CO2-A/C-system COP comparison R134a vs. CO2 •Characteristic of the CO2- cooling cycle •Test bench investigation R134a vs. CO2 •Calculation of Power Consumption in NEFZ-Driving Cycle •Summary abc Dradi, 2000-03-08 CO2-A/C-system Thermodynamic process pressure CO2-process 120 bar 32°C/ 101°C R134a-process 20 bar 35 bar 1 bar abc enthalpy Dradi, 2000-03-08 CO2-A/C-system Thermodynamic process pressure 120 bar 32°C CO2-process •Existence of a COP optimum high pressure 35 bar enthalpy abc Dradi, 2000-03-08 CO2-A/C-system Thermodynamic process pressure CO2-process 120 bar •Existence of a COP optimum high pressure •COP highly dependent to air flow through the gas cooler 32°C 35 bar enthalpy abc Dradi, 2000-03-08 CO2-A/C-system Thermodynamic process pressure CO2-process 120 bar •Existence of a COP optimum high pressure •COP highly dependent to air flow through the gas cooler •At low ambient temnperatures high COP 32°C 35 bar enthalpy abc Dradi, 2000-03-08 CO2-A/C-system Thermodynamic process pressure CO2-process 120 bar •Existence of a COP optimum high pressure •COP highly dependent to air flow through the gas cooler •At low ambient temnperatures high COP •Internal heat exchanger 32°C 1. Increases cooling capacity at high ambient air temperatures 2. Increases COP 35 bar enthalpy abc Dradi, 2000-03-08 CO2-A/C-system System layout Expansion- Pressuresensor valve Temperaturesensor Internal heat exchanger Fan t° P Gascooler Receiver Compressor t° Ambient air Evaporator t° Air temperature at evap. outlet Outlet airflow Engine control unit Control unit Control panel abc Dradi, 2000-03-08 CO2-A/C-system System layout COP optimized high pressure control Expansion- Pressuresensor valve Temperaturesensor Internal heat exchanger Fan t° P Gascooler Receiver Compressor t° Ambient air Evaporator t° Air temperature at evap. outlet Outlet airflow Engine control unit Control unit Control panel abc Dradi, 2000-03-08 CO2-A/C-system System layout Expansion- Pressuresensor valve Internal heat exchanger Fan t° P Sammler Temperaturesensor Gascooler Ambient air Comfort & energy optimized suction pressure control Kompressor t° Evaporator t° Air temperature at evap. outlet Outlet airflow Engine control unit Control unit Control panel abc Dradi, 2000-03-08 CO2-A/C-system Test bench Conditioning of fresh air Outlet air Fresh-air mode HVAC Passenger compartment model Climatic chamber air flow Gas cooler air flow Frontend abc Dradi, 2000-03-08 CO2-A/C-system comparison CO2- vs. R134a-A/C-system Selection Selectionof ofclimate climate conditions for conditions forbench bench tests tests Measurement Measurementof ofcooling coolingcapacity capacityof ofthe the R134a-A/C-system in fresh-air mode R134a-A/C-system in fresh-air mode Measurement Measurementof ofthe thepower power consumption of the CO2-A/C consumption of the CO2-A/C system systemat atthe thesame samecooling cooling capacity capacity Calculation Calculationof ofthe thepower powerconsumption consumptionof ofthe the A/C-systems in the NEFZ-driving cycle A/C-systems in the NEFZ-driving cycle abc Dradi, 2000-03-08 CO2-A/C-system comparison CO2- vs. R134a-A/C-system g J/k k 60 g J/k k 50 g J/k k 40 g J/k k 30 % 30 G point 15 g J/k k 10 D point tF poin 10 g J/k k 0 % 10 5 g J/k k 20 E point % 20 water content [g/kg] g J/k k 70 tH poin I point 20 g J/k k 80 g J/k k 90 0% 10 % 90 % 80 % 70 % 60 % 50 % 40 25 g J/k k 0 10 0 45 abc 35 25 15 5 -5 -15 temperature [°C] Dradi, 2000-03-08 CO2-A/C-system comparison CO2- vs. R134a-A/C-system cooling capacity 6000 5000 4000 cooling capacity [W] 3000 2000 1000 140 93 velocity 47 [km/h] abc 43.0°C/15% 0 40.0°C/40% 35,0°C/40% ambient conditions 30,0°C/75% 25.4°C/55% 19,8°C/64% 0 Dradi, 2000-03-08 CO2-A/C-system comparison CO2- vs. R134a-A/C-system power consumption of R134a-compressor 6000 5000 4000 power consumprtion [W] 3000 