Setpoint Model Filter Model Predictive Control j y ( k j) ai u( k - i + j) + y* ( k j) + d( k + j) i 1 * y ( k j) yo ( k j) N ai u( k j i) i j1 yo ( k j) a N u( k N j 1) d( k) = y m ( k) - y ( k) Y ai Time i k y(k) u(k) d(k) ai N = discrete time = model output = change in the input (manipulated variable) defined as u(k)- u(k-1) = unmodelled disturbance effects on the output = unit step response coefficients = number of time intervals needed to describe the process dynamics (Note: ) ai a N for i N ym(k) = current feedback measurement y* (k+j) = predicted output at k+j due to input moves up to k. In the absence of any additional information, it is assumed that d( k j) d( k) u( k 1) u( k 2) y( k 1) u( k ) y( k 2) u( k 1) u( k ) u( k 1) y( k 3) u( k 2) u( k 1) u( k ) y( k N ) u( k N 1) u( k N 2) u( k N 3) y( K P ) 0 0 0 y(k + j) u( k N 1) u( k N 2) u( k N 3) u( k ) u( k P N ) = y(k + j) - yo (k + j) y = U a d 1 a1 0 1 a2 0 1 a3 0 1 aN 0 1 a u( k 1) 1 P 1 d( k ) (13) The Backpropagation Neural Network (i) z(i) = x1 w1 + x2 (i) w2 + + xN for i = 1 ,..., P. x1(1) z (1) (2) (2) z x1 = (P) (P) z x1 (1) xN (1) (2) xN (2) x2 x2 x2 xN (P) 1 1 1 (P) y1 F ( z ). z = X 1 w = X1 = w = X w T T w | X | 1 w1 w 2 w N (i) wN + Comparing DMC with the neural network, the following analogy may be drawn, y z U 1 X 1 w ad . The DNNC Process Model y( k 1) y ( k 1) a1 (k) u( k) d( k 1) e( k 1) a1 (k) u( k) y( k 1) a1 ( k ) u( k ) + a 2 ( k ) u( k 1) + a 3 ( k ) u( k 2) + ...+ a N ( k ) u( k 1 N ) + a N ( k ) u( k N ) + d(k + 1) d( k 1) y m ( k 1) y( k 1) d( k 1) ( k) y m ( k) - (k) y(k) d ( k 1) (k) - (k) y m ( k ) + (k) d(k) d( k 1) ( k) y m (k) + (k) d(k). The DNNC Process Model y( k 1) a1 ( k ) u ( k ) + a 2 ( k ) u ( k 1) + a 3 ( k ) u ( k 2 ) + ...+ a N-1 (k) u(k - N + 2) + a N ( k ) u ( k N 1) + ( k ) y m (k) + ( k ) d(k) = a(k) T uy(k) + (k) d(k) y( k 1) g( uy(k),a(k)) State-Space Representation of DNNC y( k 1) w ( w1T uy B ) B 2 1 2 uy = [u(k) u(k - 1) u(k - N + 2) u(k - N + 1) y m (k)]T w 1 = [ w11 w12 ... w1N ( z) w1N+1 ]T e z ez e z ez y( k 1) w 2 ( w1 uy B1 ) B2 T uy = [u(k) u(k -1) u (k - N + 2) u(k - N + 1) y(k)]T w1 = [ w11 (w12 - w11 ) ... (w1N - w1 N-1 ) w1N+1 ]T State-Space Representation of DNNC x( k 1) f ( x( k )) g( x( k ), u( k )), y( k ) h z 1 x( k ), u( k ) , y( k 1) h( x( k ), u( k )) x( k ) x1 ( k ) x 2 ( k ) x N 1 ( k ) x N ( k ) T = u(k -1) u( k 2) u( k N 1) y( k ) x( k 1) x1 ( k 1) x 2 ( k 1) = u(k) u( k 1) = u(k) x1 ( k ) x N 1 ( k 1) x N ( k 1) T u( k N 2) y( k 1) T x N-2 ( k ) h(x( k ), u( k )) T T State-Space Representation of DNNC f ( x( k )) 0 x1 ( k ) x 2 ( k ) x N 2 ( k ) 0 T g( x( k ), u( k )) u( k ) 0 0 0 0 h( x( k ), u( k )) h( x( k ), u( k )) y( k 1) w 2 ( w1 T uy B1 ) B2 T Stability of the DNNC Process Model JY 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 N 2 N 1 w 2 w1N 1 1 y1( k ) y1( k ) ( w 1 T uy B1 ) j w 2 w 1, j 1 y1( k ) 2 w 1, j w1j1 w1j j 1,..., N - 1 = 1 y1( k) 2 . w1N 1 w 2 DNNC Controller 1 ( k ) B 2 T C C - B1 ( w 1 ) uy w 2 u( k ) w 1,1 w1C = [ w1,1 w1,2 ... w1,N-1 w1,N1 ]T