In diesem Z u s a m m e n h a n g sei kurz auf eine normal Heteromorphosen zählen. Die Besonderheit besteht ausgebildete männliche Z y g a e n e (Abb. 11) hingewie- darin, daß die 6-Fleck-Zeichnung des Vorderflügels sen, die ebenfalls zur ssp. modesta auf d e m rechten Hinterflügel entsprechend der Hin- B g f f . gehört und von mir aus einer R a u p e g e z o g e n wurde. D a beide terflügel-Aderung Vorder- und Hinterflügel, nebst der A d e r u n g typisch teilung w a r also der Aderverlauf ausgebildet sind, können wir dieses Tier nicht zu den Aderzeichnung). ausgeprägt ist. Bei der Fleckver- m a ß g e b e n d (typische NOTIZEN A critical experiment on B ü n n i n g of Photoperiodism s theory By D. J. C a r r Max-Planck-Institut für Biologie, Abt. Tübingen Melchers, (Z. Naturforschg. 7 b, 570—571 [1952]; eingeg. am 2. Okt. 1952) The theory of photoperiodism propounded by B ü n n i n g , which assumes the existence in plants of an endogenous component of diurnal rhythms of activity is the only one of the many theories which have so far been put forward which explains the- effects of daylength on both long-day and short-day plants in a uniform manner. Although this theory has had notable successes in predicting and accounting for the various and complex effects so far discovered in photoperiodic experiments, it has always been possible to explain these effects without assuming the existence of an endogenous rhythm in plants. C 1 a e s and L a n g 1 , however, performed experiments on the long-day plant Hyoscyamus niger in which they used 48-hour cycles consisting of a 7-hour main light period and 41 hours of darkness. At intervals of 1 hour successive experimental groups of plants received another period of light lasting two hours, interrupting the long dark period. It was found that the flower-inducing effect of this light break readied optimal Such an experiment was carried out this summer at the Max-Planck-Institut für Biologie, Abt. M e l c h e r s , in Tübingen 3 using the short-day plant Kalanchoe blossfeldiana. Seeds kindly supplied by Prof. H a r d e r were sown on 1 7 / 4 / 1 9 5 2 under long-day (c. 18 hours of light per day) conditions and the plants were kept continuously under these conditions up to the time of the experiment, when they had formed 7 pairs of expanded leaves. The plants were distributed into 21 groups of 9 plants each. One group (Gr. 21) was maintained under long-day conditions. Beginning on 5 / 8 the other groups were exposed to day-light in the greenhouse from 7.30 a.m. to 7.0 p.m. Kalanchoe blossfeldiana Effect of light break in 72-hr. cycle No. ofplants flowering or av. number of flowers per plant 19 9 12 15 18 21 21 27 30 33 36 39 12 15 values at two points, one near the beginning and one near the end of the dark period. No flower-inducing effect was found when the light-break occurred near the middle of the dark period, in striking contrast to the light-break effect with 24-hour cycles. This result can either be explained in terms of B ü n n i n g s theory or on an alternative basis suggested by the authors. They assumed that a light-break may interact with a main light period when the interval between them is not too great, and that it is indifferent whether the light break precedes or follows the main light period. Similar results were obtained by C a r r 2 with the short-day plants Xanthium saccharatum and Perilla ocymoides, but here the light effect at the two optima is inhibitory of flowering and light at the middle of the long dark period stimulates, or at least is not inhibitory to flowering. Both C 1 a e s and L a n g , and C a r r concluded that a critical experiment discriminating between the two possible explanations of this phenomenon could be made using a 72-hour cycle with a short main light period as before, but extending the dark period by another 24 hours. On B ü n n i n g s theory light breaks during such a very long dark period should show 3 optima in their promoting effect on flowering in long-day plants and inhibiting effect in short-day plants. On the alternative explanation of C 1 a e s and L a n g only 2 optima, situated near the beginning and near the end of the dark period would be expected. 18 51 51 Hours of the dark period Hatched columns - Mean No. of flowers per plant Shaded » - No. ofplants flowering per group 57 60 — 1 H. C l a e s u. A. L a n g , Z. Naturforschg. 2 b, 56 [1947], 2 D. J. C a r r , Physiol. Plantarum 5, 78—84 [1952]. 3 The author wishes to express his gratitude to Prof. M e l c h e r s for placing the facilities of his Institute at his disposal and to the M a x - P l a n c k - G e s e l l s c h a f t for providing financially for his stay in Tübingen. He also wishes to thank the staff and other workers at the Institute for their invaluable co-operation in carrying out the experimental treatments. Unauthenticated Download Date | 7/31/17 4:25 PM and then removed to dark cabinets kept at 21° C and a relative humidity of 90%. Every 3 hours thereafter a group of plants was removed from the dark cabinet and exposed for 1 hour to light of 1000 Lux intensity (at plant height) from warm-type fluorescent lamps (Osram HNG) 4 , at a controlled temperature of 21° C and atmospheric humidity of 90%. The plants were then returned to the dark cabinet for the rest of the 60,5-hour-long dark period. It was thus possible to test the effectiveness of the lightbreak in inhibiting or promoting flowering at successive intervals of 3 hours during the prolonged dark period. After 9 cycles of this