2000 1000 140 93 velocity 47 [km/h] 40.0°C/40% 0 43.0°C/15% abc 35,0°C/40% ambient conditions 30,0°C/75% 25.4°C/55% 19,8°C/64% 0 Dradi, 2000-03-08 CO2-A/C-system comparison CO2- vs. R134a-A/C-system power consumption of CO2 -compressor 6000 5000 4000 power consumption [W] 3000 2000 1000 140 93 velocity 47 [km/h] 43.0°C/15% 30,0°C/75% 35,0°C/40% ambient conditions 0 40.0°C/40% abc 25.4°C/55% 19,8°C/64% 0 Dradi, 2000-03-08 CO2-A/C-system comparison CO2- vs. R134a-A/C-system comparison of power consumption 1500 1000 500 power consumption CO2 - R134a [W] 0 -500 -1000 43.0°C/15% 30,0°C/75% 35,0°C/40% ambient conditions 0 40.0°C/40% abc 25.4°C/55% 19,8°C/64% -1500 140 93 velocity 47 [km/h] Dradi, 2000-03-08 CO2-A/C-system NEFZ-driving cycle 140 120 velocity [km/h] 100 80 60 40 20 0 0 abc 200 400 600 800 1000 time [s] Dradi, 2000-03-08 CO2-A/C-system NEFZ-driving cycle at 19.8°C, 64% r.h. 140 0.18 externally controlled R134a-compressor 0.16 externally controlled CO 2-compressor 0.14 100 velocity [km/h] 0.12 80 0.1 60 0.08 0.06 40 0.04 cumulative power consumption [kWh] 120 20 0.02 0 0 0 abc 200 400 600 800 1000 time [s] Dradi, 2000-03-08 CO2-A/C-system NEFZ-driving cycle at 25.4°C, 55% r.h. 140 0.3 externally controlled R134a-compressor 120 externally controlled CO 2-compressor 100 velocity [km/h] 0.2 80 0.15 60 0.1 40 cumulative power consumption [kWh] 0.25 0.05 20 0 0 0 abc 200 400 600 800 1000 time [s] Dradi, 2000-03-08 CO2-A/C-system NEFZ-driving cycle at 30.0°C, 75% r.h. 140 0.9 externally controlled R134a-compressor 0.8 externally controlled CO2-compressor 0.7 100 velocity [km/h] 0.6 80 0.5 60 0.4 0.3 40 0.2 cumulative power consumption [kWh] 120 20 0.1 0 0 0 200 400 600 800 1000 time [s] abc Dradi, 2000-03-08 CO2-A/C-system NEFZ-driving cycle at 35.0°C, 40% r.h. 140 0.8 externally controlled R134a-compressor externally controlled CO 2-compressor 0.6 velocity [km/h] 100 0.5 80 0.4 60 0.3 40 0.2 20 cumulative power consumption [kWh] 0.7 120 0.1 0 0 0 200 400 600 800 1000 time [s] abc Dradi, 2000-03-08 CO2-A/C-system NEFZ-driving cycle at 40.0°C, 40% r.h. 140 1.2 externally controlled R134a-compressor 120 externally controlled CO 2-compressor 100 velocity [km/h] 0.8 80 0.6 60 0.4 40 cumulative power consumption [kWh] 1 0.2 20 0 0 0 abc 200 400 600 800 1000 time [s] Dradi, 2000-03-08 CO2-A/C-system NEFZ-driving cycle at 43.0°C, 15% r.h. 140 1 externally controlled R134a-compressor 0.9 externally controlled CO 2-compressor e 0.8 velocity [km/h] 100 0.7 0.6 80 0.5 60 0.4 0.3 40 cumulative power consumption [kWh] 120 0.2 20 0.1 0 0 0 abc 200 400 600 800 1000 time [s] Dradi, 2000-03-08 CO2-A/C-system Comparison power consumption at NEFZ-driving cycle relation of power consumption CO2 vs. R134a 1.4000 1.2000 1.9 4.9 2.8 • Better gascooler heat transfer at low and medium temperatures • High pressure losses along R134a-evaporator at high cooling capacity • Lower gascooler heat transfer at high temperatures 1.2 1 0.8 1.0000 0.6 0.8000 0.4 0.6000 total compressor work [kWh] 1.1 cooling capacity [kW] 4.1 3.4 0.2 CO2-system R134a-system 0.4000 0 19,8°C/64% abc 25.4°C/55% 30,0°C/75% 35,0°C/40% ambient conditions 40.0°C/40% 43.0°C/15% Dradi, 2000-03-08 CO2-A/C-system Summary •Power consumption dependent on annual climate condition •Advantages at •Medium temperatures (<~33°C) •High cooling capacities due to high humidity •Disadvantages at •High temperatures (>~33°C) •Idle speed abc Dradi, 2000-03-08 CO2-A/C-system Outlook •CO2-system to be further developed in regard to efficiency •Optimizing the HVAC unit for CO2-heat exchanger •Adaptation of the refrigerant passes in the gas cooler to the realistic airflow in the frontend •Open point: Small car A/C-system, Power consumption/cooling capacity/drivability at idle speed and high ambient air temperatures abc Dradi, 2000-03-08
© Copyright 2026 Paperzz