uyC = [ u(k -1) u(k - 2) ... u(k - N + 2) u(k - N +1) y(k)]T ( k) ( k 1) (1 ) yset ( k) d( k) y( k) d( k) y m ( k) y( k) 1- z ( z ) 0.5 ln 1 + z 1 Stability of the DNNC Process Model 1 2 3 1 0 0 0 1 0 x( k 1) = 0 0 0 0 0 0 0 0 0 x1 ( k ) x (k) 2 x 3 (k) + x N 2 ( k ) x ( k ) N 1 x N ( k) j N 2 N 1 0 0 0 1 0 0 0 0 0 0 w1N 1 w11 0 0 0 0 0 R 0 0 0 0 set ( k ) w 1, j w11 set ( k ) B2 B1 w2 R w11 1 Stability of the DNNC Process Model JU 1 2 3 1 0 0 0 1 0 = 0 0 0 0 0 0 0 0 0 N 2 N 1 0 0 0 1 0 0 0 0 0 0 w1N 1 w11 0 0 0 0 0 N1 1 N2 2 N3 N2 N1 0 Extension of the DNNC Model to the MIMO Case in IMC Framework y( k 1) w 2 F( W1 uy( k ) B1 ) B 2 uy = [ uy (1) (k) uy (2) (k) ... u (j) (k) ] T uy ( j) = [ u (j) (k) u (j) (k) ... u (j) (k - N i + 1) y(k + 1) = [ y (1) (k + 1) W1 w i, j w 1,1 w 2 ,1 = w j,1 [ w i,1 w y (2) (k + 1) w 1, 2 w 2, 2 w j, 2 i,2 T y (j) m (k) ] . . . y (j) (k + 1) ]T w 1, j w j, j . . . w i,N j w i,N j 1 ] T Neuro-Statistical Model W J J + I T 2 -1 W J J + T T T T J e -1 1 V T m 1 = V e i k e j k ij 2m 1 k m = 2 I V W k W J e T T Max-Std(Max) Min+Std(Min) Mean-Std(Mean) Mean+Std(Mean) Distribution of Min Distribution of Max Distribution of Mean Max-2*Std(Max) Min+2*Std(Min) Mean-2*Std(Mean) Mean+2*Std(Mean) Distribution of Min Distribution of Max Distribution of Mean Neural Network Prediction Actual Mean Mean+Std Mean-Std Upper Lower 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Upper Lower Actual Neural Network Prediction Actual Mean Mean+Std Mean-Std 1.0 0.8 0.6 0.4 0.2 0.0 0 5 10 Data Points 15 20 4.5 Upper 4 3.5 3 Mean Actual 2.5 2 MPV 1.5 Lower 1 0.5 0 0 5 10 15 20 ym (k) W1(N+1) u(k) W11 u(k-1) W12 B2 B1 F(k) 1 1 W2 F(k-1) F(k-2) y(k+1) F(k-3) nonlinear linear transfer function transfer function u(k-M+1) P(k+1) F(k-4) W1M P(k) P(k-1) P(k-2) u(k-N+1) P(k-3) P(k-4) W1N ym (k) F(k) F(k-1) F(k-2) F(k-3) P(k+1) W1(N+1) u(k) W11 u(k-1) W12 B2 1 1 W2 Pc(k+1) F(k-4) P(k) P(k-1) B1 u(k-M+1) W1M P(k-2) BM 1 BN P(k-3) P(k-4) Z(-1) Z(-2) u(k-N+1) W1N 1 Z(-3) Z(-4) Z(-5) y(k+1) F(k) F(k-1) F(k-2) F(k-3) P(k+1) F(k-4) P(k) P(k-1) P(k-2) P(k-3) P(k-4) Wellhead Pressure, psi 820 800 Neural Network Prediction 780 760 740 Actual data 720 0 250 500 Sampling Time 750 F(k) F(k-1) F(k-2) F(k-3) P(k+1) Pc(k+1) F(k-4) P(k) P(k-1) P(k-2) P(k-3) P(k-4) Z(-1) Z(-2) Z(-3) Z(-4) Wellhead Pressure, psi Z(-5) 760 740 Solid Line: Actual Thin Line: Network Prediction 720 0 250 500 Sampling Time 750 Typical multi-layer DNNC process model. ym (k) W1(N+1) u(k) W11 u(k-1) W12 B1 B2 1 1 W2 u(k-M+1) W1M BM 1 BN u(k-N+1) W1N 1 y(k+1) Alternative Conditional Expectation X (X) Y (Y) -0.5 -0.6 0.1 -0.6 0 -0.7 -0.7 z 0.2 Phi(x) z -0.5 -0.8 -0.1 -0.8 -0.9 -0.2 -0.9 -1 -0.5 0 0.5 -1 1 -0.5 0.5 -0.2 1 -0.1 0 0.1 0.2 Phi(x) x x -0.5 1 -0.6 0.5 -0.7 -0.8 NN Prediction -0.9 -0.6 z -0.5 Phi(y) z 0 -0.7 0 -0.8 -0.5 -0.9 -1 -1 -0.5 0 0.5 1 -1 -1 -0.5 y 0 0.5 0 0.5 1 Phi(y) y -0.55 -0.55 Input Data for Current Prediction -0.6 -0.6 -0.65 -0.65 -0.7 Input-Output Data, Prvious Information -0.7 Prediction, Output Phai -0.75 ACE -0.75 -0.8 -0.8 -0.85 