treatment the plants were returned on 1/9 to longday conditions in the greenhouse. About two weeks after the end of the experimental treatment certain groups of plants were seen to be developing inflorescences. The plants are still under observation but the results are such that in view of the importance of this experiment it has been decided to publish an interim report. On 27/9 the macroscopic flower buds on each plant were counted and the heights of the plants measured. The data for the number of plants flowering, the mean number of flowers per plant and the mean plant height in each group are presented in the diagram. The results show clearly that flowering was induced only in groups 5—8 and in groups 14 and 15; that the degree of flowering as measured by the mean number of flowers per plant reaches an optimal value in groups 6 and 7 and in group 14; and that the mean heights of the plants show 3 clear optima, in groups 2, groups 11—13 and group 18. Thus whether we regard the effect of the light break on flowering or on vegetative growth the results agree closely with expectations from B i i n n i n g s theory and not with those from C 1 a e s and L a n g ' s suggestions. This experiment constitutes a critical test of the theory of B ü n n i n g which must therefore be regarded as finally and decisively proved. It is desirable however that the experiment should be repeated with other short-day plants and with long-day plants and it is hoped that this will be done in the near future. 4 The author and the Max-Plandc-Institut f. Biologie thank O s r a m G. m. b. H., K. G., for supplying the fluorescence lamps. Berichtigung Von O. R e n n e r und M. B r a u n Botanisches Institut der Universität München (Z. Naturforschg. 7 b, 571 [1952]; eingeg. am 11. Okt. 1952) In der Notiz „Das Scheitelwachstum des Sprosses von Epilobium" 1 sollte hinter der Überschrift „Induktion der Blattstellung durch die Keimblätter" ein Fragezeichen stehen. Weitere Beobachtung von Epilobium trigonum hat wahrscheinlich gemacht, daß der Übergang von dekussierter zu mehrzählig-wirteliger Blattstellung hier wie in anderen Fällen ein Erstarkungsphänomen darstellt, bei dem primär der Vegetationspunkt in seiner Masse und in seiner Symmetrie verändert wird. i O. R e n n e r u. M. B r a u n , 422 [1952], Z. Naturforschg. 7b, Die Erzeugung von Verklebungen an Blastulae von Seeigeln durch Benzodiinon * Von H e r m a n n D r u c k r e y (Z. Naturforschg. 7 b, 571—572 [1952]; eingeg. am 10. Aug. 1952) Bi- oder polyfunktionelle Substanzen, die also zwei oder mehrere reaktive Gruppen aufweisen, wie z. B. das Bis[/?-chloraethyl] -methyl-amin, können an Chromosomen lebender Zellen nicht nur zu Fragmentationen, sondern auch zu Verklebungen führen („cross linkage") ähnlich wie das von Strahlenwirkungen bekannt ist („radiomimetischer Effekt") Wahrscheinlich beruht die mutagene und cancerogene Wirkung dieser Agentien auf der Erzeugung derartiger Veränderungen an Chromosomen 3 oder anderen „Duplikanten". Wirksam sind vornehmlich solche Substanzen, die Ionen oder Radikale bilden. Soweit sie bioder polyfunktionell sind, sind sie polymerisationsfähig. Auch bei Folien aus polymeren Kunststoffen wurden kresbserzeugende Wirkungen festgestellt 4 ' 5 , die wir darauf beziehen, daß an der Oberfläche der Folien in einem bestimmten Ladungsmuster freie Restvalenzkräfte vorliegen. Solche Polymere würden demnach als polyfunktionelle Substanzen anzusehen sein, so daß für ihre krebserzeugende Wirkung ein prinzipiell ähnlicher Mechanismus in Frage kommt wie für bifunktionelle Substanzen bzw. die aus ihnen entstehenden Polymere 5 . Es erschien notwendig, die damit aufgeworfenen schwierigen Probleme experimentell weiter zu verfolgen, weil der diskutierte Wirkungsmechanismus pharmakologisch von Interesse ist und weil polymere Kunststoffe und ihre monomeren Grundsubstanzen eine zunehmende Bedeutung auf vielen Gebieten erlangen. Hier sei kurz über Untersuchungen berichtet, die die Frage prüfen, ob bifunktionelle Substanzen auch Proteine lebender Zellen zur Verklebung bringen können. Versuchsobjekt waren Keime von Seeigeln (Paracentrotus lividus) im Blastula-Stadium, in dem sie nach Ausschlüpfen aus der Befruchtungsmembran „nackt" vorliegen und sich durch Wimpern bewegen. Als Modell einer „bifunktionellen" Substanz benutzten wir das Benzodiinon. Diese Substanz ist ein wirksames Zellgift, das die Zellteilung z. B. von Seeigeleiern stark hemmt 6 , ähnlich wie 2-wertige pöro-Phenole 7 . Wurde dem Meerwasser, in dem die Keime suspen* Die Untersuchungen wurden mit Unterstützung der Deutschen Forschungsgemeinschaft an der zoologischen Station in Neapel durchgeführt. Adresse des Verf.: Freiburg i. Br., Laboratorium der Chirurgischen Universitätsklinik. 1 R. J. G o l d a c r e , A. L o v e l e s s u. W. C. R o s s , Nature [London] 163, 667 [1949]. 2 P. D u s t i n , Nature [London] 159, 794 [1947], 3 E. B o y l a n d , Endeavour 11, Nr. 42 [1952], 4 B. S. O p p e n h e i m e r , T. E. O p p e n h e i m e r u. A. P. S t o u t , Proc. Soc. exp. Biol. Med. 67, 33 [1948]; 79, 366 [1952], 5 H . D r u c k r e y , P . D a n n e b e r g u. D . S c h m ä h l , Z. Naturforschg. 7b, 353 [1952], 6 F. E. L e h m a n n , Experientia [Basel] 3, 223 [1947]; E. F r i e d m a n n , Brit. J. Pharmacol. Chemotherapv 3, 263 [1948]; H. S. R e e d , Experientia [Basel] 5, 237 [1948]. 7 H. D r u c k r e y , P. D a n n e b e r g u. D . S c h m ä h l , Naturwiss. 39, 381 [1952], Unauthenticated Download Date | 7/31/17 4:25 PM
© Copyright 2025 Paperzz