Input Layer -0.9 -0.8 -0.5 1 -0.75 -0.7 -0.65 Actual No. Epochs: 200 No. Hidden Nodes: 10 -0.6 -0.55 Hidden Layer Output Layer -0.85 -0.9 -0.8 -0.75 -0.7 -0.65 Actual No. Epochs: 5 No. Hidden Nodes: 1 -0.6 -0.55 Input Data for Current Prediction Input-Output Data, Prvious Information Prediction, Output ACE Phai Input Layer Hidden Layer Output Layer Typical multi-layer DNNC process model. ym (k) W1(N+1) u(k) W11 u(k-1) W12 B1 B2 1 1 W2 u(k-M+1) W1M BM 1 BN u(k-N+1) W1N 1 y(k+1) Controller CA CA Trajectory qc CA Setpoint Model Filter Process Model dC A q E = (C Af C A ) k o C A exp( ) (t) dt V RT c ( H ) k o C A dT q E = ( Tf T) exp( ) c (t) dt V Cp RT h A q c 1 exp h ( t ) ( Tcf T) Cp V q c C pc c C pc h d = h (t) h = ( 1 - h t ) h E (t) k = k o exp RT c c (t)= exp ( - t ). h(t) c(t) CA qc q CAf Tf Tcf : : : : : : : : Fouling coefficient Deactivation coefficient effluent concentration, the controlled variable coolant flow rate, the manipulated variable feed flow rate, disturbance feed concentration feed temperatures coolant inlet temperature Injection Rate, BCW/day 65 Actual Network Prediction LR-Injector 55 45 35 25 0 500 1000 1500 2000 Sampling Time 2500 3000 3500 Injection Rate, BCW/day 140 H-Injector 130 Actual Network Prediction 120 110 0 500 1000 1500 2000 Sampling Time 2500 3000 3500 Conclusions •The DNNC strategy differs from previous neural network controllers because the network structure is very simple, having limited nodes in the input and hidden layers. •As a result of its simplicity, the DNNC design and implementation are easier than other control strategies such as conventional and hybrid neural networks. • In addition to offering a better initialization of network weights, the inverse of the process is exact and does not involve approximation error. •DNNC’s ability to model nonlinear process behavior does not appear to suffer as a result of its simplicity. • For the nonlinear, time varying case, the performance of DNNC was compared to the PID control strategy. •In comparison with PID control, DNNC showed significant improvement with faster response time toward the setpoint for the servo problem. •The DNNC strategy is also able to reject unmodeled disturbances more effectively. •DNNC showed excellent performance in controlling the complex processes in the region where the PID controller failed. •It has been shown that the DNNC controller strategy is robust enough to perform well over a wide range of operating conditions. IMC d ysp + w e’ Q u y + P + d P y + Modified IMC, Zheng ysp + d et al. (1994) e’ Q1 w1 + u w P + - - y + w2 d Q2 P y To address integral windup. + Non-linear model state-feedback control structure d ysp + e’ - w’1 Q’1 + w’2 w u y + P + d P Q’2 x=f(x)+g(x) u x h(x(t-) - y + Future Works •The integration of the DNNC and the shortest-prediction-horizon nonlinear model-predictive •No assumption regarding the uncertainty in input and output • Use of fuzzy logic techniques. ym (k) W1(N+1) u(k) W11 u(k-1) W12 B1 B2 1 1 W2 u(k-M+1) W1M BM 1 BN u(k-N+1) W1N 1 y(k+1)
© Copyright 2026 Paperzz